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Vortex density waves and negative absolute resistance in patterned superconductors
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We study theoretically dynamical phases of vortices in superconducting films with arrays of obstacles. By
performing a series of molecular-dynamics simulations and analytical calculations, we demonstrate the existence
of a phase of soliton-like vortex-density waves existing in a wide range of parameters. These waves are formed by
a self-assembled phase separation process induced by strongly nonlinear density fluctuations of the moving vortex
matter above a certain critical driving current. At high vortex concentrations, the waves move at an approximately
current-independent speed, resulting in a wide plateau in the voltage-current characteristics. At stronger drives,
the vortex system enters into a fully jammed (zero-voltage) phase. By combining ac and dc drives, the interplay
between the vortex-density wave and jammed phases leads to the observation of negative absolute mobility of
vortices, which induces the superconducting film into a negative resistance state.
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I. INTRODUCTION

Driven many-particle systems are often affected by strongly
nonlinear fluctuations, which can lead to dramatic phenom-
ena such as self-organized density waves,1,2 jamming,3 and
spontaneous segregation.2,4 In inhomogeneous type-II super-
conductors, nonlinear phenomena resulting from the motion
of magnetic flux quanta (vortices) have been investigated, for
instance, in the context of dendritic flux instabilities stemming
from the breakdown of the Bean critical state.5–7

In a superconductor, vortices are subjected to the Lorentz
force induced by an applied current density J and to the pin-
ning force produced by sample inhomogeneities. A dissipative
dynamical state of moving vortices is established at the critical
current Jc when the Lorentz force overcomes pinning.8 Just
above Jc, motion is usually plastic with vortices moving at
different velocities, which results in a nonlinear velocity-force
(voltage-current) characteristic. At a stronger drive, the pin-
ning potential is washed out and the corresponding dynamical
state, coined flux flow, is essentially linear. These dynamical
regimes have been extensively investigated in disordered
superconductors8,9 and, more recently, in films with periodic
arrays of nanoengineered pinning centers.10–12 However, much
less attention has been given to the dynamics of vortices in
arrays of obstacles (or antipinning centers).13 Because in this
configuration vortices are not trapped individually, it renders
a very small critical current, which, in principle, has limited
interest for applications. On the other hand, a small Jc allows
for investigation of vortex motion in a much wider current
range. Moreover, vortices may be forced into meandering
paths, inducing strong lateral fluctuations that can give rise
to novel dynamical phases.

In this paper, we demonstrate the breakdown of the flux-
flow state in a superconducting film with an array of obstacles
into a vortex-density wave state and, subsequently, into a
fully jammed phase. Evidence of density waves in vortex
systems have previously been found in the context of current-
depaired vortices and antivortices in clean superconductors14

and turbulence in superfluids.15 In contrast, the phenomena we
present here are collective states of the moving vortex matter
resulting from the interplay of vortex–vortex interactions and
the friction induced by the obstacles. As we shall see in this
paper, these competing interactions lead to a critical profile of

the density waves, where distinct dynamical phases, as well as
a jammed phase, coexist.

The paper is organized as follows. In Sec II, we give the
details of our model and numerical procedure. In Sec. III, we
present the main results of our molecular dynamics simulations
and discuss the dynamical phases. An analytical model is
proposed in Sec. IV to explain the conditions for formation
and stabilization of vortex-density waves and how this leads to
a constant voltage regime. Sec. IV is devoted to illustrating an
application of the interplay between the moving and jammed
phases, namely, the negative absolute resistance effect. Finally,
our main findings and final remarks are summarized in Sec. VI.

