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Torque theory of anisotropic superconductors with no phenomenological parameter
in determining vortex core size
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The contribution of the vortex core has been taken into account properly in constructing a torque theory for
multiband superconductors. We employ the prescription for describing the internal magnetic field in the vortex
lattice by Hao et al. and by Yaouanc et al. to derive a torque formula as a natural extension of a preceding
London theory. In marked contrast with the preceding model, our formula does not contain a phenomenological
parameter η, which prevents us from obtaining a true upper critical field Hc2 by analyzing an experimental torque
curve. The parameter η was originally introduced to take care of the uncertainty in determining the vortex core
size ξv . Furthermore, we reveal that the η value is universally scaled by anisotropy γ , magnetic field B, and Hc2

due to field dependence of ξv . This may revitalize the single-band Kogan model in combination with a universal
function η(γ,B,Hc2) instead of a constant η.
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I. INTRODUCTION

Thanks to extensive studies on the superconductivity of
a magnesium diboride and iron arsenides, the torque as the
angular derivative of a free energy has been recognized as a
powerful tool for investigating superconducting anisotropy.
For example, MgB2 can be characterized by the isotropic
three-dimensional π band and anisotropic two-dimensional
σ band. Discovery of high-Tc cuprates strongly suggested that
lower dimensionality is a key prerequisite for inducing high-Tc

superconductivity. A recent study by Yuan et al.1 is indicative
of an opposite view because they found a rather isotropic
superconducting anisotropy in (Ba,K)Fe2As2. As a sensing
probe of anisotropy, the torque would play an important role
for revealing the nature of various new superconductors.

The magnetic torque of an anisotropic superconductor has
been investigated theoretically for a long time. Originating
from the local-limit model of the torque, it evolved into a model
that takes care of the nonlocal effect for extending to a variety
of superconductors. In the early London model of the torque,2

a vortex core is not considered seriously but is simply assumed
to be confined to the region shorter than a coherence length
ξ . The later Kogan model3 discusses not only the anisotropy
of a penetration depth λ but also that of ξ independently, but
it still remains a local model. Yaouanc et al.4 computed the
Fourier components of the magnetic field in a high-κ type-II
superconductor containing an ideal vortex lattice for analyzing
the local magnetic field in μSR and neutron diffraction
measurements. Their method revealed the effect of the vortex
core for determining local magnetic field. Brandt developed
an analytical method using full Ginzburg-Landau calculations
for an ideal vortex lattice with any spatial symmetry.5 The
method developed by Yaouanc et al. gave a useful tool in
analyzing the vortex state in NbSe2 single crystals6,7 and the
effect of the multiband nature on the local field profile in μSR
experiments.8

There is an issue to be amended in the London model
because the cutoff in the reciprocal Fourier space (G space)
at 2πξ−1 coming from the vortex core is introduced rather
a priori. There is still room for improving the London theory
since it is recognized that the core size (or its G-space
equivalent) depends on the magnetic field. In this paper,
we attempt to derive the torque formula on the basis of the
discrete Fourier-analysis method of the internal magnetic field
developed by Yaouanc et al.4

II. PRECEDING LONDON MODEL

Before explaining our new theory, we first summarize the
development of the preceding torque theories. The torque is
directly obtained by differentiating a free energy with respect
to angle θ between the crystalline axis and the magnetic field.
The free energy density F is given by9

F = B2

8π
0

∑
G

hz(G) , (1)

where hz(G), as in Ref. 9, is the component of the magnetic
flux in G space, B is the magnetic flux density, and 
0 is
the quantized flux. We take coordinates with z axis parallel to
magnetic field. The magnetic flux hz(G) is derived by

hz(G) = 
0(1 + �zzG
2)(

1 + �zzG2
x + �cG2

y

)
(1 + �aG2)

, (2)

where �ij is a penetration depth tensor, �ij = λ2mij (�a =
λ2ma , �c = λ2mc) is represented by mxx = ma cos2 θ +
mc sin2 θ , mxz = (ma − mc) sin θ cos θ , myy = ma , and mzz =
ma sin2 θ + mc cos2 θ .10

Suppose that the relation Hc1 � H � Hc2 is satisfied in
the intermediate field so that an effective vortex spacing L

can be expressed as ξ � L � λ. Using the dimensionless
reciprocal lattice vectors g = LG with L = (
0/B)1/2, we
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approximate free energy density within the zeroth- and first-
order expansion with respect to g. Actually the free energy
density is approximated as10

