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We compare topological insulator materials and Rashba-coupled surfaces as candidates for
engineering p + ip superconductivity. Specifically, in each type of material we examine (1) the limitations
to inducing superconductivity by proximity to an ordinary s-wave superconductor, and (2) the robustness of the
resulting superconductivity against disorder. We find that topological insulators have strong advantages in both
regards: There are no fundamental barriers to inducing superconductivity, and the induced superconductivity
is immune to disorder. In contrast, for Rashba-coupled quantum wires or surface states, the achievable gap
from induced superconductivity is limited unless the Rashba coupling is large. Furthermore, for small Rashba
coupling the induced superconductivity is strongly susceptible to disorder. These features pose serious difficulties
for realizing p + ip superconductors in semiconductor materials due to their weak spin-orbit coupling and suggest
the need to seek alternatives. Some candidate materials are discussed.
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I. INTRODUCTION

Superconductors with p + ip pairing symmetry have long
been expected to possess zero-energy Majorana bound states
in vortex cores2 or at the ends of one-dimensional structures. 4

These Majorana fermion bound states are expected to exhibit
non-Abelian exchange statistics1,2 and have been proposed
as a basis for topological quantum computers which would
be protected from decoherence.3–5 Consequently, there is a
growing interest in realizing robust p + ip superconductors
in the laboratory. Such p + ip superconductors are thought
to naturally occur in triplet paired fermionic superfluids
(such as 3He A or Sr2RuO4),6,7 and in the Pfaffian quantum
Hall state8 at ν = 5/2. However, these systems are all
experimentally delicate, and despite extensive experimen-
tal work, direct evidence of Majorana fermions remains
elusive.

Recently, the possibility of engineering effective p + ip

superconductors in more conventional materials has arisen.9–17

A common thread in these proposals is the use of spin-
orbit coupling to convert conventional superconductivity
into p + ip superconductivity, typically by inducing s-wave
superconductivity in a 2D material with spin-orbit cou-
pling by proximity to an ordinary bulk superconductor.
Among these proposals, two dominant classes of candidate
materials have emerged: (1) surface states of topological
insulator (TI) materials16 and (2) semiconducting quantum
wires or two-dimensional electron gases (2DEGs) with
Rashba spin-orbit coupling UR and induced magnetization
Vz.9,10,12 In this work, we provide a detailed comparison of
induced superconductivity in these two classes of materials
and discuss the comparative advantages and disadvantages
of using each of these materials to construct a p + ip

superconductor.
We first examine the prospects for inducing superconductiv-

ity in TI surface states and Rashba materials by the proximity
effect. For TI surface states, the induced s-wave pairing is
always converted into p + ip pairing due to the topologically
protected winding of the TI surface Bloch wave functions.
Consequently, for a sufficiently good interface between the

TI surface and a bulk superconductor, it is possible to induce
the full bulk pairing gap �0 on the TI surface.18 The situation is
more complicated for Rashba materials, where a more delicate
balance of spin-orbit and magnetization is required to achieve
p + ip superconductivity. For these materials, the size of
the induced superconducting gap is limited not only by the
transparency of the interface to the bulk superconductor, but
also by the magnetization and Rashba energy scales which
we denote by Vz and UR , respectively (see Sec. II B for
detailed definitions). In particular for small Rashba coupling
(UR � Vz,�0), we find that the induced superconducting gap
is limited to 1

2

√
UR�0 � �0.

We then analyze the effects of disorder on the induced
superconductivity. Since superconductivity in the 2D surface
layer is induced by proximity rather than spontaneously
developed by phonon interaction, and since the induced super-
conductivity has s-wave symmetry, one might expect that the
disorder cannot reduce the induced pairing gap. On the other
hand, disorder is pair-breaking for p-wave superconductors,
and the induced superconductivity is effectively converted into
p + ip superconductivity. Therefore it is not a priori clear
what the effect of disorder will be. By computing the disorder-
averaged density of states, we find that for TI materials, the
induced superconductivity is immune to disorder and argue
on general grounds that this immunity is a direct consequence
of time-reversal invariance. In the Rashba 2DEGs, however,
the induced magnetization required to realize a single helicity
p + ip superconductor inherently breaks time-reversal sym-
metry leaving the induced superconductivity vulnerable to
disorder. We find that while the induced superconducting gap
� never fully closes from disorder, it can be sharply reduced
from its clean value. The degree of vulnerability to disorder
depends again on the size of the Rashba coupling UR . For small
UR , � is strongly suppressed even for very weak disorder for
which the superconducting coherence length ξ0 is only a few
percent of the mean-free path �. This sharp decrease is more
drastic than the case of magnetic impurities in a conventional
superconductor, for which superconductivity is destroyed only
when ξ0/� ∼ 1.
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In both regards, the TI materials offer advantages,
allowing robust induced superconductivity that is immune
to disorder. This suggests that TI materials may therefore
be the most promising route to realizing topological super-
conductivity and Majorana fermions. However, implementing
a p + ip superconductor using a TI surface state requires
many further developments in material growth and inter-
face engineering, and therefore it may still be desirable to
work with more conventional materials with strong Rashba
splitting.

So far, the theoretical and preliminary experimental
work on building a p + ip superconductor from Rashba
2DEGs has largely focused on semiconductor materials and
in particular on semiconductor nanowires.11 However, in
light of our analysis, the very low Rashba energy scales
in semiconductors raise serious challenges for inducing
superconductivity. Namely, small UR greatly limits the size
of the induced superconducting gap and, furthermore, ren-
ders the resulting superconductor extremely sensitive to
disorder. These drawbacks suggest that an alternative class
of materials with stronger spin-orbit coupling should be
sought.

Extremely large Rashba splittings on the order of 1 eV
have been observed in surface alloys of metals and heavy
elements such as Bi on Ag(111).19 In an earlier paper,13 we
proposed this surface alloy as a promising candidate material.
However, this extreme Rashba strength can also create new
problems. Namely, large Rashba coupling leads to large carrier
density, making it difficult to adjust the chemical potential
by gating. This is problematic because one must be able
to fine-tune the chemical potential to achieve topological
superconductivity and to manipulate Majorana end states. It
is therefore desirable to find materials with strong enough
Rashba couplings to avoid problems with induced supercon-
ductivity and disorder, but not so strong that gating becomes
impossible.