II. MODEL AND NUMERICAL DETAILS

We consider a set of N vortices generated in the film by
a perpendicular magnetic field �B = Bẑ. The dynamics of a
vortex i is modeled by the Bardeen-Stephen equation,

η�vi = �F − �∇iUb −
∑
j �=i

�∇iUij , (1)

where η is the viscous drag coefficient, �F is the Lorentz force
induced by the applied current, and Uij is the vortex pair
potential, modeled here as Uij = εK0(rij /�) [ε =
φ2

0/(4πμ0�) and φ0 is the flux quantum]. � is the effective
penetration depth measuring the range of vortex–vortex
interactions. For � much larger than all length scales of
the system Uij asymptotically reduces to a logarithmic
potential. In this investigation, we analyze the effect of short-
and long-range interactions by conducting simulations for
0.5 � � � ∞. Hereafter, we adopt the following units: a

(obstacle lattice constant) for length, t0 = ε/(ηa2) for time,
and ε for energy.

Ub(x,y) is the potential resulting from a triangular array
of cross-shaped obstacles (Fig. 1). To be specific, we have
chosen as such obstacles small ferromagnets (FMs), each
with a uniform permanent magnetization �M antiparallel to
�B. This choice is motivated by the well-known properties of
FMs to either attract or repel vortices, depending on their
magnetic orientation.16 Other possible choices include higher
Tc superconducting dots17 and pillars.13 Each FM repels a
vortex j via a potential given by Ukj = − ∫ �M · �bjd

3rk , where
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FIG. 1. (Color online) Foreground: unit cell of the triangular
array of ferromagnetic barriers. Background: contour plot of the
potential Ub(x,y) generated by the array. Each cross comprises two
legs perpendicular to one another, of length 0.5a, width 0.04a, and
height 0.025a. To prevent proximity effects, the ferromagnets are
assumed to be separated from the superconductor by a 0.0125a-thick
insulating layer.

�rk = (xk,yk) is the position of the volume element of the
micromagnet k, and bj is the local flux density of vortex j at �rk

calculated within the London approximation.18,19 In the results
presented here, we used M = 320φ0/μ0a

2 (= 0.8Bc2/μ0,
assuming a coherence length ξ = 0.02). For this value, the
ferromagnets do not induce any vortex–antivortex pairs.20

Ub(x,y) results from the superposition of all FMs in the array
(Fig. 1). It introduces a current-induced trapping mechanism
between two critical drive values: Fc1 = 3.5, at which a
vortex can get trapped at a cross corner, and Fc2 = 12.0,
above which a vortex surmounts the barrier. These properties
provide the main ingredient for the phenomena we investigate
here, namely, a nonlinear, drive-dependent friction.

Equation (1) is solved numerically via molecular-dynamics
(MD) simulations in a cell of size Lx × Ly with periodic
boundary conditions. The values of Lx and Ly were chosen
after a careful finite-size analysis. We verified that the
transitions between the observed dynamical phases become
unaltered for system sizes typically larger or equal to 24 × 48
or 12 × 96 FMs. Therefore, N typically ranges up to a few
thousands of vortices. The simulation procedure is as follows.
First, the vortex system is equilibrated at zero current via a
standard simulated annealing scheme.20,21 Then, the driving
force Fy , applied along the y axis, is slowly increased. For
each Fy , time series and averages are calculated on an interval
�t of typically 106 time steps after a stationary state has settled.
The main physical quantities are the center-of-mass velocity
vy = 1

N

∑
i �vi · ŷ of the vortex array along the drive direction

and its time average.

III. DYNAMICAL PHASES

A. General picture

We conducted an extensive series of simulations of the
model described above for densities ranging from n = 0.1
to 2.0 vortices per obstacle and different values of �.
Figure 2(a) presents 〈vy〉-Fy curves for a few n values. The
different dynamical behaviors are arranged in the diagram
of Fig. 2(b). In general, for F � Fc1, all vortices meander
through the potential channels leading to a linear (flux-
flow) phase, which we call phase I. This phase has an

FIG. 2. (Color online) (a) Vortex mean velocity 〈vy〉 as a function
of the driving force Fy for logarithmic (� = ∞) vortex–vortex
interaction and occupation numbers ranging from n = 0.25 to 1.5.
The roman numbers correspond to the phases depicted in the Fy-n
diagram (b) and explained in the text. (c) 〈vy〉 versus Fy for n = 0.25
and different � values: � = 0.5 to 4 (symbols) and � = ∞ (line).

effective viscous drag coefficient, defined as ηeff = F/〈v〉,
approximately force-independent and smaller than η. This is
consistent with the fact that the meandering motion of vortices
dissipates more energy as compared to the case of conventional
flux flow.