F = B2

8π
+ B2

8π

mzzL
2

λ2ma

∑′ 1

mzzg2
x + mcg2

y

, (3)

where
∑′ sums up g (g �= 0). A free energy density is given

from Eq. (3) as10

8πF = B2 + 
0

4πλ2

√
maB2

x + mcB2
z ln(ηHc2/B) , (4)

where a phenomenological parameter η (∼1) was
introduced;10 there has been concern about the clarification
of its physical meaning. Thus, one finds a single-band torque
formula of anisotropic superconductors as2

τ (θ ) = 
0BV

64π2λ2

(
γ 2 − 1

γ 1/3

)
sin 2θ

ε(θ )
ln

(
γ ηH

‖c
c2

Bε(θ)

)
, (5)

where ε(θ ) = (sin2 θ + γ 2 cos2 θ )1/2.
The multiband effect in anisotropic superconductors leads

to the separation of the degenerated electronic anisotropy
parameters into two, i.e., anisotropy in coherence length
γξ = ξa/ξc and anisotropy in penetration depth γλ = λc/λa .2,3

The magnetic field in G space is assumed to be zero at
G > Gmax so as to fulfill the cutoff of the vortex core at ∼ ξ

in real space. One expresses the free energy density of Eq. (3)
as

F = B2

8π
+ 
0Bmzz

32π3λ2ma

∫ Gmax

Gmin

dGxdGy

mzzG2
x + mcG2

y

, (6)

where an upper limit of the integration Gmax is fixed at
Gmax(ϕ) = 2π

√
μamc/ξc

√
β2 cos2 ϕ + sin2 ϕ , where ϕ is po-

lar angle, β2 = mcμzz/mzzμc, μzz = μa sin2 θ + μc cos2 θ is
a mass tensor, and an anisotropy parameter γξ = √

μc/μa as
in Ref. 3. The multiband torque formula is obtained as

τ (θ ) = 
0BV

64π2λ2

γ 2
λ − 1

γ
4/3
λ

sin 2θ

�λ(θ )
α(θ ) , (7)

where a logarithmic factor α(θ ) is given by

α(θ ) = ln

(
ηH

‖c
c2

B

4�λ(θ )

[�λ(θ ) + �ξ (θ )]2

)

− 2�λ(θ )

[�λ(θ ) + �ξ (θ )]

(
1 + d�ξ (θ )/dθ

d�λ(θ )/dθ

)
+ 2 ;

(8)

ελ(θ ) = (sin2 θ + γ 2
λ cos2 θ )1/2, �λ = ελ(θ )/γλ, εξ (θ ) =

(sin2 θ + γ 2
ξ cos2 θ )1/2, and �ξ = εξ (θ )/γξ .3 Equation (7) is

reduced to Eq. (5) when γ = γξ = γλ. The multiband effect
is expected to take place in oxypnictides11 and MgB2.12 As
temperature decreases from Tc down to T = 0, a discrepancy
between γξ and γλ becomes appreciable. Theoretically, γξ

increases up to ∼6 while γξ decreases down to ∼ 1 in MgB2

at T = 0.13,14

It has been a long-standing issue that the ambiguity of
the parameter η is inevitable in applying Eqs. (5) and (7).
The vortex-core contribution to the total energy in high-κ
superconductors is small compared to the magnetic and kinetic
energy, and hence is neglected in the London model. The

energy F of the vortex lattice is replaced with an integral
from Gmin ∼ 2πa−1 with an intervortex spacing a ∼ √

φ0/B

to Gmax ∼ 2πξ−1 with an effective core size ξ . The cutoff at
Gmax ∼ 2πξ−1 to avoid the divergence of Eq. (6) is an inherent
shortcoming of the London approach. The phenomenological
parameter η consists of a major factor η′ and a correction factor
eηc−1 as η = η′ exp(ηc − 1).9 The parameter η′ accommodates
the uncertainty in defining the core size. The core correction
ηcφ0B/32π2λ2 is added to the London free energy with an
uncertain factor ηc. The London model is not beneficial for
data analysis because it only gives, not a true upper critical
field Hc2, but an effective upper critical field ηHc2. It is highly
desirable to obtain the Hc2 value by developing a new torque
theory without containing the η factor.