One particularly promising candidate is the (110) surface
of Au, which first-principles calculations predict will
exhibit surface bands with sizable Rashba splitting.20 These
surface bands naturally lie within �50 meV of the bulk
Fermi level, indicating that it should be possible to move
the chemical potential into the topological regime using
gating.

This paper is organized as follows: We begin with a review
of the proposed route to engineering a p + ip superconductor
from TI and Rashba 2DEG materials. We then introduce
a simple model of the proximity effect in these materials
and show how to choose system parameters in order to
optimize the induced superconducting gap. Subsequently, we
turn to the issue of disorder and derive the disorder-averaged
Green’s functions and density of states for weak to moderate
disorder (kF � � 1). Finally, we close with a discussion of the
relative strengths and weaknesses of each class of materials
for realizing a p + ip superconductor.

II. OVERVIEW OF PROPOSED ROUTES TO
TOPOLOGICAL SUPERCONDUCTIVITY

In this section we briefly review the proposed routes
to creating a topological superconductor from the surface

state of a bulk topological insulator (TI) or from a 2DEG
with strong Rashba spin-orbit coupling. In both classes of
materials, spin-orbit coupling creates surface bands in which
electron spin is locked with respect to the direction of
propagation. This helical locking of electron spin direction
to propagation directions causes the electron spin to wind as
one traverses a loop around the Brillouin zone. Consequently,
if s-wave superconductivity is induced by proximity to a bulk
superconductor, the helical winding of the surface Bloch wave
functions effectively converts the induced superconductivity
into p + ip superconductivity. Specifically, when reexpressed
in the basis of the surface bands, the induced s-wave pairing
term takes the form of a p-wave pairing term.12,16

Throughout the paper, we work in the basis of time-reversed
pairs,

�k =
(

ψk

T ψk

)
=
(

ψk

−iσyKψk

)
=

⎛⎜⎜⎜⎝
(

ck,↑
ck,↓

)
(

c
†
−k,↓

−c
†
−k,↑

)
⎞⎟⎟⎟⎠ , (1)

which is convenient for discussing superconductivity. Here we
take the usual representation T = −iσyK of the time-reversal
operator, where {σx,y,z} are Pauli matrices in the spin basis,
and K denotes complex conjugation.

We consider inducing the pairing term,

H� = �
∑

k

c
†
k,↑c

†
−k,↓ + H.c.

=
∑

k

�ψ
†
k (T ψk)† + H.c. =

∑
k

�
†
k�τ1�k, (2)

by proximity to an ordinary superconductor, where {τ1,2,3} are
Pauli matrices in the particle-hole basis. Here we have chosen
a gauge in which the pairing order parameter � is purely
real (this is justified, as we are not presently concerned with
situations where the superconducting phase is inhomogeneous
or fluctuating).

In proposals to realize Majorana fermions, there are two
relevant energy scales protecting the coherence of information
stored among the Majorana fermions. The first is the (p-wave
component of the) induced superconducting pairing gap, �,
which sets the energy scale for single-particle excitations
that can change the fermionic parity of a pair of Majoranas.
The second is the so-called minigap to localized excitations
near each Majorana. Since localized excitations cannot change
nonlocal fermion parity, the minigap is important only when
two Majoranas are brought close to each other for mea-
surement purposes.21 For Majoranas realized as end states,
the minigap also scales linearly with the induced p-wave
pairing gap.14 Therefore, in order to perform quantum coherent
manipulations of Majorana fermions, it is important to achieve
a robust pairing gap and to work at temperatures much lower
than this gap.

A. Topological insulators

The low-energy continuum Hamiltonian, HTI =∑
k �

†
kHTI(k)�k , of a TI surface is16

HTI = [vẑ · (σ × k) − μ] τ3, (3)
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where v is the Dirac cone velocity. The surface eigenstates
with energies ±v|k| form the upper and lower branches of a
single Dirac cone with definite spin helicity:

c± =
(

ck,↑ ± e−iφk ck,↓√
2

)
, (4)

where φk = tan−1(kx/ky).
When expressed in the c± basis, the pairing term [Eq. (2)]

takes the form of an ideal spinless p + ip superconductor16

H� =
∑

k

�
(
eiφk c

†
k,+c

†
−k,+ + e−iφk c

†
k,−c

†
−k,− + H.c.

)
. (5)

B. Rashba 2DEG

The low-energy continuum Hamiltonian, HR =∑
k �

†
kHR(k)�k , of a Rashba-coupled 2DEG with induced

magnetization is

HR(k) = [ξk + αRẑ · (σ × k)] τ3 + Vzσz, (6)

where ξk = k2

2m
− μ is the spin-independent dispersion, μ is

the chemical potential, UR = 2mα2
R is the Rashba-coupling

strength, and Vz is the induced Zeeman splitting responsible
for the surface magnetization.

In contrast to the TI case, without breaking time-reversal
symmetry, there are two helicities present at each energy.
Consequently, in order to construct a single-species p + ip

superconductor, it is necessary to explicitly break time-reversal
symmetry, in this case by introducing magnetization Vz to
remove one of these helicities.

The Rashba coupling αR creates two helical bands with
energies ε

(R)
± = ξk ± αR|k| and spin wave functions c± (as for

the TI case). Vz cants the helical bands by angle θM (k) out of the
xy plane modifying the surface eigenstates and corresponding
dispersions:

ε
(R/FM)
± = ξk ±

√
V 2

z + U 2
R

k2

2m
,

c
(R/FM)
± = e−iφkσz/2e−iθMσx/2

(
ck,↑ ± ck,↓√

2

)
, (7)

θM (k) = tan−1

(
Vz/

√
V 2

z + U 2
R

k2

2m

)
.