Above Fc1, we observed a remarkable plateau in 〈vy〉(Fy)
for long-ranged vortex–vortex interactions. This constant
velocity state, phase II, persists in a wide range of force values
and ends drastically in a fully jammed (〈vy〉 = 0) state for
n < 0.75, phase III, or in a moving linear phase IV for larger n.
At even higher drives (F � Fc2), all vortices surmount the
barriers leading to a new flux-flow regime (phase V). Phase II
dominates the diagram in the range of parameters studied.
To check the stability of this phase with respect to the
kind of vortex–vortex interaction, we fixed n = 0.25 and run
simulations for � values down to 0.5. As observed in Fig. 2(c),
the plateau shrinks as � decreases and is substituted by a
smooth decrease of 〈vy〉 for � � 1.0. As we shall see below,
this region of decreasing 〈vy〉 have similar properties to the
plateau region of the � � 2 systems.

B. Vortex-density waves

Here we analyze phase II in more detail. For simplicity
we focus only on the vortex density n = 0.25. In Fig. 3, we
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FIG. 3. (Color online) Snapshots of the flux-density distribution b(x,y) in a 12 × 144 array of cross barriers for total vortex density
n = 0.25, � = 4.0 [(a)–(e)] and 1.0 [(f)–(j)], and different force values spanning phase I [(a) and (f)], II [(b)–(d) and (g)–(i)], and III [(e)
and (j)]. The drive direction (y axis) points left to right. The curves on the right depict the flux density b(y) (in units of φ0 per unit cell)
integrated over the sample width. The shaded areas represent the shape of the density wave as predicted by the mean-field model presented
in Sec. IV. The plots on the left represent a zoom-in of the regions indicated by the squares showing the positions of vortices (dots) and
barriers (crosses).

plot snapshots of the flux-density distribution b(x,y) for � =
4 (long range) and � = 1 (short range). The central panels
correspond to density plots of b(x,y), whereas the panels on
the right are flux profiles averaged over the x direction, i.e.,
b̄(y) = ∫

dx b(x,y)/Lx . The left panels depict the snapshots
of vortex positions in the areas indicated. These plots reveal a
spontaneous breakdown of the vortex distribution when going
from phase I [panels (a) and (f)] to phase II [(b)–(d), for � =
4.0, and (g)–(i), for � = 1.0]. The resulting patterns comprise
stripes of high flux density oriented perpendicularly to the
drive direction and traveling at constant speed as soliton-like
vortex-density waves (VDW).

For long-range interactions, the waves have a peculiar
triangular flux profile, which changes shape as the force is
increased, and are intercalated by narrow regions of sparsely
distributed vortices trapped by the cross corners. By carefully
analyzing the dynamics in different regions of the sample,
we found out that the left side of the wave is characterized
by meandering motion of vortices, similar to the dynamics
at F < Fc1 (phase I), while on the right side vortices will
rather assist each other to jump over the barrier, which is
the same dynamics found at F > Fc2 (phase V). Therefore, a
single-density wave corresponds to a moving region where two
distinct dynamical phases coexist. Such phase separation was
also observed for short-range interactions, but not so clearly
because in this case a density wave spans only a few lattice
spacings of the FM array. In addition, the pinned vortex regions
for small � are considerably larger and increases with force,

which is accompanied by a reduction of the mean vortex speed.
A detailed analysis of the morphology of the VDWs and its
dependence on the driving force and other parameters is given
in Sec. IV.