III. TORQE FORMULA WITHOUT
PHENOMENOLOGICAL PARAMETER

We succeeded in fixing the above-mentioned issue on η

in the preceding London models as follows. Hao et al.15

introduced a useful cutoff function, and it was followed
by Yaouanc et al.4 to derive the analytical solution of the
free energy density for superconductors with large Ginzburg-
Landau parameter κ . The z component of the flux in the
reciprocal lattice space is approximated by

hz(G) ≈ 
0(1 − b4)
uK1(u)

�yyG2
x + �xxG2

y

, (9)

where u2 = 2(ξ 2
x G2

x + ξ 2
y G2

y)(1 + b4)[1 − 2b(1 − b)2] and
K1(u) is a modified Bessel function of the second kind. A
reduced magnetic field b(θ ) = B/Hc2(θ ) as a function of θ is
given by

b(θ ) = (B/H⊥c
c2 )

√
sin2 θ + γ 2

ξ cos2 θ . (10)

Extending the idea of the multiband London model of the
anisotropic superconductors of Eq. (1) developed by Kogan3

we express the free energy density F using the local magnetic
flux hz(Gpq) as

F = B2

8π
0

∑
G �=0

hz(G) = B2

8π
0

∑
(p,q)�=(0,0)

hz(Gpq) , (11)

where Gpq is a discrete reciprocal lattice vector, p and q are
lattice indices in a reciprocal space,16 and hz(Gpq) is given by

hz(Gpq) =
√

3
2
0(1 − b4)ελ(θ )

2π2λ2γ
1/3
λ B(p2 − pq + q2)

uK1(u) , (12)

using a reduced field b(θ ). We finally obtain a novel torque
formula by angular derivative as

τ (θ ) = −BV

8π

∑
(p,q)�=(0,0)

[
1

p2 − pq + q2

× ∂

∂θ
(h0(1 − b4)vpqK1(vpq))

]
, (13)

where h0(θ ) = √
3
0ελ/2π2λ2γ

1/3
λ , vpq(θ )2 = 4πb(1 + b4)

[1 − 2b(1 − b)2] [ωξλ(q − p/2)2 + p2/ωξλ], and ωξλ(θ ) =
2γξ ελ(θ )/

√
3γλεξ (θ ) are functions of θ . Equation (13) is

executable by numerical differentiation. It is also possible
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to write down an analytical expression of Eq. (13) with
the aid of the modified Bessel function of the first kind as
∂vK1(v)/∂v = −vK0(v).

IV. DISCUSSIONS

Since our new formula of Eq. (13) does not contain
a parameter η, unlike the preceding London model,2 it
is meaningful to trace the behavior of η of the London
model with respect to γ , B, and Hc2. The η was originally
assumed as a factor on the order of unity, and subsequently
Farrell et al.17 clarified experimentally as η 
 1.2 ∼ 1.5 at
temperatures near Tc using the magnetization expression
M = −(φ0/32π2λ2) ln(ηHc2/B). The noteworthy advantage
of using Eq. (13) is that one can directly obtain an upper
critical field Hc2 without bothering about an indefinite η

factor. Comparison of two models yields a revisited physical
interpretation of η in connection with vortex core and B.

First, we treat the single-band case rather systematically
where the condition γ = γλ = γξ is satisfied. Equation (13)
can be reduced to a useful analytical expression as

τ (θ ) =
√

3
0BV

16π3λ2γ 1/3

γ 2 − 1

2ε(θ )
sin 2θ

×
∑

(p,q)�=(0,0)

vpq

p2 − pq + q2

[
(1 − 5b4)K1(vpq)

− 1−b4

2

(
1 + 5b4

1 + b4
−2b(3b−1)(b − 1)

1 − 2b(1 − b)2

)
vpqK0(vpq)

]
.

