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Asymmetric Cooper pair transistor in parallel to a dc SQUID: Two coupled quantum systems
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We present a theoretical analysis of a superconducting quantum circuit based on a highly asymmetric Cooper
pair transistor (ACPT) in parallel to a dc superconduction quantum intereference device (SQUID). Starting from
the full Hamiltonian we show that the circuit can be modeled as a charge qubit (ACPT) coupled to an anharmonic
oscillator (dc SQUID). Depending on the anharmonicity of the SQUID, the Hamiltonian can be reduced either
to one that describes two coupled qubits or to the Jaynes-Cummings Hamiltonian. Here the dc SQUID can be
viewed as a tunable micrometer-sized resonator. The coupling term, which is a combination of a capacitive
and a Josephson coupling between the two qubits, can be tuned from the very strong- to the zero-coupling
regime. It describes very precisely the tunable coupling strength measured in this circuit [A. Fay et al., Phys.
Rev. Lett. 100, 187003 (2008)] and explains the “quantronium” as well as the adiabatic quantum transfer
readout.
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I. INTRODUCTION

Two quantum systems with discrete energy levels coupled
to each other form an elementary block, useful for the study of
fundamental phenomena and effects in quantum physics, espe-
cially in the context of quantum information. The interaction
between the two quantum systems is essential to implement
important concepts in this field such as entanglement, quantum
gate operations, and quantum information transfer. As to the
theoretical description of interacting quantum systems, two
problems have been extensively studied in particular: a two-
level system (or qubit) coupled to a harmonic oscillator and
two coupled qubits. The former was used to describe among
others the quantum electrodynamics associated with atoms in
a cavity,1 trapped ions coupled to their vibrations,2 and, more
generally, interaction between matter and photons.3 The latter
was developed to describe entangled photons, trapped ions,
and two-qubit quantum gate operations.4

These studies were experimentally realized in the fields
of quantum optics and atomic physics and more recently
extended to include quantum solid-state devices. In particular,
during the past decade superconducting circuits have
demonstrated their potential in connection with quantum
experiments.5–14 They now appear as experimental model
systems for studying fundamental quantum physics and basic
blocks for quantum information.

In this paper we consider a superconducting circuit com-
posed of two well-known elements coupled to each other:
an inductive dc superconducting quantum interference device
(SQUID) and a Cooper pair transistor. This circuit constitutes
an elementary building block that can be operated in various
parameter regimes characterized by different types of quantum
dynamics, as has been shown experimentally in the past. As
we will detail below, this is possibly due to the fact that three
strongly coupled quantum variables determine the dynamics
of this coupled circuit.

For instance, when the current-biased dc SQUID is non-
inductive and classical and the transistor is symmetric, one

recovers the quantronium.15 When the SQUID is operated in
the nonlinear regime, the resulting system consists of a charge
qubit coupled to an anharmonic oscillator; this system has been
shown to allow for nondestructive quantum measurements.16

We recently operated the SQUID in the quantum few-level
limit,17 demonstrating a very strong tunable coupling between
two different types of qubit: a phase qubit and a charge qubit.

The experimental performance of this circuit was limited
by uncontrolled decoherence sources. However, its integration
(three quantum variables strongly coupled on a micrometer
scale), its tunability, and its various optimal points make this
circuit attractive once decoherence sources will be overcome
upon technological improvements.

In this paper we present a rigorous theoretical analysis of
the circuit in the parameter range of our experiments.17 The
full Hamiltonian of the coupled circuit is presented, describing
a two-level system (Cooper pair transistor) coupled to two
anharmonic oscillators (dc SQUID). In the relevant parameter
range, the dc SQUID dynamics can be reduced from two
dimensional to one dimensional. Consequently the dynamics
of the circuit is that of a qubit coupled to a single anharmonic
oscillator. Depending on the anharmonicity, different regimes
can be studied in this unique circuit. When the anharmonicity
is neglected, we recover the physics of a qubit coupled to a
harmonic oscillator. The quantum properties of this circuit
are then described by the well-known Jaynes-Cummings
Hamiltonian. Although this limit can also be achieved with
a qubit coupled to a high-Q coplanar waveguide cavity,5,18

we wish to emphasize that the use of a dc SQUID is of
interest as it constitutes a micrometer-sized resonator and it
is tunable. When the oscillator is considered anharmonic, its
interaction with a qubit gives rise to very complex dynamics,
which has not been explored thoroughly. If only the two
lowest levels of the oscillator are considered, it can be reduced
to a two-level system. The coupled circuit then describes
two interacting qubits. In addition to the possibility to study
different dynamical regimes depending on the anharmonicity
of the resonator, the coupling between the SQUID and the
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transistor is fully tunable. As a result, the system can be
operated at zero coupling, as well as in the weak and in the
strong coupling limits.

In Sec. II, after a description of the circuit under con-
sideration, we construct the Lagrangian and the Hamiltonian
following Yurke et al.19 and Devoret.20 Section III is devoted to
the two-dimensional Hamiltonian of an inductive SQUID and
its reduction to one-dimensional Hamiltonian in the relevant
parameter range. In Sec. IV we discuss the Hamiltonian of
the asymmetric Cooper pair transistor (ACPT), especially
at its two optimal points where it is insensitive to noise
fluctuations. In Sec. V the terms describing the coupling
between the dc SQUID and the transistor are discussed. In
Sec. VI, the full Hamiltonian of the coupled circuit is rewritten
in the eigenbasis of the dc SQUID and the ACPT for the two
different anhamonicity regimes of the dc SQUID. There we
also discuss the two possible quantum measurements of the
charge qubit that can be performed by the dc SQUID. The last
section discusses the tunable coupling strength of the circuit
and its comparison with the experiments.

II. COUPLED CIRCUIT HAMILTONIAN

A general theory for analyzing the quantum behavior
of complex electronic circuits was originally established by
Yurke et al.19 and extended to study nonlinear superconducting
circuits containing qubits.20,21 However, to the best of our
knowledge, only the persistent current qubit has been treated in
a theoretical article using a rigorous circuit theory by Orlando
et al.22 In most situations, in order to analyze experimental
results obtained for a given circuit, an intuitively acceptable,
effective few-level Hamiltonian valid at low energies is
postulated. The interest of presenting a rigorous analysis
for the coupled circuit is to explore in detail the various
regimes of the circuit. For each studied regime, the number
of variables involved in the circuit dynamics is reduced by
using assumptions which are well defined and conditions that
can be clearly stated.

A. Circuit description

A schematic electronic representation of the circuit studied
theoretically hereafter is presented in Fig. 1(b). In this circuit
two different elements are coupled that correspond to two
basic blocks for typical superconducting quantum devices. The
first element is a dc SQUID; it corresponds to a loop which
contains two identical Josephson junctions (JJs), each with a
critical current I0 and a capacitance C0. The total inductance
LS of the dc SQUID is the sum of three inductances L1,
L2, and L3, associated with the different parts of the SQUID
loop. The second element of the circuit is an ACPT which is
placed in parallel with the dc SQUID. The ACPT consists of
a superconducting island connected to the dc SQUID by two
different JJs. We denote by I T

1 and I T
2 the critical currents

and CT
1 and CT

2 the capacitances of these junctions. The
asymmetry of the transistor is characterized by the Josephson
asymmetry parameter μ = (I T

2 − I T
1 )/(I T

2 + I T
1 ) and the ca-

pacitance asymmetry parameter λ = (CT
2 − CT

1 )/(CT
2 + CT

1 ).
The ACPT is also coupled to a gate voltage; this is modeled
theoretically by an infinite capacitance CP with a charge Qb

with CP ,Qb → ∞ so the ratio Qb/Cb ≡ Vg . The circuit is

FIG. 1. (Color online) The coupled circuit studied experimentally
in Ref. 17. (a) On the right-hand side, a SEM picture shows the two
elements of the circuit, i.e., an ACPT (red frame) connected in parallel
to a dc SQUID (blue frame). A zoom-in of the transistor is shown
on the left-hand side of the SEM picture. The transistor asymmetry
stems from the difference between the areas of the two JJs. The
properties of the circuit can be modified by the bias current Ib, the
flux �S in the dc SQUID, the flux �T in the other loop, and the gate
voltage Vg . (b) Schematic representation of the circuit. The four
JJs are represented by a pure Josephson element in parallel with a
capacitance. The voltage bias of the transistor gate and the current bias
of the circuit are schematically indicated by an infinite capacitance
CP and an infinite inductance LP , respectively. The spanning tree
drawn in dashed line connects the ground node to the six active nodes
ϕ1, ϕ2, ψ , θ , γ , and ξ .

current biased, modeled similarly with the help of an infinite
inductance Lb → ∞ threaded by a flux �b → ∞ so that
the ratio �b/Lb ≡ Ib remains constant. The properties of
the circuit depend on four experimentally tunable parameters
Vg , Ib and the fluxes �S and �T threading the dc SQUID
loop and the other loop of the circuit, respectively. As we
will see, these parameters allow to control and change the
physics of the coupled circuit. This circuit, realized and studied
experimentally by Fay et al.,17 is shown in the scanning
electron microscope (SEM) view in Fig. 1(a).

B. Quantum circuit theory

The relevant degrees of freedom of a superconducting
circuit and their dynamics can be determined using the concept
of node phases introduced by Devoret.20 We distinguish two
different kinds of nodes in the circuit. We first choose a ground
node to which the zero of phase is associated. Note that this
choice corresponds to a choice of gauge and is therefore
arbitrary, although this choice affects the detailed form of
the Hamiltonian it does not affect the resulting dynamics of
the circuit. The other nodes of the circuit are called the active
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nodes, each described by an active phase. Six active phases
are present in the circuit considered here; they are denoted by
ϕ1, ϕ2, ψ , θ , γ , and ξ .

