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Theoretical study of x-ray absorption of three-dimensional topological insulator Bi2Se3
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The x-ray absorption edge singularity which is usually relevant for metals is studied for the prototype
topological insulator Bi2Se3. The generalized integral equation of the Nozières and Dominicis type for the
x-ray edge singularity is derived and solved. The spin texture of surfaces states causes a component of singularity
dependent on the helicity of the spin texture. It also yields another component for which the singularity from
excitonic processes is absent.
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Introduction. The topological insulators (TIs) have been
intensively studied recently.1,2 TIs have a bulk energy gap but
they have conducting (namely gapless) states at the boundary.3

The quantum Hall state is an example of a 2-dimensional TI
with broken time reversal symmetry, and the conducting states
at the boundary are nothing but the well-known edge states.3

There exist 3-dimensional TIs with time reversal invariance,
and they have conducting surface states (SSs) which are
protected by Z2 topological invariants in the bulk.4–6 The
energy band of the SSs takes the form of a Dirac cone.1,3

SSs were first observed in Bi1−xSbx , but many of their
important features were not clearly discerned due to the small
bulk gap and disorder effect.7 Stoichiometric TIs possessing
the simplest SS structure, namely a single Dirac cone, have
been proposed for Bi2Se3, Bi2Te3, and Sb2Te3.8,9 The single
Dirac cone SS has been observed in ARPES experiments
for Bi2Se3.10 These materials can be realized as TIs owing
to the band inversion mechanism driven by large spin-orbit
coupling.8 The spin texture which is a distinguishing feature
of SSs has also been observed in the spin-resolved ARPES
experiment.11

X-ray absorption (and emission) spectroscopy is a very
important method in the study of the electronic structure of
core electrons. An incident x-ray photon excites a deep core
electron to an unoccupied state with higher energy, leaving
behind a positively charged core hole which can be treated as
being immobile in many cases.12,13 If there exist conduction
electrons (of metals), they react to this suddenly created poten-
tial by the deep core hole. The conduction electrons interact
with the deep core hole in two distinctive ways: the excitonic
process14 which is essentially attraction between the hole
and conduction electrons, and the orthogonality catastrophe15

which means a vanishing overlap between the ground-state
wave functions before and after the creation of the deep core
hole. Both excitonic process and the orthogonality catastrophe
are singular near the x-ray absorption edge for Fermi liquids,
and they require nonperturbative treatments.16–19 For TIs,
partially filled SSs comprise the conduction electrons in spite
of the energy gap in the bulk. Evidently, it is of interest
to investigate how the above singular behaviors for the
conventional Fermi liquids are modified for the conducting
states realized by SSs of TIs.

However, there is a caveat. In x-ray absorption experiments
with the incident photon perpendicular to the surface, x rays
penetrate deep into the bulk of a sample, hence providing its

bulk properties.20 The SS of TIs reside near surface, so that
in this experimental setup the contribution to the absorption
from the SS is expected to be rather small. The decay length
(along surface normal) of the SS of Bi2Se3 can be estimated
to be in the range of 4 ∼ 10 Å using Eq. (32) and Table IV of
Ref. 9. For the substantial amount of x-ray absorption to take
place in conjunction with the SS the attenuation length of the
x ray should be comparable to the decay length of the SS. The
attenuation length of the x ray can be controlled by its energy
and the incident angle (measured from the surface). Taking
various factors mentioned above into account, we choose to
focus on a core level N34p3/2 of Bi whose binding energy
is 678.8 eV. At this energy the critical angle is 3.26◦ and the
attenuation length at 3.4◦ is 40 Å which is indeed comparable to
the decay length of the SS. We note that the attenuation length
for the normal incidence is about 1000 Å.20 Presently there
seems to be no experimental report on the x-ray absorption in
Bi2Se3.

In this Brief Report we report the results on the x-ray
edge problem of Bi2Se3. The spin texture structure of the
SS modifies the singular edge behavior compared to that of
conventional Fermi liquids. The most salient differences are
the appearance of a contribution depending on the helicity
of spin texture and the other which is free of the singularity
from excitonic process. The main result of this Brief Report is
Eq. (34).