Reexpressing H� in the eigenbasis of both Rashba and
Zeeman couplings, one finds that, in addition to p ± ip pairing
�p(k)k̂± ∼ 〈ck,±c−k,±〉 between fermions both in band ε±, the
canting θM introduces an s-wave pairing component �s(k) ∼
〈ck,+c−k,−〉 between fermions c+ and c− in bands ε+ and ε−,
respectively, where(

�s(k)
�p(k)

)
= 1

2
√

V 2
z + U 2

R
k2

2m

(
Vz

−
√

U 2
R

k2

2m

)
� (8)

and k̂± = (ky ± ikx)/k. As discussed in Ref. 12, one has a
topological superconductor with potential Majorana bound
states so long as Vz > �, and so long as μ lies within the
Zeeman gap (|μ| < Vz). It is most advantageous to set μ = 0,
placing the chemical potential in the middle of the Zeeman gap

FIG. 1. (Color online) Band structure with Rashba coupling,
magnetization, and induced superconductivity. Three relevant energy
scales are labeled: 2�BG is the energy gap between the ε+ and ε−
bands at the Fermi surface, �FS is the induced p-wave pairing gap at
the Fermi surface, and 2VZ is the induced magnetization gap.

(which can be done either by electrostatic gating or chemical
doping), and we will take μ = 0 throughout the remainder of
this paper.

In this system, there are two excitation gap energy scales
(see Fig. 1): The first is the pairing gap at the Fermi surface
(k = kF ) given by

�FS = 2�p =
√

UR

�BG
�, (9)

�BG = ε
(R/FM)
+ − ε

(R/FM)
−

2
=
√

V 2
z + UR

k2
F

2m
. (10)

The second is the Zeeman gap at k = 0, given (for μ = 0)
by |Vz − �|. The smaller of these two energy scales sets the
bulk gap to single-particle excitations which would destroy the
nonlocal information stored among Majorana bound states.
We note that the relative strength of the Rashba spin-orbit
coupling UR and the Zeeman splitting Vz determines the size
of the pairing gap at kF . For Vz � UR , the pairing gap is only
a small fraction of originally induced �. If the Zeeman gap
closes (i.e., if Vz � �), then both helicities are present and the
system is topologically trivial.

III. PROXIMITY-INDUCED SUPERCONDUCTIVITY

A. Simple model of proximity effect

In this section, we consider the interface between a bulk
s-wave superconductor and either a topological insulator
surface or a Rashba-coupled surface state with induced mag-
netization Vz. As a simple model of this interface, we consider
a bulk superconductor described by the BCS Hamiltonian,

HB =
∑
k,σ

[εB,kb
†
k,σ bk,σ + (�0b

†
k,↑b

†
−k,↓ + H.c.)], (11)

coupled to the surface through a clean planar interface
described by the bulk-surface tunneling term,

HB-S =
∑

k‖,k⊥,σ

�b
†
(k‖,k⊥),σ ck‖,σ + H.c., (12)

which conserves momentum k‖ parallel to the interface and
is independent of the transverse momentum k⊥ perpendicular
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to the interface. Here b
†
k,σ and c

†
k,σ are the electron creation

operators (with momentum k and spin σ ) for the bulk supercon-
ductor and surface, respectively, εB is the non-superconducting
bulk dispersion which we will linearize about the chemical
potential μ, and �0 is the bulk s-wave pairing amplitude.

Since surface-bulk tunneling conserves in-plane momen-
tum, the bulk tunneling density of states (in the absence of
superconductivity) is given by the one-dimensional expres-
sion NB(εB(k)) = [∂εB(k)/∂kz]−1. Assuming that NB varies
slowly with energy, HB−S induces the following self-energy
correction to the surface Green’s function:

��(iω) = πγ√
�2

0 + ω2
(−iω + �0τ1) , (13)

where γ = NB(0)|�|2 is a convenient measure of the strength
of surface-bulk coupling corresponding to the width of the
surface resonance that would result from HB-S without bulk
superconductivity (�0 = 0).

Incorporating �� into the surface Green’s function gives

GS (iω) = Z�

iω − Z�HTI/R − (1 − Z�)�0τ1
, (14)

where Z� is the reduced quasiparticle weight due to the bulk-
surface hybridization:

Z�(iω) =
⎛⎝1 + πγ√

�2
0 + ω2

⎞⎠−1

. (15)

The quasiparticle weight can be interpreted as the fraction
of time that a propagating electron resides in the surface, as
opposed to the bulk. The surface-bulk tunneling induces a
pairing term �̃τ1 in the surface where

�̃ = (1 − Z�)�0. (16)

For strong surface-bulk coupling (γ � �0 or equivalently
Z� � 1) a sizable fraction of the bulk pairing is induced on
the surface.

However, this is not the only effect of the interface. From
Eq. (14) we see that the surface-bulk coupling renormalizes
the surface Hamiltonian, effectively rescaling the coefficients
by a factor of Z�:

HTI/R → H̃TI/R = Z�HTI/R. (17)

The effects of this renormalization are markedly different
for topological insulators and Rashba 2DEG’s, and we will
consider each case in turn.

1. Proximity effect for TI surface

Renormalization of the topological insulator surface due to
coupling to a bulk superconductor simply results in rescaling

the Fermi velocity vF → ṽF = Z�vF and chemical potential
μ → μ̃ = Z�μ. However, the nature of the induced pairing
is independent of vF and |μ|; rather, it depends only on the
helical spin-winding of the surface Bloch wave functions as
one traverses a loop around the single Dirac cone in the surface
Brillouin zone. Since this helical winding is unchanged by the
bulk-surface coupling, the induced pairing symmetry will be
preserved regardless of γ .

Therefore, for TI materials there are no fundamental
restrictions to pursuing arbitrarily strong coupling between
the TI surface and the nearby bulk superconductor, and
consequently it is in principle possible to induce the full bulk
gap �0 on the TI surface. This advantageous feature of TI
surfaces was first pointed out in Ref. 18. In the subsequent
section, we will see that things are not so simple for the
inducing superconductivity in a Rashba-coupled 2DEG.