(14)

We determine a peak position with respect to angle θ by using
Eq. (14) when γ and b(θ ) of Eq. (10) are given. We attempt
to find the conditions so as to give the same peak angle θp

by tuning a parameter η in the Kogan model while the torque
curve is normalized at the peak. In the inset of Fig. 1, the

FIG. 1. (Color online) The parameter η can be scaled as a function
of γ /(B/H

||c
c2 ) on a single curve, where γ is the anisotropy parameter,

B is the applied field, and H
||c
c2 is the upper critical field parallel to the

c plane. Note that γH
||c
c2 becomes the upper critical field H

||ab

c2 parallel
to the ab plane. The inset shows the torque curve of the London model
(see the dashed line) of Eq. (7) for γ = 7 and B/H

‖c
c2 = 0.3, where

the phenomenological parameter η is chosen so as to give the same
peak angle θp with our model (see solid line) of Eq. (13).

agreement of the two theories is almost perfect between θp

and 90◦ while it is not so good between 0 and θp. In the case of
γ = 7 and B/H

||c
c2 = 0.3, we find η = 0.323 at θp = 79.9◦. We

also carried out the calculations of the torque curves under the
various different magnetic fields; i.e., B/H

||c
c2 = 0.15, 0.3, 0.6,

and 0.8. As being remarkable in Fig. 1, all data in the η versus
γ /(B/H

||c
c2 ) representation are well collapsed into a single

curve. We consider that this is indicative of the validity of the
method to compare the two theories by tuning the peak position
θp. As γ /(B/H

||c
c2 ) increases, η increases at lower γ /(B/H

||c
c2 ),

it forms a peak at γ /(B/H
||c
c2 ) 
 10, and it decreases gradually

at higher γ /(B/H
||c
c2 ).

Second, we attempt to understand the remarkable profile of
Fig. 1. Physically the inclusion of the upper critical field Hc2 in
the Kogan’s torque formula comes from the integral interval
from 2πa−1 to 2πξ−1. The Kogan model is based on the
presupposition that the vortex core cutoff always occurs at ξ .
According to the theory by Hao et al.15 and by Yaouanc et al.,4

however, the cutoff position is not constant at ξ but varies as
ξv(b). Therefore, the major correction parameter η′ essentially
comes from the replacement of Hc2 by η′Hc2 = η′
0/2πξ 2 ≈

0/2πξ 2

v = (
0/2πξ 2)(ξ/ξv)2. We approximate η′−1 as a
function of reduced field b(θ ) by

1

η′ ∼
(√

2 − 0.75

κ

)2

(1 + b4)[1 − 2b(1 − b)2], (15)

where the expression of ξv(b) was given in Refs. 4 and 15. In
Fig. 2, we show the theoretical η′ as a function of 1/b. The
vortex core becomes that of an isolated single vortex at higher
1/b while it compresses at very small 1/b due to dense packing
of vortices. Remarkable is an enhancement of η′ at an inter-
mediate 1/b ∼ 3 (see arrow) presumably due to overlapping
of vortices and the resultant spreading of the order parameter
apart from the cores. The core correction ηc is essentially the
property of an individual vortex, and is not so dependent on b

and γ . This explains qualitatively the particular behavior of η in
Fig. 1.

FIG. 2. (Color online) The qualitative behavior of η′ as a function
of 1/b expected from the theory of Hao et al. (Ref. 15). The parameter
η′ is a major term in the uncertainty parameter η = η′ exp(ηc − 1) as
given by Kogan et al. (Ref. 9), ξv is a vortex core size, and b is the
reduced field.
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FIG. 3. (Color online) The multiband curves are obtained by
Eq. (13) for several different combinations of γλ and γξ (see text).
The magnetic field is fixed as H

‖c
c2 /B = 3.38 (see Ref. 3). The torque

τ of Eq. (13) is given in units of 
0BV/64π 2λ2, B is the applied
field, H

||c
c2 is the upper critical field parallel to the c axis, and p and q

are lattice indices in reciprocal space.

Third, the remarkable nature of η of Fig. 1 inspires us to
make a universal function η(γ,B,Hc2) for substituting into
the single-band Kogan model of Eq. (5). Consequently, the
Kogan model is also able to give the upper critical field Hc2

without assuming an indefinite factor of η. Details of such an
application will be published elsewhere.

Finally, we briefly discuss the generalized cases where
the condition γξ �= γλ is met in both our model as well
as the Kogan model. In Fig. 3, we show a torque curve
obtained by carrying out the lattice sum in the reciprocal
lattice over p2 + q2 � 102. We set parameters (γλ = 2.2, γξ =
3), (γλ = 2, γξ = 5), (γλ = 1.7, γξ = 5.3), and (γλ = 1.1,
γξ = 6). We reveal that summation up to p2 + q2 � 102 is
enough to achieve a good convergence while the torque curves
constructed by using the fundamental spots (p2 + q2 � 12) is
not sufficient to have a good convergence. It is numerically
confirmed that the condition p2 + q2 � 102 employed in
Fig. 3 gives actually the same results as those obtained by
summing up to p2 + q2 � 502.