Setup. The Hamiltonian for the SS is given by [see Eq. (34)
of Ref. 9, and α,β =↑ , ↓ denote spin]

HSS =
∑

α,β=↑,↓
c
†
kαhαβckβ, ĥ = (hαβ),

(1)
ĥ = [

C̃0 + C̃2
(
k2
x + k2

y

)]
I2 + Ã(σxky − σykx),

where σx,y are Pauli matrices acting on the spin space (I2 is
a unit matrix) and ckα is the destruction operator for the SS
with wave number k and spin α. In Eq. (1) we have ignored
the trigonal distortion terms proportional to (kx ± iky)3. The
numerical values of the parameters of Eq. (1) which are
appropriate for Bi2Se3 are given by C̃0 = 3.37 × 10−2 eV,
C̃2 = 23.7 eV Å

2
, and |Ã| = 3.30 eV Å. Figure 4 of Ref. 9

suggests that the wave number cutoff should be kc ≈ 0.1 Å
−1

.
The energy eigenvalue is given by

E±(k) = C̃0 + C̃2k
2
‖ ± |Ã|k‖, k‖ =

√
k2
x + k2

y. (2)
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When the C̃2k
2
‖ is much smaller than |Ã|k‖ the Dirac cone

structure with apex at k = 0 is manifest.
The noninteracting Matsubara Green’s function of the SS

can be expressed as (the hat denotes matrix and φ is the azimuth
angle in the x-y plane)

ĝ(iε,k) = I2 gd + [(+i)ê12e
−iφ + (−i)ê21e

iφ] go, (3)

where êij is a 2 × 2 matrix whose only nonvanishing element
is 1 at (i,j ) entry, and

gd (iε,k) = iε + μ − C̃0 − C̃2k
2
‖

[iε + μ − E+(k)][iε + μ − E−(k)]
,

(4)

go(iε,k) = Ãk‖
[iε + μ − E+(k)][iε + μ − E−(k)]

,

where μ is the chemical potential, and μ > C̃0 will be assumed
(namely, the lower Dirac cone is completely occupied). The
interrelation between the spin and the angle in Eq. (3) is
nothing but the manifestation of the spin texture of the SS.9

Note that the Green’s functions of Eq. (4) are independent of
the angle φ. The Green’s functions summed over wave number
in the long-time limit are given by (τ is imaginary time)

gd (τ ) = −ρ

τ
, go(τ ) = sgn(Ã) gd (τ ), (5)

where ρ = AkF /4πvF is the density of states at Fermi energy
(A is the area of unit cell), and vF and kF are the Fermi velocity
and Fermi momentum, respectively, whose detailed form does
not concern us here. Note the sign factor sgn (Ã) in Eq. (5),
which is the signature of the helicity of the spin texture of the
SS.9

The core level N34p3/2 of Bi is labeled by the z component
of the total angular momentum J = 3/2.

Hhole = Eh

∑
mJ =±3/2,±1/2

b†mJ
bmJ

, (6)

where b
†
mJ

is the creation operator of the hole. Eh is the core
level energy, and μ + Eh is the (unrenormalized) threshold
energy for x-ray absorption. The potential created by the deep
core hole will be assumed to be spherically symmetric, and
for simplicity we will consider the isotropic scattering only,
so that the potential scattering matrix element for the SS is
simplified to18

Vkk′ = −V0, V0 > 0 is constant. (7)

Then the interaction Hamiltonian between the SS and the deep
core hole is given by

Hint =
∑
k,k′

(−V0)

(∑
α

c
†
kαck′α

) (∑
mJ

b†mJ
bmJ

)
, (8)

where a suitable cutoff in the wave number sum is assumed
implicitly. The total Hamiltonian consists of

Htot = HSS + Hhole + Hint. (9)

With the Hamiltonian Eq. (9) the hole quantum number mJ

is conserved, and it implies that the deep core hole Green’s
function is given by

−〈
bmJ

(τ )b†
m′

J
(τ ′)

〉 = δmJ ,m′
J
D(τ − τ ′), (10)

where the function D(τ ) is independent of mJ . The x-ray
absorption intensity I (ω) (ω is the frequency of the incident
x ray) can be expressed in terms of the correlation function
[using Eq. (10)] as follows:21