2. Proximity effect in a Rashba-coupled 2DEG

Inducing superconductivity in Rashba-coupled surface
states is a more delicate matter than in TI surfaces. Whereas
the helical TI surface states are topologically guaranteed to
convert induced s-wave pairing into effective p + ip pairing,
constructing effective p + ip pairing in a Rashba coupled
2DEG requires a careful balance of spin-orbit coupling to
create helical winding and magnetization Vz to remove one
of the helicities. In particular, the Zeeman gap at k = 0 is
given by |Ṽz − �̃|, and must not close. Consequently, in order
to engineer a topological superconductor, one must arrange
for the surface magnetization to exceed the induced pairing
amplitude: ṼZ > �̃. Since Ṽz = Z�Vz, and �̃ = (1 − Z�)�0,
one immediately sees that a balance must be struck to ensure
that the bulk-surface interface is sufficiently strong to induce
pairing, but not so strong that it destroys the magnetization
gap at k = 0.

We now turn to a quantitative analysis of the effect of
proximity-induced pairing in a Rashba 2DEG. The goal will
be to find the optimum set of parameters in order to achieve
a large p-wave superconducting gap on the Rashba-coupled
surface. There are two excitation gaps, the magnetization gap,
|Ṽz − �̃| = |Z�Vz − (1 − Z�)�0|, at k = 0 and the p-wave
pairing gap �̃FS = (1 − Z�)�FS at the Fermi surface. The
smaller of these two energy scales sets the minimum excitation
energy gap. The former decreases with Z� , whereas the latter
increases with Z� , indicating that the optimal Z� is

Z(opt) = �FS + �0

Vz + �FS + �0
, (18)

which corresponds to an optimal excitation gap of

�
(opt)
FS = Vz

Vz + �FS + �0
�FS, (19)

where �FS is a function of UR , Vz, and �0 given by Eq. (9).
Figure 2(a) shows the optimum achievable value of

Egap as a function of Rashba coupling strength UR , and
Figs. 2(b)–2(d) show the corresponding optimal values of
Vz, Z� , and γ . In practice, it will likely not be possi-
ble to fine-tune the interface transparency γ between the
Rashba surface and the adjacent superconducting layer, or
the induced magnetization Vz. Rather, these parameters will
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FIG. 2. Optimal parameters for producing a large pairing gap in
a Rashba-coupled surface via the proximity effect as a function of
Rashba-coupling strength UR . Panels (a)–(d) respectively show the
optimal excitation gap �

(opt)
FS , Zeeman splitting V (opt)

z , quasiparticle
residue Z(opt), and surface-superconductor coupling energy γ (opt). All
energies are measured with respect to the pairing amplitude �0 of the
bulk superconductor.

be determined by the detailed structure of the surface-
superconductor and surface–magnetic insulator interfaces.
Therefore, one should view Fig. 2(a) as an upper bound on
the practically achievable induced pairing gap. Even so, the
general trend is clear: For small Rashba splitting UR , only a
small fraction of the bulk pairing gap �0 is induced on the
surface, whereas for large UR a substantial fraction of �0 is
achievable.

This analysis highlights one of the potentially serious
drawbacks of using materials with weak spin-orbit coupling.
In the limiting case of small UR , it is advantageous to arrange
Z� 
 1/2, large �0 � UR , and Vz = �0, in which case

lim
UR→0

Egap �
√

UR�0

2
. (20)

In particular for semiconductor materials in which typical
Rashba couplings are of the order of 0.2–0.8 K,12 even after
carefully optimizing Vz, γ , and �0, only a p-wave pairing
gap on the order of 0.1–0.4 K is achievable. Such small
excitation gaps would require operating at temperatures much
smaller than 0.1 K in order to avoid thermal excitations,
which could pose difficulties for experiments. Furthermore,
as will be shown in more detail below, small UR puts stringent
restrictions on sample purity, as even small amounts of disorder
will further suppress induced pairing. In contrast, the situation
is much more hopeful for materials with strong spin-orbit
couplings. For strong Rashba couplings, one induces nearly
the full superconducting gap �0, given sufficiently transparent
superconductor-surface interfaces.

B. Surface resonances

So far, we have been implicitly considering an artificial
interface between a 2D material (either a TI surface or Rashba
2DEG) and a different superconducting material. A potentially

simpler alternative for realizing p + ip superconductivity is
to use the naturally occurring interface between a bulk super-
conductor and its surface. This approach would eliminate the
need to find compatible materials to engineer an appropriately
transparent interface.

The formalism developed above applies equally well in
this case. Namely, if electronic states on the surface of a bulk
metal occur at the same energy and momentum as bulk states,
then the surface states decay into the bulk leaving behind
broadened resonances. If the bulk becomes a superconduc-
tor, the surface-bulk coupling induces superconductivity on
the surface. Denoting the width of the surface resonance
(in the absence of bulk superconductivity) by γ , the induced
superconductivity is again described by Eqs. (14) and (15). It
is also possible that surface states coexist at the same energy as
bulk bands, but reside in regions of the Brillouin zone for which
there are no bulk states. In this case there is no direct tunneling
from the surface into the bulk, and the surface state would
remain a sharp state rather than broadening into a resonance.
Consequently to obtain superconductivity on the surface, one
would need to rely on some scattering process (e.g., phonon,
electron-electron, or disorder scattering) to transfer electrons
between surface and bulk states.

For natural superconducting metals with strong spin-orbit
coupling (such as Pb), the electrostatic potential created by
the material’s surface interrupts the bulk inversion symmetry,
giving rise to a surface Rashba coupling. If the surface
Hamiltonian has appropriate combinations of Rashba spin-
orbit coupling and magnetization (as described above), then
the induced surface superconductivity will again have effective
p + ip pairing symmetry.

A related approach is possible for topological insulator
materials, where it has been demonstrated22 that doping
can produce superconductivity with transition temperatures
TC ∼ 0.15–5.5 K. Furthermore, it is common23 that samples
of materials such as Bi2Se3 that are expected to be bulk
insulators are actually metallic. In these “topological metals,”
the topologically protected surface states that would appear
for a bulk insulator appear instead as resonances.23 In fact a
large amount of experimental effort is currently focused on
finding materials with genuinely insulating bulks in order to
investigate surface-electron transport. However, for the pur-
pose of engineering a p + ip superconductor, this surface-bulk
coexistence is actually advantageous, and the combination of
bulk superconductivity and surface-bulk coupling will result
in an effective p + ip superconductor at the surface of a
superconducting topological metal.