The phenomenological parameter η appearing in the Kogan
model [see Eqs. (5) and (7)] represents the uncertainty in
defining the size of vortex core. In Fig. 4, we show the
several torque curves under the different combinations of two
anisotropy parameters γξ , γλ, H

||c
c2 /B, and η. The parameters

employed here are the same with those in Ref. 3, but the
condition of ηH

||c
c2 /B = 3.38 is replaced by H

||c
c2 /B = 3.38.

We regard η as a fitting parameter so as to give the same angle
at the torque maximum for the case of (γλ = 2.2, γξ = 3) and
at the torque minimum for other cases both for Figs. 3 and 4
(see arrows). The variation of η depending on the combination

FIG. 4. (Color online) The torque curves using the London model
Eq. (7) for several different combinations of γλ and γξ in units of

0BV/64π 2λ2 (see Figs. 1, 2, and 3 of Ref. 3 for comparisons).
The magnetic field is fixed as 4e2H

‖c
c2 /B = 100 (e 
 2.71), B is an

applied field, and H
||c
c2 is an upper critical field parallel to the c axis.

of γξ and γλ may be related with the two competing origins in
specifying η as η′ exp(ηc − 1) (see above). Further systematic
studies of η as a function of γλ and γξ are of interest as a
generalized case of Fig. 1.

V. CONCLUSION

In conclusion, we successfully elaborate the torque
formula of an anisotropic superconductor without containing
a phenomenological parameter η. Unlike the preceding
London model,2,3 we are able to estimate the true upper
critical field Hc2 by analyzing the torque curve. The
comparison of our new theory with the London model in the
case of γλ = γξ has unveiled that the η can be scaled very
nicely as a function of γ /(B/H

||c
c2 ). A possible interpretation

is given in view of the field dependence of the vortex core size
ξv . The behavior of η was also investigated in the multiband
picture of γξ �= γλ; we found that η changes its value but it
still remains on the order of unity.
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13P. Miranović, K. Machida, and V. G. Kogan, J. Phys. Soc. Jpn. 72,

221 (2003).
14V. G. Kogan, Phys. Rev. B 66, 020509 (2002).
15Z. Hao, J. R. Clem, M. W. McElfresh, L. Civale, A. P. Malozemoff,

and F. Holtzberg, Phys. Rev. B 43, 2844 (1991).
16V. G. Kogan, Phys. Lett. A 85, 298 (1981).
17D. E. Farrell, R. G. Beck, M. F. Booth, C. J. Allen, E. D. Bukowski,

and D. M. Ginsberg, Phys. Rev. B 42, 6758 (1990); D. E. Farrell,
J. P. Rice, D. M. Ginsberg, and J. Z. Liu, Phys. Rev. Lett. 64, 1573
(1990).

184518-5

http://dx.doi.org/10.1103/PhysRevLett.78.2208
http://dx.doi.org/10.1103/PhysRevLett.85.1540
http://dx.doi.org/10.1103/PhysRevLett.85.1540
http://dx.doi.org/10.1103/PhysRevLett.79.1742
http://dx.doi.org/10.1103/PhysRevLett.95.197001
http://dx.doi.org/10.1103/PhysRevB.54.12386
http://dx.doi.org/10.1103/PhysRevB.38.2439
http://dx.doi.org/10.1103/PhysRevB.38.2439
http://dx.doi.org/10.1016/j.physc.2010.05.049
http://dx.doi.org/10.1016/j.physc.2010.02.009
http://dx.doi.org/10.1143/JPSJ.72.221
http://dx.doi.org/10.1143/JPSJ.72.221
http://dx.doi.org/10.1103/PhysRevB.66.020509
http://dx.doi.org/10.1103/PhysRevB.43.2844
http://dx.doi.org/10.1016/0375-9601(81)90965-8
http://dx.doi.org/10.1103/PhysRevB.42.6758
http://dx.doi.org/10.1103/PhysRevLett.64.1573
http://dx.doi.org/10.1103/PhysRevLett.64.1573