I (ω) = Im
∫ ∞

0
eiωτF (τ )

∣∣∣
iω→ω+iδ

,

F (τ ) =
∑

k,k′,α,β

∑
mJ

Mqλ(k,α|mJ )M∗
qλ(k′,β|mJ )Fkk′αβ|mJ

(τ ),

Fkk′αβ|mJ
(τ ) = 〈ckα(τ )bmJ

(τ )b†mJ
(0)c†k′β(0)〉, (11)

where Mqλ(k,α|mJ ) is the x-ray transition matrix element
from the deep core state |mJ 〉 to the SS (Bloch state) |k,α〉,
and q and λ are the wave number and the polarization of
the incident x ray, respectively. In many cases of interest, the
wave number (q,k) dependence of the x-ray transition matrix
element can be ignored. This is due to the localized nature of
the wave function of the core electron. In the presence of the
strong spin-orbit coupling such as the case of Bi, the electron-
photon interaction receives an additional contribution from
the spin-orbit coupling.22 The explicit form of the transition
matrix element including the spin-orbit contribution is

Mqλ(kα|mJ ) =
∫

d3�r eiq·�r
{

(−e)

me

φ
†
k

[−ih̄�eqλ · ∇mJ

]
+ h̄(−e)

4m2
ec

2
φ
†
k �σ · [−h̄ω�eqλ × ∇mj

+∇V × �eqλmJ

]}
, (12)

where �eqλ is the polarization vector of the x ray and V (�r) is the
periodic crystal potential. φk(�r) and mJ

(�r) are the (spinor)
Bloch wave function of the SS and the (spinor) wave function
of the core electron, respectively. The dipole approximation
eiq·�r ≈ 1 will be assumed below.

Correlation functions. The correlation function Fkk′αβ|mJ
(τ )

of Eq. (11) can be obtained from

Fkk′αβ|mJ
(ξ,ξ ′|τ1,τ2) = 〈T ckα(ξ )bmJ

(τ1)b†mJ
(τ2)c†k′β(ξ ′)〉 (13)

by the limiting procedure ξ → τ1 − τc and ξ ′ → τ2 + τc (τc

is the short-time cutoff). T denotes time ordering. For the
absorption we have to take τ1 > τ2. We employ the equation-
of-motion method of Ref. 19 to derive the integral equation
for Fkk′αβ|mJ

(ξ,ξ ′|τ1,τ2). The conservation of the hole number
causes the equation of motion to close on itself,19 and we find
the integral equation

Fkk′αβ|mJ
(ξ,ξ ′|τ1,τ2) = δkk′gαβ(ξ − ξ ′,k)D(τ1 − τ2)

+
∑
q′,γ

∫ τ1

τ2

dτgαγ (ξ − τ,k)Vkq′Fq′k′γβ|mJ

× (τ,ξ ′|τ1,τ2), (14)

where gαβ(ξ,k) is the Green’s function Eq. (3) in the (imagi-
nary) time domain. Decomposing Fkk′αβ|mJ

as follows,

Fkk′αβ|mJ
(ξ,ξ ′|τ1,τ2) = Gkk′αβ(ξ,ξ ′|τ1,τ2)D(τ1 − τ2), (15)
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Eq. (14) becomes the following integral equation:

Gkk′αβ(ξ,ξ ′|τ1,τ2)

= δkk′ gαβ(ξ − ξ ′,k) +
∑
q′,γ

∫ τ1

τ2

dτgαγ (ξ − τ,k)

×Vkq′Gq′k′γβ(τ,ξ ′|τ1,τ2). (16)

Equation (16) is the generalization of Eq. (17) a) in Ref. 18 to
our case of the SS. Gkk′αβ and D(τ1 − τ2) of Eq. (15) represent
the excitonic processes and the orthogonality catastrophe,
respectively.18 It can be shown that the hole Green’s function
D(τ1 − τ2) can be obtained from the solution of Eq. (16) via
the parametric integral [see Eq. (21) of Ref. 18 and Eq. (11) of
Ref. 19]. Thus once Eq. (16) is solved, we can find the x-ray
absorption intensity from Eqs. (11) and (15).