Let us now introduce the so-called spanning tree.20 Starting
from the ground node we draw the branches of the spanning
tree, reaching each active node via a unique path. In the case
of the coupled circuit, the spanning tree [drawn in dashed line
in Fig. 1(b)], connects the ground node (bottom node) to the
six active nodes.

The superconducting phase difference across a dipole in a
superconducting circuit can be written as a function of the node
phases with the help of two rules. We will illustrate these rules
with the help of the circuit presented in Fig. 2 as an example.
Here, three dipoles are placed in a loop threaded by the flux
�. In this case, there are three nodes; the spanning tree (drawn
in dashed line) connects the ground node to the two active
nodes with phases φA and φB , respectively. As a first rule,
the superconducting phase difference across a dipole located
on the spanning tree is given by the difference of the phases
of the nodes linked to the dipole. Hence, the superconducting
phases 
1 and 
3 of the dipoles 1 and 3, respectively, are
given by 
1 = φA and 
2 = φB . As a second rule, in the
case of a dipole which is not located on the spanning tree,
we first define a minimal loop which contains the previous
dipole and the other dipoles located on the spanning tree.
The superconducting phase difference across the dipole is
calculated, using the quantization of the phase for the minimal
loop.23 Let us apply this rule to determine the superconducting
phase difference 
2 across dipole 2. The minimal loop
corresponds simply to the loop of the circuit. The phase
quantization in this loop gives 
2 = φB − φA − 2π�/�0,
with �0 the superconducting flux quantum. With the help of
the two previous rules, we have analyzed the coupled circuit
and expressed the superconducting phase difference across
each dipole as a function of the six active phases.

C. Current-conservation laws

In a superconducting circuit, we find generally three
different dipoles: a capacitance C, an inductance L, and a
Josephson element J . The current through each of these
dipoles can be expressed as a function of the superconducting

FIG. 2. (Color online) Three dipoles in a loop threaded by the
flux �. The spanning tree in dashed line connects the ground
node to the two active nodes φA and φB . The superconducting
phases 
1, 
2, and 
3 across the three dipoles, respectively, are
functions of φA, φB , and �.

phase difference 
 across the dipole. The voltage V is
related to the phase difference 
 by V = φ0
̇. The current
IC through the capacitance is then given by IC = φ0C
̈,
where φ0 = �0/(2π ). The current IL through the inductance
reads IL = φ0
/L. Finally, the current through the Josephson
element is given by the Josephson relation IJ = I0 sin(
),
where I0 is the Josephson critical current.24 Using these
expressions for the current, we can write the six current
conservation laws for each active node in the studied circuit
(the sum of the currents flowing into each node is zero). The
six conservation laws yield six equations for the dynamics of
the node phases (cf. Appendix A), whose solution yields the
dynamics of the entire circuit.

D. The Lagrangian

The Lagrangian L of the circuit depends on the six node
phases and their time derivatives. Let us define the vector
�x = (ϕ1,ϕ2,ψ,θ,γ,ξ ) formed by the six node phases of the
circuit. The six Euler-Lagrange equations are defined by25

d

dt

(
∂L
∂ �̇x

)
− ∂L

∂ �x = 0. (1)

The Lagrangian of the circuit has to be constructed in such a
way that the Euler-Lagrange equations are equivalent to the
current conservation equations (Appendix A). We take the
Lagrangian to be of the following form:

L( �̇x,�x) = T ( �̇x) − V (�x), (2)

with the kinetic energy

T ( �̇x) = φ2
0

{
1
2C0ϕ̇

2
1 + 1

2C0ϕ̇
2
2 + 1

2CT
2 (ξ̇ − ψ̇)2

+ 1
2CT

1 ψ̇2 + 1
2Cg(ψ̇ − θ̇ )2 + 1

2CP θ̇2
}

(3)

and the potential energy

V (�x) = −φ0
{
I0 cos(ϕ1) + I0 cos(ϕ2)

+ I T
2 cos(ξ − ψ − φT ) + I T

1 cos(ψ)
}

+φ2
0

{
1

2

(ξ − ϕ1)2

L1
+ 1

2

(γ − ϕ2)2

L2

+ 1

2

(γ − ξ − φS)2

L3
− 1

φ0
Ipγ

}
. (4)

The kinetic energy corresponds to the energy stored in the
capacitances of the circuit, whereas the potential energy is
composed of the Josephson energies (cosine terms) and the
energy stored in the inductances of the circuit. From now on,
we assume the SQUID inductances L1 = L2 and introduce the
inductance asymmetry η defined by L3 = ηLS .26 Although the
Lagrangian depends on six variables, the effective low-energy
behavior of the circuit is determined by three variables only,
as we will see below.

Let us first consider the phase variable γ . Its dynamics is

that of a harmonic oscillator of frequency ωγ = 1/

√
L̃SCγ .

Here Cγ is the capacitance of the γ node and L̃S = η(1 −
η)LS/(1 + η). Using the circuit parameters of Ref. 17 (see
Appendix B), where Cγ is estimated to be smaller than
0.1 fF, the frequency ωγ is estimated to be larger than
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1 THz, i.e., larger than all the other frequencies of the circuit.
Next, consider the phase variable ξ . Again using the circuit
parameters of Ref. 17, we find that the characteristic inductive
currents φ0/L1,2 are on the order of 1 μA, much larger than
the Josephson critical current I T

2 of ∼1 nA. In other words,
the SQUID inductance is much smaller than the Josephson
inductance ∼1/IT

2 . Therefore, in a first approximation, the
dynamics of ξ is also of the harmonic oscillator type with a

frequency ωξ =
√

1/L̃SCT
2 . We estimate ωξ to be ∼640 GHz.

This frequency is much smaller than ωγ , but still quite high
compared to the frequencies characterizing the dynamics of the
variables ϕ1, ϕ2, ψ , and θ (∼10 GHz, see below). This implies
that we can use the adiabatic approximation to eliminate the
fast variables γ and ξ and obtain an effective Lagrangian for
the slow variables φ1,φ2,ξ , and θ .

In order to implement the adiabatic approximation, we
write γ = γ0 + δγ and similarly ξ = ξ0 + δξ . Here γ0 and ξ0

correspond the minima of the harmonic potentials confining
the motion of these variables,

γ0(x,y) = x + ηy + φS

2
(1 − η) + 1

4φ0
LSIp(1 − η2), (5)

ξ0(x,y) = x − ηy − φS

2
(1 − η) + 1

4φ0
LSIp(1 − η)2, (6)

where x = (ϕ1 + ϕ2)/2 and y = (ϕ2 − ϕ1)/2. Note that γ0 and
ξ0 depend on x and y, hence they acquire slow dynamics
through the phases ϕ1 and ϕ2. The dynamics of the deviations
δγ and δξ is fast, determined by the frequencies ωγ and ωξ ,
respectively. Substituting the above decomposition for γ and ξ

in the Lagrangian (2)–(4), and averaging over the fast variables
δγ and δξ , we find the effective low-frequency potential energy

V (x,y,ψ)=2EJ [−cos(x) cos(y) − s(ηy+x) + b(y−yB )2]

−ET
J1 cos(ψ)−ET

J2 cos[ψ−ξ0(x,y)+φT ]. (7)

Here we defined the reduced parameters b = φ0/(LI0), s =
Ib/(2I0), and yB = π/(�S/�0). Furthermore, EJ = φ0I0,
ET

J1 = φ0I
T
1 , and ET

J2 = φ0I
T
2 are the different Josephson

energies of the circuit. Note that the fast oscillations of ξ lead
to a renormalization of I T

2 ; the value it takes in the effective
low-frequency potential (7) will therefore be smaller than the
bare value appearing in (4). Assuming that the bias current Ib

and the flux �S are constant, we deduce from Eqs. (5) and
(6) that γ̇0 = ẋ + ηẏ and ξ̇0 = ẋ − ηẏ. The kinetic part of the
Lagrangian can then be expressed as

T (ẋ,ẏ,ψ̇,θ̇ ) = φ2
0

{
C0ẋ

2 + C0ẏ
2 + 1

2CT
2 (ẋ − ηẏ − ψ̇)2

+ 1
2CT

1 ψ̇2 + 1
2Cg(ψ̇ − θ̇ )2 + 1

2CP θ̇2
}
.

(8)

The four variables of the Lagrangian can be separated in three
groups. Indeed, the dynamics of x and y corresponds to that
of the dc SQUID, whereas the dynamics of ψ is associated
with that of the ACPT. The variable θ is used to model the
effect of the gate voltage (cf. Sec. II F). Note that the last term
of the potential (7) and the third term of the kinetic term (8)
couple the variables of the dc SQUID and those of the ACPT
together, and therefore are responsible of the coupling between
these two elements.

E. Choice of variables for the dc SQUID

The Lagrangian of the circuit is a function of the variables
x and y associated with the SQUID. We want to change these
variables to more appropriate ones which will be used below
to describe the dynamics of the dc SQUID (cf. Sec. III). Let
us introduce the two-dimensional potential of the dc SQUID
VS(x,y), which is the contribution to the potential V (x,y,ψ),
Eq. (7), depending only on the variables x and y. It reads

VS(x,y)=2EJ [−cos(x) cos(y)−s(ηy+x) + b(y−yB )2].