Although the vortex wave patterns observed in our sim-
ulations are not space periodic, they do present time order.
A convenient way to search for time correlations in the
vortex density n(t) is by studying the power spectrum of its
fluctuations, S(f ) = 〈|n(f )|2〉, with n(f ) = ∫

dt n(t)e−i2πf t .9

We perform this task by recording the density n(t) integrated
over a 12 × 12 region of the film every other 10 time steps
during a series of 106 time steps. S(f ) is then estimated by
averaging |n(f )|2 over Ns = 10 segments of the time series.

Plots of typical S(f ), for both short (� = 1.0) and long
(� = 4.0) range cases, are depicted in Fig. 4. As it is clear in
this figure, S(f ) has a long 1/f 2 tail for all drive intensities
and interaction ranges studied. This high frequency behavior
is associated with Brownian noise resulting mainly from the
meandering dynamics, where a vortex colliding with a barrier
has to choose randomly whether to dodge left or right. The
low frequency region of S(f ), however, changes dramatically
from a flat behavior in phase I to a series of strong peaks in
phase II. These peaks correspond to the harmonics as-
sociated with the coherent passage of high-flux-density
domains at constant speed. Therefore, the power spectra
provide an efficient means of determining the density-
wave velocity: vw = f1Ly , where f1 is the first harmonic
frequency.
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FIG. 4. Power spectra of density fluctuations at different drives
for n = 0.25 and � = 1.0 (a) and � = 4.0 (b). The curves are
displaced from each other by two decades for better visualization.
In both panels, 1/f 2 curves (gray line) are plotted as guides to the
eye (see text). Insets: driving force dependence of the mean vortex
velocity and the density wave velocity for � = 1.0 and 4.0.

We have calculated the wave speed for different force values
both for � = 1.0 and 4.0. For better accuracy, we calculate vw

from a (sharper) higher harmonic fs = sf1 (typically, s = 3
or 4). The results are plotted in the insets of Fig. 4. Remarkably,
vw is always larger than the mean vortex speed for both kinds
of interactions. For short-range interaction, vw increases with
the driving force, whereas 〈v〉 decreases. Such high speeds
of the density waves as compared to 〈v〉 can be explained by
the presence of slow-moving vortices between adjacent waves.
In fact, because vortices in a density valley are diluted, they
can easily be trapped at barrier corners (thus contributing to
decrease 〈v〉) until being caught by a wave front. In opposition,
vortices in the density peaks assist each other to overcome
the traps. Put in another way, the VDWs observed here are
antijamming waves, self-assembled in a way as to avoid a full
stop of the vortex flow.

Density waves have been observed in other classical many-
particle systems, for instance, car traffic,22,23 granular flow,24,25

and galaxies,26 and their origin is still unclear. In contrast to the
antijamming waves observed in our simulations, the density
peaks in these systems are jamming domains intercalated
by free-motion regions. Accordingly, their wave velocities

are usually smaller than the mean flow velocity and can
even become negative.3 However, in all these systems, ours
included, density waves can be understood as a dynamical,
self-organized phase separation, similar to equilibrium pattern
formation in systems with competing interactions.27 For
instance, in the case of granular media flowing through narrow
tubes,25 density waves form spontaneously and generate a
spectrum of density fluctuations very similar to those presented
in Fig. 4, in spite of the very different types of interactions in
these systems and different natures of the waves.

IV. MEAN-FIELD APPROACH

To understand how the vortex-density waves are formed
and why they lead to a constant voltage regime for large �, we
propose an analytical model based on a mean-field analysis
of Eq. (1). We start from the Fokker-Planck equation for the
vortex distribution function at zero temperature and coarse-
grain it over scales larger than �. This procedure leads to the
following equation for the vortex density ρ:28

η
∂ρ

∂t
= −�∇ · [ρ( �F − g �∇ρ + �FP ). (2)

Here, −g �∇ρ is the lowest order (long-wavelength) contri-
bution of vortex–vortex interactions, with g = − 1

2

∫
d2r �r ·

�∇Uij . This indicates that, as expected, a local flux gradient
introduces an additional term to the local driving force, that
is �Fd = �F − g �∇ρ. �FP is the coarse-grained force produced
by the pattern, which can be understood as a drive-dependent
friction force.