In fact, we need to find the Green’s function Gkk′αβ

summed over wave number weighted by transition matrix
element Mqλ(kα|mJ ). In most cases of simple metals the wave
number dependence of the transition matrix element is ignored.
However, in our case such dependence is crucial because, as
can be seen in Eq. (3), the spin texture structure is encoded in
the angle dependence of the Green’s function. In view of this
we expand the transition matrix element in Fourier series of
eiφ but we will ignore the k‖ = √

k2
x + k2

y dependence:

Mqλ(kα|mJ ) ≈
∑

n=0,±1

einφM
(n)
qλ (α|mJ ), (17)

where only n = 0, ± 1 terms are kept since the higher order
contributions will be smaller because they involve higher
powers of k‖r . Let us define (henceforth time arguments are
suppressed for notational clarity)

Ḡαβ|n,n′ ≡
∑
k,k′

einφ(einφ′
)∗Gkk′αβ, (18)

where a cutoff in wave number sum is implicitly assumed.
Applying the definition Eq. (18) to Eq. (3) we find

ḡαβ|0,0 = ḡαβ|1,1 = ḡαβ|−1,−1 = δαβgd (τ ),

ḡαβ|1,0 = ḡαβ|0,−1 = δα↑δβ↓(+i)go(τ ), (19)

ḡαβ|0,1 = ḡαβ|−1,0 = δα↓δβ↑(−i)go(τ ),

ḡαβ|1,−1 = ḡαβ|−1,1 = 0.

Now Eq. (16) can be recast into the following form [recall
Eq. (7)]:

Ḡαβ|n,n′ (ξ,ξ ′|τ1,τ2)

= ḡαβ|n,n′(ξ − ξ ′) + (−V0)
∫ τ1

τ2

dτ ḡαγ |n,0(ξ − τ )

×Ḡγβ|0,n′ (τ,ξ ′|τ1,τ2), (20)

which are coupled integral equations. Noting the factor ḡαγ |n,0

and using Eq. (19), we find that the nontrivial solutions (with
a nonvanishing second term) obtain only for n = 0, ± 1.

Solution of integral equation. The well-known Nozières and
Dominicis (ND) (asymptotic) solution in the long-time limit
is [g(ξ ) = − ρ

ξ
= noninteracting Green’s function] 18

GND(ξ,ξ ′|τ1,τ2) = cos2 δg(ξ − ξ ′)
[

(ξ − τ2)(τ1 − ξ ′)
(τ1 − ξ )(ξ ′ − τ2)

]δ/π

,

(21)

which satisfies [compare with Eq. (20)]

GND(ξ,ξ ′|τ1,τ2) = g(ξ − ξ ′) + (−V0)
∫ τ1

τ2

dτg(ξ − τ )

×GND(τ,ξ ′|τ1,τ2), (22)

where δ is the s-wave scattering phase shift

δ = tan−1[πV0ρ]. (23)

For n = n′ = 0, using Eq. (19), Eq. (20) is found to reduce
to Eq. (22). Hence (time arguments suppressed)

Ḡαβ|0,0 = δαβGND. (24)

Noting Eqs. (5) and (19) we also find the solutions for n′ = ±1:

Ḡαβ|0,1 = δα↓δβ↑(−i)sgn(Ã)GND,
(25)

Ḡαβ|0,−1 = δα↑δβ↓(+i)sgn(Ã)GND.

For other values of n′, Ḡαβ|0n′ = 0.
Next consider the case of n = 1. From the property of

gαγ |1,0 [see Eq. (19)] the nontrivial solutions obtain only for
α = ↑, so that

Ḡ↓β|1,n′ = ḡ↓β|1,n′ . (26)

Now take α =↑:

Ḡ↑β|1,n′ (ξ,ξ ′|τ1,τ2) = ḡ↑β|1,n′ (ξ − ξ ′) + (−V0)

×
∫ τ1

τ2

dτ ḡ↑↓|1,0(ξ − τ )Ḡ↓β|0,n′

× (τ,ξ ′|τ1,τ2). (27)

If n′ = −1, then from ḡ↑β|1,−1 = 0 and Ḡ↓β|0,−1 = 0 [see
Eq. (25)], we conclude that

Ḡ↑β|1,−1 = 0. (28)