(9)

We stress here that this potential is identical to the one of a
dc SQUID alone, as studied by Claudon et al.27 The dynamics
of the dc SQUID is similar to that of a fictitious particle
of mass ≈ φ2

02C0, which evolves in the potential VS(x,y).
This potential undulates due to the product of cosine terms
and contains wells that are separated by saddle points (see
Fig. 3); VS(x,y) is modulated by the bias current Ib and the
flux �S . We consider now the case that the particle is trapped
in one of these wells associated with a given local minimum
(x0,y0). Let us introduce the displacement variables around
(x0,y0) defined by X = x − x0 and Y = y − y0. We assume
that the particle’s motion does not extend far from (x0,y0).
Then, we can replace the potential VS(x,y) by its third-order
expansion around (X = 0,Y = 0). This expansion contains a
cross term in XY which disappears by performing a rotation
of the (X,Y ) plane [Fig. 3(b)] by the angle θ , where θ is given
by tan(2θ )/2 = ∂2

xyU (x0,y0)/[∂2
xxU (x0,y0) − ∂2

yyU (x0,y0)].
The new variables of the dc SQUID X‖ and Y⊥ associated

with the rotated plane are defined by(
X‖
Y⊥

)
=

(
cos(θ ) sin(θ )

− sin(θ ) cos(θ )

) (
X

Y

)
, (10)

and correspond to the position of the particle along the lon-
gitudinal and the transverse direction, defined by the minimal
and the maximal curvature of the potential, respectively. The
successive changes of the dc SQUID variables are summarized
in Table I.

The third-order expansion of the SQUID potential now
takes the form

VS(X‖,Y⊥) = [
1
2k‖X2

‖ + σ̃‖X3
‖
] + [

1
2k⊥Y 2

⊥ + σ̃⊥Y 3
⊥
]

+ [βaY
2
⊥X‖ + βbY⊥X2

‖], (11)

TABLE I. Successive changes of the dc SQUID variables. The
first pair of variables are the node phases ϕ1 and ϕ2. The motion of
the fictitious particle takes place around the local minimum (x0,y0) of
the potential. The variables X‖ and Y⊥ correspond to the transversal
and orthogonal displacement of this particle. θ is the angle between
the axes X and X‖ (see Fig. 3).

dc SQUID variables

ϕ1 ϕ2

x = (ϕ1 + ϕ2)/2 y = (ϕ2 − ϕ1)/2
X = x − x0 Y = y − y0

X‖ = cos(θ )X + sin(θ )Y Y⊥ = − sin(θ )X + cos(θ )Y
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FIG. 3. (Color online) Potential VS(x,y) of the dc SQUID with
bias parameters s = 0.55, yB = 0 (SQUID parameters b = 1.28, η =
0.29). The point (x0,y0) is the local minimum of one of the potential
wells.

where the prefactors k‖, σ̃‖, k⊥, σ̃⊥, βa , and βb can be calculated
numerically. The dynamics of the fictitious particle of the
SQUID in this potential will be analyzed in Sec. III. The full
potential appearing in the Lagrangian, Eq. (7), is given by

V (X‖,Y⊥,ψ)= [
1
2k‖X2

‖ + σ̃‖X3
‖
]+[

1
2k⊥Y 2

⊥ + σ̃⊥Y 3
⊥
]

+ [βaY
2
⊥X‖ + βbY⊥X2

‖]

−ET
J1 cos(ψ)−ET

J2 cos(ψ̂−δ)

−ET
J2α‖X̂‖ sin(ψ̂−δ)+ET

J2α⊥Ŷ⊥ sin(ψ̂−δ),

(12)

where δ ≡ ξ (x0,y0) − φT is the classical phase difference
across the transistor. The prefactors α‖ ≡ cos(θ ) − η sin(θ )
and α⊥ ≡ sin(θ ) + η cos(θ ) reflect the two dimensionality of
the SQUID potential. When the inductance LS is zero, the
dynamics of the SQUID is described by only one variable, x,
since y = yB . In that case, the prefactors α‖ and α⊥ are equal
to one. The two last terms of the potential contain one variable
of the SQUID and one of the transistor. They thus couple the

SQUID and the transistor. Note that the coupling terms of the
second order and beyond have been neglected in the potential.
The kinetic term of the Lagrangian can be rewritten as, using
the variables X‖ and Y⊥,

T (Ẋ‖,Ẏ⊥,ψ̇,θ̇ )= 1
2φ2

0

{(
2C0+α2

‖C
T
2

)
Ẋ2

‖+(
2C0 + α2

⊥CT
2

)
Ẏ 2

⊥
+C�ψ̇2 − 2CT

2 (α‖Ẋ‖ − α⊥Ẏ⊥)ψ̇

− 2CT
2 α‖α⊥Ẋ‖Ẏ⊥−2Cgψ̇θ̇+(CP +Cg)θ̇2},

(13)

where C� is the total capacitor of the transistor, defined
by C� = CT

1 + CT
2 + Cg . The final expression for the to-

tal Lagrangian is obtained from L(Ẋ‖,Ẏ⊥,ψ̇,θ̇ ,X‖,Y⊥,ψ) =
T (Ẋ‖,Ẏ⊥,ψ̇,θ̇ ) − V (X‖,Y⊥,ψ); it will be used in the next
section to establish the Hamiltonian of the circuit.

F. The Hamiltonian

The Hamiltonian of the coupled circuit is a function
of the variables (X‖,Y⊥,ψ,θ ) and the conjugate momenta
(−h̄P‖, − h̄P⊥, − h̄n, − h̄nQ). These momenta are related to
the velocities (Ẋ‖,Ẏ⊥,ψ̇,θ̇ ) by the well-known expressions
−h̄P‖ ≡ ∂L/∂Ẋ‖, −h̄P⊥ ≡ ∂L/∂Ẏ⊥, −h̄n ≡ ∂L/∂�̇, and
−h̄nQ ≡ ∂L/∂θ̇ . The analytical expressions for the conjugate
momentum variables are given in Appendix C. The conjugate
variables generate the charges P‖, n, and nQ with unit [−2e].
We stress that these charges have a clear physical meaning.
Indeed, P‖ corresponds to the number of Cooper pairs stored
in the two capacitors C0; n is the number of Cooper pairs
on the island. In Eq. (C4), the charge −2enQ is equal to the
bias charge Qb. Performing the limiting procedure CP ,Qb →
∞, keeping their ratio constant Qb/CP = Vg , we see that
the velocity θ̇ is constant and defined by θ̇ = Vg/φ0. The
expression for the Hamiltonian is determined by the Legendre
transformation25

H = −h̄P‖Ẋ‖ − h̄P⊥Ẏ⊥ − h̄nψ̇ − L. (14)

All the velocities which appear in the Lagrangian have to
be replaced by the conjugate variables, inverting the set of
equations given in Appendix C. The full Hamiltonian of the
circuit then takes the form

Ĥ (P̃‖,X̃‖,P̃⊥,Ỹ⊥,n̂,ψ̂)

= (2e)2

2C‖
P̃ 2

‖ + 1

2
k‖X̃2

‖ + σ̃ X̃3
‖ + (2e)2

2C⊥
P̃ 2

⊥

+ 1

2
k⊥Ỹ 2

⊥ + σ̃⊥Ỹ 3
⊥ + (2e)2

C‖⊥
P̃‖P̃⊥ + βaỸ

2
⊥X̃‖

+βbỸ⊥X̃2
‖ + (2e)2

2CT

(
n̂ − CgVg

2e

)2

−ET
J1 cos(ψ̂) − ET

J2 cos(ψ̂ − δ)

+ (2e)2

Cn‖
P̃‖

(
n̂ − CgVg

2e

)
− ET

J2α‖X̃‖ sin(ψ̂ − δ)

− (2e)2

Cn⊥
P̃⊥

(
n̂ − CgVg

2e

)
+ ET

J2α⊥Ỹ⊥ sin(ψ̂ − δ),

(15)
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TABLE II. Analytical expressions for the capacitances present in Hamiltonian (15) and the approximated expressions in the limit of
Cg 
 CT

2 and CT
1 
 C0. We have used the definitions C̄2 = 2C0[C� + CR(1 + η2)], C� = CT

1 + CT
2 + Cg , and CR = CT

2 (CT
1 + Cg)/2C0.

The numerical values have been calculated for the parameters of the circuit studied in Ref. 17: C0 = 227 fF, CT
1 = 2.0 fF, CT

2 = 0.9 fF, Cg = 29
aF, and for a zero escape angle (θ = 0).

Capacitance labels C‖ C⊥ CT Cn‖ Cn⊥ C‖⊥

Exact expressions C̄2

C�+α⊥CR

C̄2

C�+α‖CR

C̄2

2C0+CT
2 (1+η2)

C̄2

α‖CT
2

C̄2

(α⊥CT
2 )

C̄2

(α⊥α‖CR )

Approximated expressions 2C0 2C0 CT
1 + CT

2
2C0(CT

2 +CT
1 )

α‖CT
2

2C0(CT
2 +CT

1 )

α⊥CT
2

C̄2

α⊥α‖CR

Numerical values 455.6 fF 455.1 fF 2.90 fF 653.0 fF 2.252 pF 1.17 nF

where the analytical expressions of the capacitances C‖, C⊥,
CT , Cn‖, Cn⊥, and C‖⊥ are given in Table II. Applying the
standard canonical quantization rules, the classical variables
have been replaced by their corresponding quantum opera-
tors. The conjugate pairs satisfy the following commutation
operations: ⎧⎪⎨⎪⎩

[X̃‖,P̃‖] = −i,

[Ỹ⊥,P̃⊥] = −i,

[ψ̂,n̂] = −i.