To account for a dynamical trapping mechanism similar
to that induced by the cross-shaped barriers, we assume that
FP represents a static friction in the range Fc1 < Fd < Fc2,
for which no motion occurs. For Fd � Fc1 and Fd � Fc2,
motion takes place and, accordingly, FP must represent the
corresponding kinetic frictions Fk1 and Fk2, respectively.
These properties can be arranged by modeling the friction
force as �FP = −ŷFP (Fd ), with

FP =

⎧⎪⎨
⎪⎩

Fk1, if Fd � Fc1

Fk2, if Fd � Fc2

Fd, if Fc1 < Fd < Fc2.

(3)

We proceed by assuming a one-dimensional density wave
is formed at a given F , with Fc1 < F < Fc2, and search for
the conditions for such a wave to exist with a fixed shape and a
constant velocity �vw directed parallel to �F = ŷF . In this case,
we can transform into a reference frame moving with the wave
(y ′ = y − vwt,t ′ = t) and rewrite Eq. (2) as

ηvw = F − g∂y ′ρ − FP , (4)

where ρ is assumed to be a function of y ′ only and ∂y ′ρ is the
density gradient in the moving frame. To determine the shape
of the wave, it is convenient to choose the position of the wave
maximum as the origin of y ′ and analyze separately the regions
l = {y ′ < 0} and r = {y ′ > 0}. Further, for simplicity, we
assume the wave is single-peaked and define Gr(l) ≡ |∂y ′ρ|r(l),
such that Fd = F − gGl , for y ′ < 0, and Fd = FL + gGr , for
y ′ > 0.
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With the help of Eq. (3), we can state the following
conditions of motion of the wave:

gGl � F − Fc1, (5)

gGr � Fc2 − F, (6)

where we used the fact that, for any F ∈ [Fc1,Fc2], the positive
slope on the right side of the wave rules out the possibility
Fd > Fc2, whereas the negative slope on the right rules out
Fd < Fc1. This naturally accounts for the dynamical phase
separation observed in our MD simulations and discussed in
Sec. III B.

A direct consequence of the above condition is that
if the vortex distribution peaks up at a certain point, the
corresponding bump can only turn into a traveling wave if
the gradients in both sides of the bump fulfill Eqs. (5) and
(6). Subcritical bumps, i.e., those with gGl < F − Fc1 and
gGr < Fc2 − F , would simply be trapped by the pattern. On
the other hand, an increase in Gr above its critical value leads to
an increase in the velocity on the right side, while an increase in
Gl above Fc2 − F reduces velocity on the left side. Therefore,
if the vortex distribution peaks up too sharply, the wave will be
unstable and will rapidly decay to a profile with gentler slopes
so that the velocities on the left and right sides of the wave come
to a common value. It is clear then that the condition for the
stability of a wave traveling at constant speed and fixed shape
is that the density gradient must be everywhere critical, that is

Gl = (FL − Fc1)/g, (7)

Gr = (Fc2 − FL)/g. (8)

This result is analogous to the build up of the Bean critical state
in the magnetization of hard type-II superconductors, where
the flux gradient (induced by the external flux penetrating
the material) exactly balances the critical force induced by
pinning centers. Here, the critical forces are exactly balanced
by the overall driving force, which accounts for the applied
Lorentz force and the flux gradient.

Equations (7) and (8) describe a triangular shape for the
density wave that switches its left (right) side slope from gentle
(steep) to steep (gentle) as the Lorentz force is increased from
Fc1 toward Fc2. To contrast this result with our simulation
data, we take Fc1 = 3.5 and Fc2 = 12, obtained from the
〈v〉(F ) characteristic for � = 4 and n = 0.25, and calculate the
parameter g for Bessel-like vortex–vortex interactions, which
gives g = 2π�2ε. Then, we calculate the critical gradients
from Eqs. (7) and (8) and compare with the flux profiles
obtained from the MD simulations for F = 5.0, 7.0, and 9.0.
The results, presented in Figs. 3(b)– 3(d), demonstrate a good
agreement between the numerics and the mean-field model.