To examine whether p + ip superconductors built from
surface resonances also exhibit Majorana bound states, for
example in vortex cores or at the ends of one-dimensional
magnetic domains, one can write down the T matrix for
scattering from a vortex or domain wall and look for poles
at zero energy. For a static vortex or domain wall config-
uration, the T matrix at zero energy is constructed from
various products of surface Green’s functions [see Eq. (14)]
also at zero energy. Since ��(ω = 0) = Z(ω = 0)�0τ1, the
surface Green’s function is identical to that of an ideal
p + ip superconductor with gap � = Z�0. Therefore surface-
resonance p + ip superconductors will exhibit zero-energy
Majorana bound-states under exactly the same conditions
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as the effective p + ip superconductor discussed previously.
These Majorana states are localized to the surface layer and
are protected against decaying into bulk states because of the
bulk superconducting gap.

IV. DISORDER

In this section we show that disorder affects the induced
superconductivity very differently in the TI scheme as opposed
to the Rashba scheme. To model disorder, we consider a
random on-site potential

Hdis =
∑
r,σ

V (r)c†r,σ cr,σ (21)

that has only short-range correlations

V (r)V (r ′) = W 2δ(r − r ′), (22)

where W is the disorder strength and (· · ·) indicates an
average over disorder configurations. It is useful to parametrize
disorder either by the scattering time τ ≡ 1/N(0)W 2 or the
mean-free path � = vF τ where vF is the Fermi velocity of
the surface layer and N (0) is the surface density of states.
Furthermore, we consider moderate disorder that is too weak
to induce localization, specifically that kF � � 1, but make
no other assumptions on disorder strength. Since nonplanar
disorder scattering diagrams are subleading in (kF �)−1, the
regime kF � � 1 allows for a controlled expansion for the
disorder self-energy.

The disorder-averaged self-energy and Green’s function are
related by the following set of coupled equations:

G(iω,k) = [
G0(iω,k)−1 − �(iω)

]−1
,

�(iω) = W 2τ3

∑
k

G(iω,k)τ3, (23)

where the bare (nondisordered Green’s function) G0 is given
by Eq. (14) and incorporates the proximity-induced supercon-
ductivity. Diagrammatic versions of Eq. (23) are shown in
Fig. 3.

A. Time-reversal symmetry

In the subsequent discussion of disorder, the presence or
absence of time-reversal (TR) symmetry plays a key role. We
will presently show that when TR symmetry is present, induced
superconductivity is immune to the presence of disorder.
The proof of this principle is most conveniently conducted
in the basis of time-reversed pairs24 [see Eq. (1)], in which
the Hamiltonian for the disordered system with time-reversal
symmetric s-wave pairing induced by the proximity effect can
be written as the following block matrix:

H =
(

H0 + V �I

�I −(H0 + V )

)
. (24)

Here H0 is the Hamiltonian of the (clean) surface, V is random
on-site disorder, � is the induced-pairing amplitude, and I is
the N × N identity matrix where N is the number of degrees
of freedom in the system. Since �I commutes with H0 and V ,
the eigenvalue problem det(H − ε) = 0 can be simplified:

0 = det(H − ε) = det[ε2I − (H0 + V )2 − �2]. (25)

FIG. 3. Panel (a) shows a diagrammatic representation of Eq. (23)
for the disorder-averaged Green’s function and self-energy. Disorder
scattering is represented by dashed line originating from an ×. For
delta-function-correlated impurities only multiple scatterings from
the same impurity contribute. Panel (b) shows an example of a
crossed diagram (right) that is subleading in (kF �)−1 compared to
the noncrossed diagram with the same number of disorder scatterings
(left).

Denoting the eigenvalues of H0 + V by {ε̃n}, the eigenvalues
of H are ±Ẽn, where

Ẽn =
√

ε̃2
n + �2, (26)

which is bounded below by �, independent of the particular
disorder configuration.

These manipulations show that so long as the 2D surface
Hamiltonian is TR invariant, disorder cannot reduce the
superconducting gap. As an aside, it is useful to note that
the above considerations do not depend on V being spin-
independent so long as it preserves TR invariance. In particular
strong spin-orbit impurity scattering will also not reduce the
superconducting gap.

B. Disordered topological insulators

Since the TI Hamiltonian [Eq. (3)] is TR invariant, from
the previous discussion we know that the pairing gap cannot
be diminished by disorder. As a simple demonstration of this
general principle, one can explicitly calculate the disorder-
averaged Green’s function and self-energy [see Eq. (23)].

In typical experimental situations, the TI surface states are
intrinsically doped away from the surface Dirac point leaving
an appreciable density of states at the Fermi surface.23 In this
case, μ � �, and one finds

�(iω) = τ−1

√
�2 + ω2

(iω − �τ1) , (27)

where τ−1 = πN (0)W 2 is a measure of the disorder strength.
Incorporating this disorder self-energy into the Green’s func-
tion results in a disorder-averaged Green’s function of the same
form as the bare Green’s function G0, except with a reduced
quasiparticle weight Z due to disorder scattering:

G(iω) = Z

iω − ZHTI − �τ1
,

Z(iω) =
[

1 + τ−1

√
�2 + ω2

]−1

(μ � �). (28)
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For chemical potential tuned to the Dirac point, the results are
similar except that the quasiparticle weight takes a different
form:

Z(iω) =
[

1 + W 2

2πv2
ln

(
�2

�2 + ω2

)]−1

(μ = 0). (29)

where � is the bandwidth of the surface Dirac cone. In
either case, inspection of Eq. (28) reveals that the minimum
excitation gap � is unchanged by disorder scattering, in
agreement with the general principles outlined above for
TR-invariant systems.