(16)

The properties of the Hamiltonian (15) are not trivial.
It governs the quantum dynamics of three subsystems: the
longitudinal and transverse phase oscillations within the dc
SQUID and the charge dynamics of the ACPT. Moreover,
the Hamiltonian describes the dominant coupling between
the different quantum subsystems. Very complex dynamics
can appear in this full circuit. In this paper we mainly
concentrate on the dynamics of the longitudinal SQUID phase
mode and the charge dynamics of the ACPT and as well
as on their coupling. The next section is dedicated to the
study of the dc SQUID Hamiltonian. We will deduce the
simplified Hamiltonian for the longitudinal phase mode and
justify why transverse phase mode can be neglected in this
study.

III. dc SQUID

The dc SQUID potential has already been discussed in
Sec. II E, where we introduced the change of the variables
x and y to the variables X‖ and Y⊥. In this section, we first
analyze the properties of the dc SQUID potential in more
detail. Then, we investigate the Hamiltonian of the dc SQUID
which is equivalent to that of a fictitious particle trapped in
one of the wells of the potential. We will see under which
conditions the dc SQUID behaves as a phase qubit. In this
section, the coupling between the SQUID and the ACPT will
be ignored such that we can consider the dc SQUID as an
independent element.

A. dc SQUID potential

For an appropriate choice of bias parameters, i.e., the bias
current Ib and the flux �S , the SQUID potential contains wells
that can be regrouped in families [f ].28 The index f for the
family [f ] is related to the number f of flux quanta trapped in
the dc SQUID loop. The wells of the same family are located
along the direction x, periodically spaced by a distance 2π ,

and separated by saddle points. Since these wells have exactly
the same geometry, the physical properties of the SQUID
are independent of the particular well in which the fictitious
particle is localized. Wells of the family [f ] exist only if the
bias current satisfies the relation I−

c [f ] < Ib < I+
c [f ], where

I+
c [f ] and I−

c [f ] are the positive and negative critical current
of the family [f ], respectively. When Ib = I±

c [f ], the local
minima of the wells of the family [f ] and their closest saddle
points coincide. The critical currents depend strongly on the
flux �S as shown in Fig. 4 for the experimental parameters
of the circuit studied in Ref. 17. Here, for a given flux, the
absolute values of the critical currents I+

c [f ] and I−
c [f ] are

different. This difference originates from the finite inductance
asymmetry of the dc SQUID (η = 0.28) and disappears when
η = 0. For almost any value of the flux, the potential is
characterized by a unique family of wells, except in the region
close to ±�0/2 where two families can coexist. This specific
region has been investigated recently in order to study the
double escape path of the particle, as well as to make the
SQUID insensitive in first order to current fluctuations.13 In
the following we will discuss the Hamiltonian of the dc SQUID
for the case where the fictitious particle is trapped in one of
the wells of the potential.

B. Hamiltonian of the dc SQUID

In the full Hamiltonian (15) of the coupled circuit,
we isolate the terms which only contain the operators
X̃‖ and Ỹ⊥ and their conjugate momenta P̃‖ and P̃⊥.
These terms constitute the Hamiltonian of the dc SQUID

FIG. 4. (Color online) Critical current Ic[f ] for well family [f ]
as a function of the flux �S .
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which takes the form

ĤS = E
‖
CP̃ 2

‖ + 1

2
k‖X̃2

‖ + σ̃‖X̃3
‖

+E⊥
C P̃ 2

⊥ + 1

2
k⊥Ỹ 2

⊥ + σ̃⊥Ỹ 3
⊥

+βaỸ
2
⊥X̃‖ + βbỸ⊥X̃2

‖ + (2e)2

C‖⊥
P̃‖P̃⊥, (17)

with the charging energies E
‖
C = (2e)2/(2C‖) and E⊥

C =
(2e)2/(2C⊥). The first three terms correspond to the Hamilto-
nian of a fictitious particle of mass m = φ2

0C‖ which is trapped
in an anharmonic potential along the longitudinal direction X‖.
These terms govern the dynamics of an anharmonic oscillator
of characteristic frequency νp = √

k‖/m/(2π ). The next three
terms correspond to the Hamiltonian of a fictitious particle of
mass m⊥ = φ2

0C⊥ which is trapped in an anharmonic potential
along the orthogonal direction X⊥. These terms control
the dynamics of an anharmonic oscillator of characteristic
frequency ν⊥ = √

k⊥/m⊥/(2π ). The anharmonicity of the
two oscillators is due to the cubic term which results from
the nonlinearity of the JJ. The last three terms of the dc
SQUID Hamiltonian mix the operators of the two oscillators
and consequently couple them. Finally, the two-dimensional
dynamics of the SQUID is similar to the dynamics of
two coupled, one-dimensional oscillators. We proceed by
introducing the following dimensionless operators: X̂‖ =√

hνp/2E
‖
CX̃‖, P̂‖ = −

√
2E

‖
C/hνpP̃‖, Ŷ⊥ =

√
hν⊥/2E⊥

C Ỹ⊥,

and P̂⊥ = −
√

2E⊥
C /hν⊥P̃⊥, which verify the commutation

relations [X̂‖,P̂‖] = i and [X̂⊥,P̂⊥] = i. With these new
operators, the dc SQUID Hamiltonian can be rewritten as

ĤS = 1
2hνp(P̂ 2

‖ + X̂2
‖) − σhνpX̂3

‖
+ 1

2hν⊥(P̂ 2
⊥ + Ŷ 2

⊥) − σ⊥hν⊥Ŷ 3
⊥

+hν∗
a Ŷ 2

⊥X̂‖ + hν∗
b Ŷ⊥X̂2

‖ + hν∗
c P̂⊥P̂‖, (18)

where the parameters σ and σ⊥ correspond to the relative
amplitude of the cubic term compared to the quadratic term
and hence are direct measure of the degree of anharmonicity of
the oscillators. The energies hν∗

a , hν∗
b , and hν∗

c are the coupling
energies between the two oscillators.

Hereafter, we suppose that the particle is trapped in one of
the wells of the family [0]. The geometry of this well varies as
a function of the bias point (Ib,�S) of the circuit but does not
change with the gate voltage Vg and the flux �T . Therefore,
the different parameters of the dc SQUID Hamiltonian only
depend on Ib and �S . Figure 5 shows numerical calculations
of the parameters of the Hamiltonian under various biasing
conditions, using the experimental parameters of the circuit

studied in Ref. 17 (see Appendix B). Figures 5(a) and 5(b)
show the dependence of the transverse (νp) and orthogonal
(ν⊥) frequencies as a function of the bias point. Generally,
the frequency ν⊥ is always higher than 35 GHz and is at
least twice higher than νp. The frequency νp tends toward
zero when the bias point approaches the critical current line.
Figures 5(c)–5(e) show the dependence of the parameters of
the Hamiltonian as a function of the flux �S for a fixed bias
current of 1.89 μA. Figure 5(d) shows the two anharmonicity
parameters of the two oscillators. The anharmonicity σ is
typically ∼3% and increases close to the critical current line.
The parameter σ⊥ is very small regardless of the bias, which
leads to us to the conclusion that the orthogonal oscillator
can be considered as a harmonic one. Figure 5(e) shows the
different coupling energies. The coupling frequency ν∗

c is of
the order of 10 MHz and depends only weakly on �S . The
coupling frequencies ν∗

a and ν∗
b are generally much higher than

ν∗
c and depend on �S . Note that ν∗

b vanishes close to �S = 0
and ν∗

a is always negative. Numerical values of the parameters
of the Hamiltonian, for �S = 0.1 �0 and Ib = 1.89 μA, are
given in Table III. The energy �U of the potential barrier
[Fig. 5(g)] corresponds to the energy which separates the
local minimum of the well from its closest saddle point. This
energy is not a parameter of the dc SQUID Hamiltonian (18).
Nevertheless, if �U is sufficiently small, typically on the order
of νp, expression (18) of ĤS is too simplified. This occurs when
the bias point is close to the critical current line. One should
then take into account the coupling of the quantum levels inside
the well to those outside the well. Note that this coupling is
responsible of the escape of the particle from the well.30,31 This
coupling will be neglected in the following, assuming that the
particle is always trapped in a sufficiently deep well.

As ν⊥  ν‖, the quantum dynamics of the transverse
oscillator is much faster than that of the longitudinal oscillator.
We will assume in the following that the transverse oscillator is
always in its ground state. It allows us to replace in ĤS (18) the
operators of the transverse oscillator by their average values
given by 〈Ŷ⊥〉 = 0, 〈Ŷ 2

⊥〉 = 1/2, and 〈P̂⊥〉 = 0. Only one of
the three coupling terms remains after this simplification. The
coupling reads hν∗

a X̂‖/2 and can be seen as a modification
of the bias current Ib of less than 0.5 nA. This term will be
neglected in the following. Under this condition, the dynamics
of the particle along the longitudinal direction is given by the
Hamiltonian

ĤS = 1
2hνpw(P̂ 2

‖ + X̂2
‖) − σhνpX̂3

‖. (19)

In the following, the energy spectrum of the dc SQUID will
be studied, using this simplified Hamiltonian.30 We denote by
|n〉 and En the eigenstates and the associated eigenenergies

TABLE III. Numerical values of the parameters of the dc SQUID Hamiltonian at the working point �S = 0.1 �0 and Ib = 1.89 μA,
calculated using the experimental parameters of the circuit studied in Ref. 17.