To estimate the wave velocity, we first impose that the
velocity in the left side of the wave (vl = vw) must be
consistent with the linear, meandering dynamics expected to
occur for Fd < Fc1. For this kind of motion, an increase in
the drive leads to a proportional increase in the velocity, i.e.,
vw = Fd/ηeff . Then, we notice that, from Eq. (7), Fd = F −
gGl = Fc1. Hence, the wave velocity does not depend on F :

vw = Fc1/ηeff . (9)

This is in excellent agreement with the MD results for large
� if one assumes that all vortices participate on a wave, that

is 〈v〉 = vw. In fact, as revealed by the simulations, there are
narrow, low-density regions of trapped vortices coexisting
with the dynamical phases for n = 0.25 and large �. For that
reason, vw is typically slightly larger than 〈v〉.

It is worth noticing that in the limit Fc1 → 0, a moving
wave solution is not possible (at least in the framework of the
present model). Therefore, a condition for the occurrence of
vortex-density waves is that vortices interact with a potential
that is able to trap them only when the applied current surpasses
a certain critical value. This is probably the reason why vortex-
density waves have never been detected or predicted in, for
instance, arrays of pinning centers. In these systems, in general,
there is no moving phase preceding the pinned phase.

It is also important to emphasize that the mean-field approx-
imation [Eq. (2)] is strictly valid for vortex densities n � �−2.
In the simulations performed for � = 4a and n = 0.25

√
3

2 a−2,
we have n = 3.46�−2, which can be considered inside the
range of validity of the model. Indeed, the main results
obtained in the MD calculations for these parameters were
correctly reproduced by the mean-field approach. For � = a,
however, the vortex distribution is too diluted. In addition, in
order to treat the interaction with the barriers macroscopically,
� should span several lattice spacings. For these reasons,
the analytical results presented here are not strictly valid for
short-range interactions. Notwithstanding, our simple analysis
ignores the details of the barriers, taking into account only its
main macroscopic properties. Therefore, it can be applied to
other barrier configurations, as long as their coarse-grained
properties can be expressed in a way similar to Eq. (3).

V. NEGATIVE ABSOLUTE RESISTANCE

The dynamical transition between the VDW and jamming
phases opens the possibility for an interesting application: the
construction of an active device (made of superconducting
material) exhibiting negative absolute resistance (NAR). The
working principle of this device is based on the negative
absolute mobility (NAM) effect, which corresponds to motion
in a direction that opposes the driving force, irrespective of
the drive direction. This phenomenon was predicted to occur
in the transport of a single classical Brownian particle through
a symmetric, periodic substrate29 and was experimentally
corroborated in a system of colloidal spheres in a microfluidic
device30 and subsequently in a Josephson junction.31 In the
latter, the phase dynamics, which can be mapped into the
problem of a single Brownian particle, lead to negative
resistance.

Quite generally, the main ingredients for the observation
of NAM are: (i) a medium that allows easy motion of the
particles at low drives and strongly suppresses mobility at
high drives; (ii) a fluctuating (nonequilibrium) force, for
instance an ac excitation, superposed to the dc drive. The first
requirement implies necessarily that, for a certain force range,
the mean velocity of the driven system must decrease as the
driving force increases, that is, negative differential mobility.
This phenomenon has been experimentally demonstrated for
vortices driven in superconducting films with periodic arrays
of pinning centers at magnetic fields close to one flux quantum
per pinning site (B1).12 Previous numerical calculations have
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dc

FIG. 5. Vortex mean velocity as a function of the dc force Fdc

in the presence of a sinusoidal excitation with frequency ω = 0.01
and amplitudes A = 11.25, 10.25, 7.5, and 5.5 corresponding to λ =
4,2,1,0.5, respectively. All curves exhibit absolute negative mobility
of vortices at small Fdc.

pointed out that such negative differential mobility of vortices
near B1 is a result of a transition from a highly-dissipative,
disordered regime to a filamentary state with somewhat smaller
but nonvanishing mean velocities.10,32 As shown in Fig. 2, the
V I characteristics of the vortices interacting with antipinning
centers do present negative differential resistance in a broad
field range. Here, however, this effect results from the VDW-
to-jamming transition and the voltage drop is associated with
a strong suppression of vortex mobility, which, as discussed
below, is a crucial feature for the observation of NAM.