C. Disordered Rashba 2DEGs

In contrast to the TI case, creating a topological supercon-
ductor from a Rashba 2DEG requires explicitly breaking TR
symmetry by inducing surface magnetization Vz. Without TR
symmetry, the general arguments outlined above do not apply,
and the induced pairing is vulnerable to disorder scattering.
The analysis below demonstrates that the pair-breaking effects
of disorder scattering are dramatically enhanced by the
singular density of states at the superconducting gap edge,
and furthermore that these effects are especially pronounced
in systems with weak Rashba coupling. Since the pairing on
the surface is induced by the bulk, it never vanishes. However,
we shall see that pairing can be greatly reduced by even
a small amount of disorder unless UR � Vz. In fact, when
UR � Vz, the suppression due to disorder is more severe than
for conventional superconductors with magnetic impurities for
which the superconducting gap typically closes for ξ0/� ∼ 1.
We will see, for UR � Vz, that disorder strongly suppresses
the induced superconductivity even for very weak disorder.

For superconductivity induced by the proximity effect,
the surface-state wave functions are localized to the surface
but extend into the superconductor with characteristic length
scale ξL. Therefore electrons residing in the Rashba material
are scattered not only by impurities in the Rashba material
and interface roughness but also by impurities in the super-
conductor. For example, even if one starts with a pristine
semiconductor structure (such as a self-assembled nanowire),
if superconductivity is induced by proximity to superconductor
with some impurities then the mean-free path will be set by
the superconductor rather than the semiconductor.

To better understand the distinction between impurities
residing in the Rashba-coupled surface and those in the
superconductor, we consider each separately. To treat either
case we find that it is sufficient to replace the bare disorder
scattering time τ−1 = πN (0)W 2 [where N (0) is the surface
density of states] by an effective disorder scattering time

(τ−1)eff =
{
Z2

�τ−1, surface disorder,

(1 − Z�)2τ−1, bulk disorder.
(30)

An explicit derivation of these expressions is given in the
Appendix, but the effective scattering time can be understood
more simply as follows. The fraction of the surface-resonance
wave function which lies on the surface is Z� whereas the
fraction residing in the bulk superconductor is (1 − Z�).
Therefore, the disorder scattering matrix elements should
be weighted by either Z� or (1 − Z�) for surface and bulk
disorder, respectively. Equation (30) can then be simply

understood by noting that the scattering time is proportional to
the square of the disorder matrix element. By inspection, we
see that effects of surface disorder are suppressed in the limit
of strong surface-bulk tunneling, whereas the effects of bulk
disorder are suppressed in the limit of weak tunneling. Using
this effective scattering time, we now turn to the problem of
solving the self-consistency relations given in Eq. (23) using
the surface Green’s function in Eq. (14) which includes the
effects of proximity to the bulk superconductor.

For ordinary disordered superconductors, the strength of
disorder is conveniently parametrized by the ratio of the
coherence length ξ0 = πvF /� to the mean-free path � = vF τ .
For the proximity-induced superconductivity these parameters
are renormalized by surface-bulk coupling and also depend on
the type of disorder (surface or bulk). We will see that the
effects of disorder depend on disorder strength only through
the ratio ξ̃0 �eff , where ξ̃0 = πṽF �̃ is the surface coherence
length and �eff = ṽF τeff is the effective mean-free path for
disorder electrons. This effective ratio can be written in
terms of the intrinsic ratio of the intrinsic mean-free path �

(un-renormalized by proximity-induced superconductivity)
and coherence length of the bulk superconductor, ξ0, as
follows:

ξ̃0

�eff
=
⎧⎨⎩

Z2
�

1−Z�

ξ0

�
, surface disorder,

(1 − Z�)
ξ0

�
, bulk disorder.

(31)

By working in terms of this effective ratio, it is possible to treat
the cases of surface impurities and bulk impurities on equal
footing.

1. Analytic expressions for weak disorder

For weak disorder (ξ̃0/�eff � 1), it is sufficient to evaluate
the self-energy to lowest order in disorder scattering strength,
corresponding to the first diagram for the self-energy shown
in the top line of Fig. 3:

�(1)(iω) = W 2τ3

∑
k

G̃0(iω,k)τ3. (32)

Here we emphasize that the value of W 2 should be appro-
priately renormalized according to Eq. (30) depending on
whether the scattering considered occurs in the surface or
in the bulk superconductor. For �̃FS � Ṽz, the dominant
contributions to the k integral come from near the Fermi
surface. Linearizing the Bogoliubov dispersion about the
Fermi surface and performing the integration yields

�m�(1)(iω) 
 −xω

[
1

2
+ 2

Ṽz

�̃2
BG

σz

(
�̃τ1 − ŨRτ3

)]
, (33)

�e�(1)(iω) 
 x

�̃2
BG

[ (
ω2 − �̃2

)
ŨRτ3

+ Ṽz

(
�̃2 + ω2) σz + 2Ũ 2

R�̃τ1
]
, (34)

x = πN (0)W 2√
�̃2

FS + ω2
≡ τ−1

eff√
�̃2

FS + ω2
, (35)
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where τ−1
eff is a measure of the disorder strength, given by

Eq. (30).
This self-energy alters the spectrum of the disorder-

averaged BdG Hamiltonian. For weak disorder, we expect
the gap at the Fermi surface to change only slightly. To
find the correction to �FS due to disorder, one needs to
analytically continue the self-energy to real frequency, and
then look for a pole in the disorder-averaged Green’s function
at ω = �FS − δω; i.e., to solve

0 = det[�̃FS − δ̃ω − H(kF ) − �(1)(ω = �̃FS − δω)] (36)

to leading order in δω one finds

δω = �
†
0�

(1)
(
ω = �̃FS − δω

)
�0, (37)

where �0 = (u↑u↓v↓ − v↑)T is the eigenvector of H(kF ) with
energy �̃FS.

In the limiting case where Ṽz � ŨR , �0 
 1√
2
(0,1,0,1)T ,

and one finds

δω 
 �̃2

4Vz

x 
 �̃2τ−1
eff

4Ṽz

√
2�̃FSδω

. (38)

Using �FS 
 �
√

UR

Vz
and solving for δω gives the following

expression for the disorder renormalized pairing gap at the
Fermi surface:

�̃FS
(
τ−1

eff

) 
 �̃

√
ŨR

Ṽz

[
1 −

(
Ṽz

4
√

2ŨR

ξ̃0

�eff

)2/3
] (

Ṽz � ŨR

)
.