Longitudinal oscillator Transverse oscillator Coupling

νp σ ν⊥ σ⊥ ν∗
a ν∗

b ν∗
c

16.24 GHz 3.4 % 38.26 GHz −0.006 % −612 MHz −348 MHz 12 MHz
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FIG. 5. (Color online) Numerical calculations of the parameters of the dc SQUID Hamiltonian (17), using the experimental parameters of
the circuit studied in Ref. 17. The fictitious particle associated to the SQUID is trapped in a potential well of the family [0]. (a) Frequencies of
the transverse and (b) orthogonal oscillators, i.e., νp and ν⊥, respectively, as a function of the flux �S and the bias current Ib. The black line
shows the measured switching current of the dc SQUID from Ref. 29, which is close to the critical current. (c) Frequencies νp and ν⊥ as a
function of �S for Ib = 1.89 μA, i.e., for the bias points located on the dashed line of (a) and (b). Measured frequencies νS from Ref. 29 are
shown as red points. (d) Anharmonicity parameters σ and σ⊥ of the longitudinal and orthogonal oscillators, respectively, as a function of �S

for Ib = 1.89 μA. (e) Different coupling frequencies ν∗
a , ν∗

b , and ν∗
c between the two oscillators associated with the terms in Ŷ 2

⊥X̂‖, Ŷ⊥X̂2
‖ , and

P̂⊥P̂‖ of ĤS (17). (f) Energy �U for the potential barrier as a function of φS for Ib = 1.89 μA.

of ĤS , respectively, such that ĤS |n〉 = En|n〉, where n is an
integer number larger or equal to zero. If the anharmonicity is
weak (σ 
 1), the energies En are given by a straightforward
perturbative calculation and we find En = (n + 1/2)hνp −
15/4σ 2(n + 1/2)2hνp. Figure 6 shows the approximate poten-
tial of the dc SQUID and the three first eigenenergies. When
the anharmonicity of the dc SQUID is sufficiently large, the
dynamics of the dc SQUID in the presence of an external
microwave perturbation involves only the two first levels |0〉
and |1〉.27 In that case, the dc SQUID behaves as a qubit.
Since for the dc SQUID the Josephson energy is much larger
than the charging energy, the fluctuations of the phase X̃‖ are
much smaller than those of the charge P̃‖. For this reason, the

dc SQUID is referred to as a phase qubit.13 The dc SQUID
Hamiltonian can be rewritten in the basis (|1〉,|0〉), using the
Pauli matrices (see Appendix D), as ĤS = hνs/2σS

z , where
νS ≡ (E1 − E0)/h is the characteristic qubit frequency. The
frequency νS can be approximated in first order with respect
to the anharmonicity σ as hνS = hνp[1 − (15/2)σ 2]. We see
that the frequency νS equals the plasma frequency νp if the dc
SQUID anharmonicity is zero and decreases with increasing
anharmonicity [see Fig. 5(c)]. When the anharmonicity σ is
zero, the dc SQUID behaves as a harmonic oscillator described
by the typical Hamiltonian ĤS = hνp(ââ† + 1/2), where â†

and â are the one-plasmon creation and annihilation operators,
respectively.
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FIG. 6. Approximate one-dimensional potential of the dc SQUID
in the direction X‖. Eigenenergies of the first quantum states |0〉, |1〉,
and |2〉.

IV. ASYMMETRIC COOPER PAIR TRANSISTOR (ACPT)

The dc SQUID Hamiltonian is only one of the terms that
appear in the full Hamiltonian of the circuit. It is coupled
to a second term associated with the ACPT. This section is
dedicated to the theoretical analysis of the ACPT Hamiltonian,
neglecting its coupling with the dc SQUID. We will first build
and analyze the ACPT Hamiltonian and will show that the
ACPT can be viewed as a charge qubit. We will then describe
the ACPT by using only two charge states. The errors on the
level of the eigenenergies and the eigenstates induced by this
simplified description will be estimated.

A. ACPT Hamiltonian

The ACPT Hamiltonian is identified by isolating from the
full Hamiltonian of the circuit (15), the terms which only
contain the operators ψ̂ and n̂. After some straightforward
algebra, the ACPT Hamiltonian reads

ĤACPT = ET
C (n̂ − ng)2 − ET

J cos(δ/2) cos(ψ̂ − δ/2)

+μ sin(δ/2) sin[ψ̂ − δ/2)], (20)

where ET
J ≡ ET

J1 + ET
J2 and ET

C ≡ (2e)2/(2CT ) are the
Josephson and charging energies of the ACPT, respectively.
It is the generalization of the quantronium Hamiltonian15

for which asymmetries in critical current and capacitance of
the Cooper pair transistor were neglected. The gate charge
ng ≡ CgVg/(2e) corresponds to the number of Cooper pairs
induced by the voltage applied to the gate capacitance. The
charge states |n2e〉 are the eigenvectors of the charge operator n̂,
such n̂|n2e〉 = n|n2e〉, where n = 0, ± 1, ± 2 . . . is the number
of excess Cooper pairs on the transistor island. Using the
commutation relation [ψ̂,n̂] = i, we identify the action of
the operator eiψ̂ = ∑

n |n2e〉〈(n + 1)2e|, which decreases the
number of Cooper pairs on the island by one unit. In the charge
representation, the ACPT Hamiltonian can be written as

ĤACPT = ET
C (n̂−ng)2− ρj (δ)

2

[ ∑
n

e−i(δ/2+χ)|n2e〉〈(n+1)2e|

+
∑

n

ei(δ/2+χ)|(n + 1)2e〉〈n2e|
]
, (21)

with ET
J /2[cos(δ/2) + iμ sin(δ/2)] ≡ ρj (δ)/2eiχ , tan χ =

μ tan(δ/2), and ρj (δ)2 = ET
J

2
[cos2(δ/2) + μ2 sin2(δ/2)]. The

ACPT Hamiltonian is composed of a charging and a Josephson
term which are proportional to ET

C and ρj (δ), respectively. Let
us focus first on the case of a zero Josephson coupling (ρj = 0).
The eigenstates of the ACPT Hamiltonian are then the charge
states |n2e〉 with the associated eigenenergies ET

C (n − ng)2.
Figure 7 shows the energy spectrum of the ACPT as a function
of ng for a charging energy ET

C = 1.28 K. This spectrum
consists of a series of parabolas, each parabola being associated
with a specific charge state |n2e〉 with a minimum energy for
ng = n. Notice that when the energy difference between the
ground charge state and the first excited charge state is much
larger than kBT , the charge on the island is well quantized lead-
ing to the Coulomb blockade phenomena.32 For ng = 0.5, the
energy parabolas of the states |02e〉 and |12e〉 cross each other
and the states |02e〉 and |12e〉 are degenerate. This degeneracy
is lifted by the Josephson term which couples the neighboring
charge states to each other. The amplitude of this Josephson
coupling is given by ρj . Figure 8 shows the dependence of ρj

on δ for three different Josephson asymmetries. Since ρj is 2π

periodic in δ, the range of δ has been restricted to the interval
between −2π and 2π . In the case of a symmetric transistor
(μ = 0), the Josephson coupling is maximum for δ = 0, equal
to ET

J ; it is zero at δ = ±π . For a finite asymmetry μ, the
Josephson coupling reaches a maximum for δ = 0 and equals
ET

J , and a minimum equals to μET
J for δ = ±π . For a Cooper

pair box (μ = ±100%), the Josephson coupling does not
depend on δ and remains equal to ET

J . The Josephson coupling
then depends strongly on the Josephson asymmetry, especially
for δ = ±π , where it can vary from zero to ET

J . The full energy
spectrum of the ACPT, which takes into account the Josephson
coupling, is calculated numerically by diagonalizing the
Hamiltonian (21) with eight charge states. It is plotted as a
function of ng in Fig. 7 for a fixed superconducting phase δ = 0
and for the parameters of Ref. 17: ET

C = 1.28 K, ET
J = 1.01 K

and μ = −41.6%. The spectrum consists of several energy
bands which do not cross each other, leading to an energy
gap between the lowest and the first bands. We associate with
these two bands the ground state |−〉 and the first excited state
|+〉, respectively. These two states correspond to the states of
a qubit, with a characteristic energy hνT . Note that to operate
the ACPT as a qubit, the gate charge should be close to 0.5
(modulo 1) where the transition energy from the state |+〉 to the
third level is higher than the frequency νT . Indeed, when the
ACPT Hamiltonian (21) is subject to an adequate perturbation,
the quantum dynamics of the ACPT will only involve the states
|−〉 and |+〉. Because ET

J > ET
C , the states |−〉 and |+〉 can

be written as a superposition of a few charge states (typically
four). For this reason, the qubit formed by the ACPT is referred
to as a charge qubit. The Hamiltonian of the charge qubit can
be written using the Pauli matrix (see Appendix D) as

hνT

2
σ̂ T

z . (22)

The frequency νT of the charge qubit depends on the two
parameters δ and ng as shown in Fig. 9(a). This frequency, as
is ρj , is also 2π periodic as a function of δ. It is maximum
and minimum at the points (δ = 0,ng = 1/2) and (δ = π ,ng =
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FIG. 7. (Color online) Energy spectrum of the ACPT as a function
of ng in the case of a zero Josephson coupling (dashed lines) and in
the case of ρj (δ = 0) = 21.08 GHz (full lines). These energy spectra
have been calculated numerically, using the parameters from Ref. 17:
ET

J = 21.08 GHz, ET
C = 26.76 GHz, and μ = −41.6%. The states

|−〉 and |+〉 associated to the two lowest-energy bands correspond to
the states of the charge qubit.