Here, we demonstrate how the NAM effect can be applied
to Abrikosov vortices in patterned superconductors in order
to achieve negative resistance. We subject the vortices to a
Lorentz force Fy = Fdc + Fac(t), with Fac(t) = A sin(ωt) and
an ac amplitude A fixed at a value chosen just above the
VDW-jamming (II–III) transition, and measure 〈vy〉, which is
proportional to the dc voltage, as a function of the dc drive Fdc,
proportional to the dc current. The results are shown in Fig. 5

for several � values. At zero dc current (Fdc = 0) the vortex
dynamics cycle symmetrically through phases I, II, III, and
back, producing zero dc voltage. However, for small positive
(negative) Fdc, vortices are most of the time in the pinned phase
III during the positive (negative) half-cycle of Fac and always
in one of the moving phases I or II in the negative (positive)
half-cycle. This leads to a net motion contrary to the dc
force, that is, the mean electric field induced by vortex motion

points antiparallel to the applied dc current, thus generating
the negative absolute resistance effect.

VI. CONCLUSIONS

In conclusion, we studied novel dynamical phases of
vortices in a patterned superconducting film. By molecular
dynamics calculations we demonstrated, for a wide range
of parameters, the existence of vortex-density waves propa-
gating at a constant speed vw larger than the mean vortex
velocity 〈v〉 and essentially force-independent for long-range
vortex–vortex interactions. The waves consist of well-defined
regions of coexisting moving phases, where vortices assist
each other to either dodge or overcome the barriers and are
intercalated by regions of trapped vortices.

Our mean-field analysis revealed that these waves stem
from fluctuations in the vortex distribution induced by a highly
nonlinear friction force. A density bump produced by such
fluctuations turns into a stable moving wave when it reaches
a certain critical profile. It is precisely this critical shape of
the waves that results in a force-independent wave velocity,
thereby naturally accounting for the voltage plateau observed
in the MD simulations.

We have also demonstrated the feasibility of a supercon-
ducting device that exhibits negative absolute resistance. This
is achieved by exploring a combination of ac and dc excitations
in such a way as to conveniently switch the system between
the moving and fully jammed phases. This prediction could
be promptly tested using conventional transport measurement
techniques on a nanostructured sample with a pattern similar
to that proposed here.

Finally, it is worth pointing out that, given the generality
of our mean field model, the main results predicted here can
also be applied to other systems of interacting particles, such
as colloids and pedestrians. An advantage of the vortex system
proposed here is that interactions can easily be tuned. In typical
nanostructured superconducting films, � can be varied from
a fraction to several lattice spacings by controlling the film
temperature near Tc,21,33 thereby allowing for experimentally
accessing our predictions in both long and short range cases. In
addition, modern imaging techniques could be used to identify
the vortex density waves.
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I. V. Grigorieva, and F. M. Peeters, Phys. Rev. B 77, 024526
(2008).

14S. E. Hebboul, D. P. Johnson, and M. Rokhlin, Phys. Rev. Lett. 82,
831 (1999); S. E. Hebboul, Phys. Rev. B 60, 3544 (1999).

15M. S. Mongiovi and D. Jou, Phys. Rev. B 75, 024507 (2007).
16D. J. Morgan and J. B. Ketterson, Phys. Rev. Lett. 80, 3614 (1998).
17W. Gillijns, A. V. Silhanek, and V. V. Moshchalkov, Appl. Phys.

Lett. 91, 202510 (2007).
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