(39)

The unusual nonanalytic dependence on disorder strength
stems from the singular behavior of x as ω → �̃FS, which in
turn reflects the Van Hove singularity in the superconducting
density of states at the gap edge. This Van Hove singularity
enhances the effective disorder strength x, and in particular
leads to an infinite slope of �̃FS(τ−1

eff ) as τ−1
eff → 0.

In the opposite limit, where ŨR � Ṽz,
�0 
 1

2 (1, − 1,1, − 1)T and consequently the weak disorder
correction to the gap energy vanishes to leading order.
Including subleading contributions in ŨR/Ṽz results in

�̃FS
(
τ−1

eff

) 
 �̃

⎡⎣1 −
(

18√
2

Ṽ 2
z

Ũ 2
R

ξ̃0

�eff

)2/3
⎤⎦(ŨR � Ṽ z

)
.

(40)

2. Numerical solution for moderate disorder

For stronger disorder, Eq. (23) must be solved self-
consistently, which can be done numerically. In order to
regulate the numerical integrals in the UV we replace
the continuum dispersion with a periodic one of the form
ξk = −2t cos(k) which naturally introduces a finite bandwidth.
The top and bottom panels of Fig. 4 show the dependence of the
induced superconducting gap on disorder strength for ŨR � Ṽz

and Ṽz � ŨR , respectively.
For very weak disorder, ξ̃0 � �eff , the excitation gap

exhibits nonanalytic infinite initial slope predicted by Eqs. (39)
and (40). Stronger disorder never fully closes the super-
conducting gap; however, for Ṽz � ŨR , the gap is largely
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FIG. 4. The excitation gap Egap as a function of coherence length
ξ̃0 = πvF /�̃ to the effective mean-free path �eff = ṽF τ−1

eff . Egap is
obtained from numerically solving Eq. (23) for a Rashba 2DEG
with induced magnetization Ṽz and superconductivity �̃. Here (̃· · ·)
indicates renormalization due to the proximity effect. The effective
disorder strength has a different form depending on whether disorder
scattering occurs predominantly in the surface layer or in the bulk
superconductor. Both cases can be treated by choosing the appropriate
expression for ξ̃0/�eff from Eq. (31). The parameters used in this
simulation were t = 1, Ṽz = 0.1, �̃ = 0.01, and various values of
ŨR . The top panel shows curves for Ṽz � ŨR , the regime appropriate
for semiconductor materials, whereas the bottom panel shows curves
in the ŨR � Ṽz regime which could be achieved by using metallic thin
films with stronger spin-orbit coupling. The magnetization Ṽz breaks
time-reversal symmetry rendering the induced pairing susceptible to
disorder. For Ṽz � ŨR the gap is already strongly suppressed when
ξ̃0 is only a few percent of �eff .

suppressed even when ξ̃0 is only a few percent of �eff . In
most cases, Egap is suppressed smoothly with increasing
disorder strength; however, the Egap/�̃ curves for ŨR 
 Ṽz

have a knee-shaped kink at ξ̃0/�eff 
 0.07 after which Egap

drops abruptly. This knee occurs when disorder reduces the
magnetization gap at k = 0 below the pairing gap �̃FS at the
Fermi surface.

These results can be readily applied both to the case where
disorder scattering is due to the adjacent superconductor, and
when disorder scattering occurs in the surface material, by
choosing the form for ξ̃0/�eff from Eq. (31). It is possible to
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reduce the sensitivity to bulk disorder by reducing the surface-
bulk tunneling strength, �. However, reducing � will also
cause a smaller proximity-induced pairing gap �̃. Similarly,
it is possible to reduce the sensitivity to surface disorder by
increasing the surface-bulk tunneling rate, although doing so
will be detrimental if the surface layer is cleaner than the bulk
superconductor.

Here we see a second drawback of using materials with
low Rashba coupling: In addition to limiting the size of the
induced pairing gap in the absence of disorder, small Rashba
coupling renders the topological superconductor susceptible
even to small amounts of disorder (ξ̃0/�eff � 1). While bulk
semiconductors are typically cleaner than metallic thin films,
their extreme sensitivity to disorder will likely be problematic.
In particular, great care would need to be taken to limit
interfacial roughness between the semiconductor and adjacent
bulk superconductor and magnetic insulating film.

Before concluding, we remark on two possible extensions
of this analysis. First, the effects of disorder were treated for
fully two-dimensional structures, whereas Majorana fermions
emerge in one-dimensional (or quasi-one-dimensional)
geometries. The effects of disorder in quasi-one-dimensional
Rashba-coupled structures were analyzed numerically in
Refs. 13 and 14, and give similar results to those given above
for two dimensions. Finally, while this analysis has been
carried out for the case of Rashba-type spin-orbit coupling,
we expect similar results for systems in which both Rashba
and Dresselhaus type spin-orbit couplings are present. The
relevant factor in either case is the presence of magnetization
Vz which breaks time-reversal symmetry and renders the
induced superconductivity susceptible to disorder regardless
of spin-orbit type.

V. DISCUSSION AND CONCLUSION

In conclusion, we have compared the prospects for
constructing an effective p + ip superconductor from TI
and Rashba 2DEG based materials. We have focused on
technical limitations to inducing superconductivity in these
materials and examined the effects of disorder on the induced
superconductivity. In both regards, the TI materials offer
natural advantages. In particular, the effective p + ip nature
of induced superconductivity in a TI surface is guaranteed by
the intrinsic spin helicity of the bare TI surface states. As a
consequence, there are no fundamental limitations for inducing
superconductivity by the proximity effect. Furthermore, since
time-reversal symmetry remains intact in the TI surface, the
induced superconductivity is guaranteed, based on general
principles, to be immune to disorder.