1/2), respectively. These are optimal points where the ACPT
is, in first order, insensitive to charge, flux and current
fluctuations. Figure 10 shows the experimental frequency of
the charge qubit measured in Ref. 17 as a function of δ. The
theoretical fit, shown in red, is obtained by diagonalizing the
ACPT Hamiltonian (21) in a basis of eight charge states. It
allows us to accurately find the parameters of the charge qubit,
i.e., the Josephson energy ET

J = 21.08 GHz, the charging
energy ET

C = 26.76 GHz, and the Josephson asymmetry μ =
−41.6%. Nevertheless, the capacitance asymmetry can not be
extracted from the fit since it does not enter in the ACPT
Hamiltonian (21). The Josephson energy and the capacitance
of a JJ of the ACPT are both proportional to the junction surface
and, therefore, the capacitance and Josephson asymmetries
are equal in first approximation. We will see in Sec. V that
the capacitance asymmetry can be extracted from the coupling
between the dc SQUID and the ACPT and we will find
λ = 0.875μ.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

δ/π

ρ j/E
JT

μ = 0 %

μ = 41.5 %

μ = 100 %

FIG. 8. (Color online) Josephson coupling ρj as a function of
the superconducting phase δ across the ACPT, for three different
Josephson asymmetries: μ = 0 for a symmetric transistor, μ =
−41.5% for an asymmetric transistor, and μ = 100% for a Cooper
pair box.

FIG. 9. (Color online) (a) Frequency νT of the charge qubit as
a function of ng and δ for the experimental parameters of Ref. 17:
ET

C = 1.28kB K, ET
J = 1.01kB K, and μ = −41.6%. (b) Frequency

νT as a function of ng for δ = 0, δ = ±π/2, and δ = π .

B. Description of the ACPT with two charge levels

If the Josephson coupling ρj is much smaller than the
charging energy ET

C and if ng ≈ 0.5, the qubit states can be
expressed as a superposition of the two charge states |02e〉 and
|12e〉. In that case, the Hamiltonian of the transistor is simply
given by its matrix form Ĥ 0

ACPT, which reads, in the charge
basis (|02e〉,|12e〉),

Ĥ 0
ACPT =

(
ET

Cn2
g −ρje

−i(δ/2+χ)/2

−ρje
i(δ/2+χ)/2 ET

C (1 − ng)2

)
. (23)

The eigenvalues of this simplified Hamiltonian are given by

E0
± = 1

2ET
C [n2

g + (1 − ng)2] ± 1
2

√
ET

C

2
(1 − 2ng)2 + ρ2

j , and

the qubit energy reads hν0
T = E0

+ − E0
−. Note that for ng =

0.5, we have hν0
T = ρj . The eigenstates |−0〉 and |+0〉,

associated with the energies E− and E+, can be written as
a function of the charge states as{

|+0〉 = α∗|02e〉 + β|12e〉,
|−0〉 = −β∗|02e〉 + α|12e〉,

(24)
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FIG. 10. (Color online) Frequency νT as a function of the phase
δ. The points are the experimental data from Ref. 17. The solid
curve is the theoretical frequency νT calculated by diagonalizing the
ACPT Hamiltonian (21) with the parameters ET

J = 21.08 GHz, ET
C =

26.76 GHz, and μ = −41.6%. Inset: Frequency νT as a function of
ng for δ = 0.549π . The points are the experimental frequencies νT

and the solid line is the theoretical frequency νT calculated as before.

with α = cos(θ/2)ei(δ/2+χ−π)/2, β = sin(θ/2)ei(δ/2+χ−π)/2,
and tan θ = − 2|ρj |

ET
C (1−2ng )

(θ ∈ [0,π ]).

For the ACPT studied experimentally in Ref. 17, the
condition ρj (δ) 
 ET

C is too strong, especially at δ = 0 where
the ratio ρj/E

T
C ≈ 79% is maximum. For this reason, we

would like to quantify the error induced by the description
of the ACPT with only two charge states. Let us first focus on
the error in the qubit energy. Figure 11 shows the difference
between the frequencies ν0

T calculated with two charge states
and the real frequency νT as a function of δ for ng = 0.5.
This difference is minimum for δ = ±π and equals 58 MHz,
corresponding to an error in energy of 0.5%. For δ = 0, the
difference is maximum and equals 780 MHz, corresponding
to an error in energy of 3.8%.

We now discuss the error made on the level of the states

|−0〉 and |+0〉. The nonreduced Hamiltonian of the ACPT can
be rewritten as a function of Ĥ 0

ACPT as ĤACPT = Ĥ 0
ACPT + Ŵ ,

where Ŵ is a perturbative term which takes the form

Ŵ = −ρj (δ)

2

∑
n�=0

[e−i(δ/2+χ)|n〉〈n + 1| + ei(δ/2+χ)|n + 1〉〈n|]

+ET
C

∑
n�={0,1}

(n − ng)2|n〉〈n|.

Using first-order perturbation theory, we calculate the prob-
ability |〈−0|−〉|2 (|〈+0|+〉|2) that the state |−〉 (|+〉) is in
the the state |−0〉 (|+0〉). Figure 11 shows the dependence
of these probabilities as a function of δ for ng = 0.5. The
probability |〈−0|−〉|2 is always smaller than the probability
|〈+0|+〉|2. Indeed, the energy of the state |+0〉 is closer
to the charging energies of the states | − 12e〉 and |22e〉
and consequently more perturbed by these two states. The
probabilities are minimum for δ = 0 (|〈−0|−〉|2 = 97.4% and
|〈−0|−〉|2 = 94.7%) and, therefore, for this value of the phase,
the error made by considering the states of the ACPT as |−0〉
and |+0〉 is maximum. Figure 11 shows the dependence of the
probabilities |〈−0|−〉|2 and |〈+0|+〉|2 as a function of the ratio

FIG. 11. (Color online) Errors in the energies and states of the
charge qubit of Ref. 17 induced by describing it with only two charge
states. (a) Difference between the qubit frequency ν0

T calculated with
two charge states and its real frequency νT as a function of δ for
ng = 0.5. (b) Probabilities |〈−0|−〉|2 (black) and |〈+0|+〉|2 (blue) as
a function of δ for ng = 0.5.

ET
J /ET

C for δ = 0. Theses probabilities have been calculated
with a first-order perturbation theory and also numerically
by using eight charge states. We see that when ET

J /ET
C < 1,

the first-order perturbation theory agrees quite well with the
numerical simulations. But when ET

J /ET
C > 1, the analytical

calculation gives probabilities significantly lower than the
numerical one. The probabilities |〈−0|−〉|2 and |〈+0|+〉|2
decrease with increasing ET

J /ET
C , which is explained by the

fact that the Josephson coupling mixes more and more the
charge states |02e〉 and |12e〉 with the other, closer-in-energy
charge states. In order to simplify the calculation of the
analytical expression of the coupling (see below), we consider
in the following that |−〉 = |−0〉 and |+〉 = |+0〉, but do not
approximate the qubit frequency to ν0

T .

V. COUPLING

So far, we have considered independently the Hamiltonian
of the longitudinal mode of the dc SQUID and the ACPT.
However, in the studied circuit the dc SQUID and the ACPT
are connected in parallel and therefore coupled to each other.
The independence of the ACPT and the dc SQUID has to
be reconsidered especially when the two qubits are close to
resonance (νS ≈ νT ). In this case the coupling effects are
the strongest. In this section, we derive the expression of the
coupling Hamiltonian by considering the ACPT as a charge
qubit and the dc SQUID as either a tunable harmonic oscillator
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FIG. 12. (Color online) Probabilities |〈−0|−〉|2 (black) and
|〈+0|+〉|2 (blue) as a function of the ratio ET

J /ET
C for ng = 0.5 and

δ = 0. Numerical calculations of these probabilities (full lines) are
compared with first-order perturbation calculations (dashed lines).
The vertical dashed line indicates the values of these probabilities at
the ratio ET

J /ET
C = 79% corresponding to those of the ACPT studied

in Ref. 17.

or a phase qubit. We will see that the total coupling is the sum
of two distinct contributions: a capacitive and an inductive
Josephson coupling.

A. Capacitive coupling

The capacitive coupling Hamiltonian couples by definition
the charge of the dc SQUID with that of the ACPT. It reads

ĤCoupl,Capa = − (2e)2

Cn‖

√
hνp

2E
‖
C

P̂‖(n̂ − ng). (25)

We consider hereafter two different limits for the dc SQUID
in order to simplify this capacitive coupling Hamiltonian.