For the case of n′ = 0 of Eq. (27), β should be ↓; otherwise
both ḡ and Ḡ vanish. Thus

Ḡ↑↑|10 = 0 (29)

and for β =↓, multiplying both sides of Eq. (27) by
(−i)sgn(Ã), we find that the equation becomes exactly ND-
type Eq. (22), so that

Ḡ↑↓|10 = (+i)sgn(Ã)GND. (30)

Repeating similar analyses for other cases, we obtain

Ḡαβ|0,0 = δαβGND, Ḡαβ|1,−1 = Ḡαβ|−1,1 = 0,

Ḡαβ|11 =
(

GND 0
0 gd

)
, Ḡαβ|−1−1 =

(
gd 0
0 GND

)
,

Ḡαβ|01 = Ḡαβ|−10 =
(

0 0
−isgn(Ã)GND 0

)
, (31)

Ḡαβ|10 = Ḡαβ|0−1 =
(

0 isgn(Ã)GND

0 0

)
.

The leading behavior of the core-hole Green’s function
D(τ ) can be obtained from the second-order linked-cluster
expansion.13 The important contribution turns out to be

V 2
0

∫ τ

0
dξ

∫ τ

0
dξ ′Tr[g(0)(ξ − ξ ′)g(0)(ξ ′ − ξ )], (32)
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where g(0)(ξ − ξ ′) = ∑
k g(k,ξ − ξ ′) = gd (ξ − ξ ′)I2. Thus

the helicity of the spin texture of the SS does not affect the core-
hole Green’s function, so that the situation becomes essentially
identical with that of the ND solution. The evaluation of
the integral of Eq. (32) yields logarithms, which are to be
exponentiated in the linked-cluster expansion. Comparing with
the ND solution we find [Nc = 2, (↑,↓)]

D(τ > 0) ∼ e−ω∗
T τ 1

(τ/τc)Nc(δ/π)2 . (33)

ω∗
T is the renormalized threshold for x-ray absorption.

Results. Combining the solutions Eqs. (31) and (33) with the
transition matrix element Eq. (12) we can obtain the result for
x-ray absorption intensity. Equation (12) has two components:
one from the direct dipole transition and the other from
spin-orbit coupling. The dipole transition conserves the spin,
so that it is diagonal in spin (namely, MαM∗

β ∝ δαβ ; this can be
verified explicitly in our case). Then Eq. (31) tells us that only
Ḡαβ|(00),(11),(−1,−1) contribute. Among these, GND includes the
singularity from excitonic processes while gd does not. The
cross term of the dipole transition and the spin-orbit contri-
bution allows spin off-diagonal configuration. From Eq. (31)
we find that this contribution is proportional to the helicity
sgn(Ã). The above considerations give [�(x) is the step
function]

I (ω) ∼ �(ω − ω∗
T )

[
c′
d (ω − ω∗

T )Nc(δ/π)2

+ [cd + sgn(Ã)co](ω − ω∗
T )−2δ/π+Nc(δ/π)2]

, (34)

where c′
d ,cd,co are constants.

Summary and concluding remarks. We have studied the x-
ray absorption edge singularity of the prototype TI, Bi2Se3. For
the singularity to exist, gapless conducting states are necessary,
and SSs provide those. Due to the spin texture of SSs, two
interesting modifications compared to conventional metals
arise: (1) the helicity-dependent contribution [sgn(Ã) term of
Eq. (34)] and (2) the contribution free of singularity from exci-
tonic process [the first term of Eq. (34)]. These features can be
verified experimentally by extracting the surface contributions
using the angle and energy dependence of the penetration depth
of the incident x ray, and we have also suggested a specific
core level appropriate for experiments. The angle and energy
dependence of the penetration depth can also be used in distin-
guishing the helicity effect of TI from that of the conventional
Rashba spin-orbit energy bands since the latter reside in the
bulk. We mention in comparison that the graphenes have two
Dirac cones from the valley structure, so that their qualitative
properties are different from those of TIs.23 We also mention
that when the Fermi energy crosses the apex of the Dirac cone,
all of the singularities disappear.23 However, this situation is
not generic for TIs and is not elaborated in this Report.
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