While TI surface states offer certain advantages, TI materi-
als are relatively new and many materials challenges remain. It
may therefore be desirable to construct a p + ip superconduc-
tor from more conventional materials with strong Rashba spin-
orbit coupling. Here one needs to induce superconductivity by
proximity to a conventional superconductor, and to induce
magnetization for example by proximity to a ferromagnetic
insulator. In this case one must strike a comparatively delicate
balance of spin-orbit coupling and induced magnetization
to ensure that the resulting superconductor is effectively
p + ip.12

In this regard, materials with small Rashba coupling
strengths face serious difficulties: (1) The size of the induced
superconducting gap is limited by the size of the Rashba
coupling, and (2) for weak Rashba coupling the induced
superconductivity is quite fragile and is strongly suppressed
even by small amounts of disorder. Our analysis indicates
that an alternative class of materials with stronger spin-orbit
coupling should be sought. For example, metallic thin films
with heavy atomic elements can give orders of magnitude
larger spin-orbit couplings than the semiconductor materials
that have so far dominated the theoretical discussion.

Constructing a p + ip superconductor from a Rashba
2DEG in this way requires engineering a complicated set of
material interfaces between the Rashba 2DEG, superconduc-
tor, ferromagnetic insulator, and gate electrodes. However, a
fortuitous choice of material could obviate the need for the
superconducting and ferromagnetic interfaces. For example,
one could try to find bulk metals with strong bulk spin-orbit
coupling that naturally superconduct and possess surface
resonances. In such a scenario, the coupling between surface
and bulk will then automatically induce superconductivity
on the surface, eliminating the need to build an artificial
interface for this purpose. A further simplification is possible:
a metallic surface which has the appropriate symmetry such
that both Rashba and Dresselhaus type spin-orbit coupling
is present.12 In this case, one could induce magnetization
by applying an external field rather than by depositing
a ferromagnetic insulator.12 If a naturally superconducting
material can be found with the appropriate spin-orbit-coupled
surface resonances, this approach might offer the simplest
route to an artificial p + ip superconductor and Majorana
fermions.
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APPENDIX: SURFACE VS BULK DISORDER

In the main text, we argued on conceptual grounds that the
above analysis for disorder is easily modified to separately
treat the two distinct cases where disorder scattering occurs
predominantly in the surface layer or the adjacent bulk
superconductor, by replacing the bare disorder scattering time
by an effective scattering time weighted by Z2

� or (1 − Z�)2,
respectively. Here we consider each case separately and
provide an explicit demonstration of this claim.

1. Surface disorder

Consider first the case of a pristine superconductor so that
impurity scattering occurs only in the surface layer. In this
case the disorder scattering matrix elements are proportional
to the fraction of the electron wave functions that resides
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FIG. 5. Effective disorder vertex for surface electrons in the case
where disorder scattering occurs predominantly in the adjacent bulk
superconductor. The solid lines are bulk Green’s functions, circled
�’s indicate surface-bulk tunneling events, and the dashed line ending
in × indicates disorder scattering that transfers momentum Q

on the surface. More precisely, we can calculate self-energy
from disorder scattering in Eq. (23) using the surface Green’s
function in Eq. (14). Equivalently, in Fig. 3, one should
take single solid lines to be the surface Green’s function in
Eq. (14). By inspection, we see that the effective disorder
matrix elements are reduced by a factor of Z� < 1. Therefore,
the disorder self-energy for surface disorder is suppressed by
a factor of Z2

� .
The analysis in the main text can be easily modified to treat

the case where disorder occurs predominantly in the surface
layer by replacing τ1 for the surface (without surface-bulk
tunneling) by the effective ratio

τ−1
eff ≡ Z2

�τ−1 (A1)

and keeping the same ratio UR/Vz (since this ratio is unaffected
by the surface-bulk coupling).

2. Bulk disorder

When the dominant source of disorder is in the adjacent
bulk superconductor, the surface electrons must first tunnel
into the bulk in order to scatter from the disorder potential.
This leads to a renormalized effective disorder strength which
is different than the bulk value. To demonstrate this, we focus
on the limit where surface-bulk tunneling is much stronger
than bulk disorder (γ � W ), in which case there is typically
no more than one disorder scattering event per surface-bulk
tunneling event.

In this limit, it suffices to compute Eq. (23) using the surface
Green’s function in Eq. (14), with an effective disorder vertex

given by the diagram shown in Fig. 5. In this figure the circled �

indicates surface-bulk tunneling and the dashed line indicates
scattering from disorder. Written in terms of the bulk Green’s
functions the effective disorder vertex for surface states is

Ṽ
(
iω,k‖,Q

)
τ3

= V |�|2
∑
kz

1

iω − ξ(kz,k‖)τ3 − �τ1
τ3

1

iω − ξk+Qτ3 − �τ1
.

(A2)

We are interested primarily in low-frequency behavior for
which the external momenta {k‖,k‖ + Q‖} lie near the surface
Fermi level. For a given Q‖ connecting two points on the Fermi
surface, there are two values of Qz for which k and k + Q also
lie on the surface. Since the dominant contributions are for
momenta lying near the Fermi surface, we linearize the bulk
dispersion in the z direction and denote the tunneling density of
states by NB(0) ≡ ( ∂εB (k)

∂kz
)−1. With these approximations, the

effective disorder potential for surface electrons is independent
of momentum transfer Q‖:

Ṽ (iω) 
 πNB(0)|�|2√
�2 + ω2

. (A3)

The disorder self-energy given by the diagram in Fig. 3(a)
can then be computed using the surface Green’s function
from Eq. (23) and the effective disorder strength in Eq. (A3).
When this self-energy is incorporated into the surface Green’s
function, it comes with a factor of (Z�)2. Since we are
interested in the behavior for ω � �, we may neglect the
frequency dependence of various quantities, and we find that
the effective disorder scattering time for surface electrons is
weighted (compared to the bulk quantity) by a factor

(τ−1)eff =
(

πNB(0)|�|2
� + πNB(0)|�|2

)2

(τ−1)bulk

= (1 − Z�)2(τ−1)bulk. (A4)

For a transparent surface-bulk interface [πNB(0)|�|2 � �],
this factor approaches unity, justifying the claim made in the
main text.
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