The first limit corresponds to a dc SQUID with an anhar-
monicity factor σ equal to zero. This limit can be achieved
when the fictitious particle associated with the dc SQUID is
trapped in a deep well, which is generally true when the dc
SQUID is biased at the working point Ib = 0 and �S = 0.
Under this condition, the dc SQUID behaves as a harmonic
oscillator and several levels are involved in the dynamics. The
momentum operator in the charge coupling Hamiltonian is
then given by P̂‖ = (â† + â)/

√
2, where â† and â are the one-

plasmon creation and annihilation operators. If we describe the
charge qubit with two charge states [Eq. (24)], the operator n̂

can be written as n̂ = 1
2 Î + 1

2 sin(θ )σ̂ T
x − 1

2 cos(θ )σ̂ T
z , where

Î is the identity operator and σT
x and σT

y are the Pauli
matrices defined in the eigenstate basis of the charge qubit.
For ng = 1/2, we have θ = π/2 and the charge coupling
Hamiltonian simplifies to

ĤCoupl,Capa = −Ec,c(â† + â)σ̂ T
x , (26)

where Ec,c = e2
√

hνp/E
‖
C/Cn‖ determines the strength of the

capacitive coupling.
The second limit is realized when the anhamonicity σ is

typically ∼3% or larger; then the dc SQUID can be described
as a phase qubit. Generally, σ does not exceed 10% [see
Fig. 5(d)] so the two lowest eigenstates of the dc SQUID

Hamiltonian are very close to the two lowest eigenstates of the
harmonic oscillator. Consequently, the momentum operator
can be expressed in terms of the eigenbasis of the phase
qubit as P̂‖ ≈ (|0〉〈1| + |1〉〈0|)/√2 = σ̂ S

x /
√

2. For ng = 1/2,
the charge coupling Hamiltonian takes the following form:

ĤCoupl,Capa = −Ec,cσ̂
S
x σ̂ T

x . (27)

The capacitive coupling produces a transverse interaction
between the two quantum systems. This coupling was already
discussed in Refs. 33 and 34 where a Cooper pair box was
coupled to a harmonic oscillator. The capacitive coupling is
vanishing in the limit of small CT

2 . We notice also that Ec,c

depends on the bias variables through
√

νp and therefore is
weakly tunable.

B. Josephson coupling

The Josephson coupling Hamiltonian couples the phases
X̂‖ and ψ̂ associated with the dc -SQUID and the transistor,
respectively. This coupling is mediated via the JJ 2 of the
ACPT and reads

ĤCoupl,Jos = −ET
J2α‖

√
2E

‖
C

hνp

X̂‖ sin(ψ̂ − δ). (28)

We derive now the expression of the Josephson coupling
Hamiltonian for the two different limits of the dc SQUID.
When the dc SQUID is in the harmonic oscillator limit, the
position operator can be written as X̂‖ = i(â − â†)/

√
2. On

the other hand, close to ng = 1/2, the operator sin(ψ̂ − δ)
takes the following form in the charge basis: sin(ψ̂ − δ) =
i
2 (eiδ|12e〉〈02e| − e−iδ|02e〉〈12e|). Using Eq. (24), the Joseph-
son coupling Hamiltonian becomes

ĤCoupl,Jos = −iEc,j (â − â†)
{

sin(δ/2 − χ )
[

sin(θ )σ̂ T
z

+ cos(θ )σ̂ T
x

] − cos(δ/2 − χ )σ̂ T
y

}
, (29)

where Ec,j = α‖/2ET
J2

√
E

‖
C/hνp quantifies the strength of the

Josephson coupling. For ng = 0.5, we have θ = π/2 and the
Josephson coupling Hamiltonian reduces to

ĤCoupl,Jos = iEc,j (â − â†)
[

cos(δ/2 − χ )σ̂ T
y

− sin(δ/2 − χ )σ̂ T
z

]
. (30)

In the limit of finite anharmonicity σ , the dc SQUID
can be approximated by a two-level system. In that case,
the position operator can be written in the eigenbasis of the
phase qubit as X̂‖ ≈ i(|0〉〈1| − |1〉〈0|)/√2 = σ̂ S

y /
√

2. Using
the latter expression, the Josephson coupling between the
charge and phase qubits takes the following form for ng = 1/2:

ĤCoupl,Jos = Ec,j cos(δ/2 − χ )σ̂ S
y σ̂ T

y

−Ec,j sin(δ/2 − χ )σ̂ S
y σ̂ T

z . (31)

The Josephson coupling contains two different terms. One
describes a transverse coupling σ̂ S

y σ̂ T
y or (â − â†)σT

y , which
gives rise to coherent energy exchange at the resonance
between the charge qubit and the phase qubit (or the oscillator).
The effects of this first term on the quantum dynamics of the
circuit are similar to those produced by the capacitive coupling
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term in σ̂ S
x σ̂ T

x or (â − â†)σT
x . The second term σ̂ S

y σ̂ T
z or

(â − â†)σT
z contains a transverse contribution for the SQUID

and a longitudinal term which depends on the transistor qubit
state. Its contribution will explain the quantum measurement
of the charge qubit in the νS 
 νT limit (see Sec. VI C). We
notice finally that the two terms are strongly tunable with the
bias parameter δ.

VI. ANALYSIS OF THE COUPLED CIRCUIT
HAMILTONIAN

The full Hamiltonian of the coupled circuit is given by
the sum of the Hamiltonians of the dc SQUID, the ACPT
and the coupling. It reads Ĥ = ĤS + ĤACPT + ĤCoupl,Capa +
ĤCoupl,Jos. In order to simplify this Hamiltonian, we consider
hereafter the situation where the gate-charge is fixed to ng =
0.5. This charge value has been mainly used for the charge
qubits experiments (see Refs. 15 and 35). Indeed, at ng =
0.5, the charge qubit is insensitive in first order to charge
noise and, therefore, its coherence time is longer. We will first
derive the expression of the full Hamiltonian when the two
quantum systems are close to the resonance condition. We will
consider the dc SQUID either as a phase qubit or as a harmonic
oscillator. Finally, we will discuss the quantum measurement
scenario of the transistor states. Its principle derives from the
coupling to the SQUID, enabling to use it as a detector of the
charge qubit state.

A. A charge qubit coupled to a phase qubit

We first consider the dc SQUID as a phase qubit such
that the full Hamiltonian governs the quantum dynamics of
two-coupled qubits. Using the expressions of the Josephson
and capacitive coupling in that limit, we find

Ĥ = hνS

2
σ̂ S

z + hνT

2
σ̂ T

z − Ec,cσ̂
S
x σ̂ T

x

+Ec,j cos(δ/2 − χ )σ̂ S
y σ̂ T

y − Ec,j sin(δ/2 − χ )σ̂ S
y σ̂ T

z .

(32)

Let us introduce the raising operators σ̂ T
+ and σ̂ S

+ and the
lowering operators σ̂ T

− and σ̂ S
−. These operators are defined

by σ̂ T
± ≡ (σ̂ T

x ± iσ̂ T
y )/2 and σ̂ S

± ≡ (σ̂ S
x ± iσ̂ S

y )/2. The terms
σ̂ S

x σ̂ T
x and σ̂ S

y σ̂ T
y can be written using the four products σ̂ S

+σ̂ T
− ,

σ̂ S
−σ̂ T

+ , σ̂ S
+σ̂ T

+ , and σ̂ S
−σ̂ T

− , whereas the term σ̂ S
y σ̂ T

z is a function
of the operators σ̂ S

+σ̂ T
z and σ̂ S

−σ̂ T
z .

The product σ̂ S
+σ̂ T

− corresponds to an excitation of the phase
qubit and deexcitation of the charge qubit. This coupling term
mediates the transition between the states |0,+〉 and |1,−〉.
This transition is only relevant close to resonance, where it
contributes to the low-frequency dynamics of the coupled
system. Far away from resonance, this term gives rise to
high-frequency dynamics (frequencies of the order of νS and
νT ) which is averaged away on the typical time scales of
the experiment.17 The rotating-wave approximation consists
in neglecting these nonresonant terms, called also inelastic
terms. The previous reasoning applied to the term σ̂ S

−σ̂ T
+ leads

to the same result. The products σ̂ S
+σ̂ T

+ and σ̂ S
−σ̂ T

− couple the
states |0,−〉 and |1,+〉. The transition between these two states

leads to high-frequency dynamics and are neglected hereafter.
For the same reason, the coupling term σ̂ S

y σ̂ T
z will be ignored.

Finally, close to the resonance, the full Hamiltonian simplifies
to

Ĥ = hνS

2
σ̂ S

z + hνT

2
σ̂ T

z − g

2
(σ̂ S

+σ̂ T
− + σ̂ S

−σ̂ T
+ ), (33)

where the coupling strength g is given by g = 2Ec,c −
2Ec,j cos(δ/2 − χ ). We assume hereafter that the gate ca-
pacitance Cg 
 CT

2 and CT
1 
 C0, which is true for the

measured circuits in Refs. 15 and 17. In these limits, we have
Cn‖ ≈ 2C0(CT

2 + CT
1 )/(α‖CT

2 ). The coupling energy can then
be written as a function of the capacitance (λ) and Josephson
(μ) asymmetries of the ACPT as

g = α‖
2

√
E

‖
C

hνp

[
(1 + λ)hνp − (1 + μ)ET

J cos(δ/2 − χ )
]
.

(34)

Further simplification of the coupling energy can be obtained
using the fact that the charge qubit is described with two
charge states, and that the SQUID has a zero anharmonicity.
Then, the transistor frequency is related to δ by νT =
(ET

J /h)[cos2(δ/2) + μ2 sin2(δ/2)]1/2 (see Sec. IV B) and we
have νp = νS . By using these relations, the coupling g (34)
can be rewritten as

g= α‖
2

√
E

‖
C

νS

[
(1+λ)νS −(1+μ)νT

(
cos2(χ )+ sin2(χ )

μ

)]
.

(35)

Note that coupling g depends strongly on the bias parameters,
via the phase δ and the frequency νS . Therefore, the proposed
circuit presents an intrinsic tunable coupling between a charge
and a phase qubit, which we will analyze in more detail in
Sec. VII. This transverse coupling enables to realize two-qubit
gates operation as, for example, the

√
iSWAP operation.36

Indeed gate operations can take advantage of the tunability
of the energy and the coupling strength of the qubits. The
single-qubit operation should be realized in the weak-coupling
regime at the optimal point of the ACPT (δ = 0,ng = 1/2)
and along the optimal line of the phase qubit (Ib = 0). The
two-qubit gate operations should be realized at the working
point ng = 1/2 and in the vicinity of δ = π . At this working
point, the entangled system is insensitive to charge noise. In
addition, the coupling strength is maximal enabling fast qubit
operation.

B. A charge qubit coupled to a tunable harmonic oscillator

The Hamiltonian (33), which governs the dynamics of two
coupled qubits, is valid if the second and highest levels of the
dc SQUID do not participate in the quantum dynamics of the
circuit. This is the case when the anharmonicity of the SQUID
is sufficiently strong. In the limit of zero anharmonicity, the
Hamiltonian of the coupled circuit is described by the Jaynes-
Cummings Hamiltonian37

Ĥ =hνp

(
ââ†+ 1

2

)
+ hνT

2
σ̂ T

z − g

2
(â†σ̂ T

− +âσ̂ T
+ ). (36)
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This Hamiltonian (36) is very similar to the one obtained
by coupling a charge38 or a transmon39 or phase qubit40

to a coplanar waveguide cavity. In our circuit the resonator
is realized by a micro dc SQUID. It can be viewed as
a “microresonator” that is more convenient for integration
than the usual coplanar resonators since its size ranges in a
micrometer scale three orders of magnitude smaller. Moreover,
its resonance frequency is strongly tunable. However, up to
now it suffers from a much shorter coherence time.

C. Quantum measurements of the charge qubit by the dc
SQUID

Our theoretical analysis introduces two different kinds of
coupling which can be used to perform quantum measurements
of the charge qubit by the dc SQUID. Here we will apply
this analysis to the quantronium readout15 and the adiabatic
quantum transfer method used in Ref. 17.

1. Quantronium readout

This readout is obtained in the limit where νT  νS . As
we will see, even if the qubits are far from resonance, the
coupling still affects the dynamics of the circuit. Indeed, since
the dynamics of the ACPT is much faster than the dc SQUID
dynamics, the dc SQUID is only sensitive to the average value
of the ACPT operators. After some straightforward algebra,
the effective Hamiltonian of the dc SQUID takes the following
form:

Ĥ
|±〉
S,eff = ĤS − CT

Cn‖

∂E|±〉
∂ng

P̃‖ + α‖
∂E|±〉
∂δ

X̃‖, (37)

with E|+〉 and E|−〉 the eigenenergies of the ACPT associated
with the states |+〉 and |−〉. For ng = 0 or ng = 1/2, we have
∂E|±〉/∂ng = 0 and the SQUID Hamiltonian simplifies to

Ĥ
|±〉
S,eff = ĤS − φ0I

|±〉
add X̃‖, (38)

where I
|±〉
add ≡ −(α‖/φ0)∂E|±〉/∂δ adds to the bias current Ib

and depends on the state of the ACPT |−〉 or |+〉. For ng = 1/2,
in the limit of two charge states only, the additional current
reads

I
|±〉
add (ng = 1/2) = ± ET

J

2φ0
(1 + μ) sin(δ/2 − χ ). (39)

The currents I
|+〉
add (ng = 1/2) and I

|−〉
add (ng = 1/2) take opposite

values and, therefore, can be used to determine the transistor
state. Figure 13 shows the normalized current I

|−〉
add /(ET

J /2φ0)
for ng = 1/2 as a function of the phase δ for an asymmetric
(μ = 0.42) and a symmetric (μ = 0) transistor and a Cooper
pair box (μ = 1). For a symmetric transistor, the current has
a strong discontinuity at δ = ±π jumping between the two
extreme values −ET

J /2φ0 and ET
J /2φ0. This discontinuity

disappears for a finite Josephson asymmetry; its maximum
value is lower. Naturally, for a Cooper pair box, the additional
current is zero as one of the junctions is replaced by a pure
capacitance.

As the switching probability of the dc SQUID depends
strongly on the bias current30 the additional current Iadd can be
used to detect the ACPT state. For instance, in the quantronium
circuit,15 the state of a symmetric Cooper pair transistor

FIG. 13. (Color online) Effective current I
|−〉
add at ng = 1/2 as a

function of the phase δ for an asymmetric (μ = 0.42) and symmetric
(μ = 0) transistors and a Cooper pair box (μ = 1).

(CPT) is read out by measuring the switching probability of a
Josephson junction placed in parallel with the CPT and which
replaces the dc SQUID in the studied circuit. In that case, the
charge qubit readout is explained by the X̂S

‖ σ̂ T
z term resulting

from the Josephson coupling (28).
Expression (39) of the additional current has been estab-

lished under the condition νT  νS . Is this expression still
valid when νT ≈ νS? In order to answer this question, we
compare experimental data and theoretical predictions for
the difference of the additional currents at ng = 1/2 and
ng = 0 in the ground state of the ACPT. This difference noted
�I−

add ≡ I
|−〉
add (ng = 1/2) − I

|−〉
add (ng = 0) is shown in Fig. 14

as a function of the flux �S . The theoretical curve calculated
without any free parameters agrees well with the experiment
when νT /νS  1, but differs from the experiment when
νT ≈ νS . The measured current amplitude drops when νT is
close to νS , suggesting a drop in the contrast of the quantum
measurement when νT ≈ νS .

2. Adiabatic quantum transfer

In Fig. 15, the first energy levels of the charge and
phase qubit in the coupled circuits are plotted. The quantum
measurement of the charge qubit is performed by a nanosecond
flux pulse which transfers the quantum state |0,+〉 prepared
at the working point (Iwp

b ,�wp
S ) to the measurement point

(Iesc
b ,�esc

S ). At that point the SQUID is very close to the
critical line and the escape probability is finite. Spectroscopy
measurements show clearly the readout of the charge qubit by
this method even in the limit νT ≈ νS . How can we explain
this readout?

The coupling terms σ̂ S
+σ̂ T

− and σ̂ S
−σ̂ T

+ produce an antilevel
crossing, whose amplitude depends on the coupling strength g

[see the inset of Fig. 15(c)]. During a nanosecond flux pulse,
the coupled system remains in its original energy state; as
a result, the quantum state |0,+〉 evolves adiabatically into
the state |1,−〉. Due to a large value of the coupling strength
close to the escape point, Landau-Zener transitions can be
neglected. The final state, i.e., |1,−〉 or |0,−〉, is determined
by the switching measurement.
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FIG. 14. (Color online) (a) Experimental (black squares) and
theoretical (red line) current difference �I

|−〉
add ≡ I

|−〉
add (ng = 1/2) −

I
|−〉
add (ng = 0) as a function of the flux �S (or the phase δ indicated in

the upper scale). (b) Frequencies ratio νT /νS as a function of �S .

VII. TUNABLE COUPLING

In this section, we calculate numerical values of the
coupling strength g, using the circuit parameters of Ref. 17,
and show that the coupling can be tuned over a wide range
with the bias parameters.

FIG. 15. (Color online) Spectroscopies of the phase (blue curve)
and charge (red curve) qubit studied in Ref. 17 at (a) ng = 0.5 and
(b) ng ≈ 1 (νT  νS) for the working point (Iwp

b = 1957 nA, �
wp
S =

−0.064 �0). These spectroscopies are measured with a nanosecond
flux pulse which changes the flux in the SQUID loop from �

wp
S to �esc

S .
(c) Evolution of the qubit frequencies νT and νS during this pulse.
Blue and red points indicate the frequencies νS and νT at the working
point of spectroscopy (a). The inset shows an antilevel crossing in
the energy spectrum where an adiabatic transfer happens during the
flux pulse, the state |1,−〉 (|0,+〉) being transferred to the state |0,+〉
(|1,−〉).

FIG. 16. (Color online) Color plot of the analytical coupling (35)
as a function of the bias current Ib and the flux �S , for the well family
[0] of the dc SQUID. The solid line indicates where the two qubits
are in resonance (νS = νT ).

Figure 16 presents the dependence of the coupling g as a
function of the bias current Ib and the flux �S for the family
[0] of the dc SQUID. We find that the coupling between the
two qubits can be tuned from zero to more than 1.2 GHz. This
on-off coupling is one of the needed requirements to realize
ideally one- and two-qubit gates. In Ref. 17, the coupling g has
been measured at resonance, where the coupling effect on the
qubits is maximal. Far away from resonance, the eigenenergies
of each individual qubit are shifted by the amount g2/4|�|,
where � = hνS − hνT is the detuning. So, if the detuning is
large the coupling can be neglected. The solid line of Fig. 16
shows where the qubits are in resonance and, consequently,
where the coupling can be easily measured by spectroscopy.

Figure 17 shows the dependence of the coupling g as a
function of the phase δ for three different charge qubits:
an asymmetric transistor,17 a symmetric transistor,15 and a
Cooper pair box.35 The coupling has been calculated using
expression (35) at the resonance νS = νT with the parameters
of Ref. 17 and only the ACPT asymmetries have been varied.

FIG. 17. (Color online) Coupling g derived from Eq. (35) as a
function of δ when the two qubits are in resonance (νT = νS) for three
different charge qubits: (red curve) an asymmetric transistor with
λ = μ = −41.6%, (blue curve) a symmetric transistor λ = μ = 0,
and (black curve) a Cooper pair box with λ = −41.6% and μ = −1.
The calculations have been realized by using the parameters of Ref. 17
given in Appendix B.
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FIG. 18. (Color online) (a) Coupling g as a function of δ when the
SQUID and the ACPT are in resonance (νT = νS). The black points
are the experimental couplings measured in Ref. 17. The blue line
is the theoretical coupling calculated from the analytical expression
(35), using the circuit parameters of Ref. 17 and equal Josephson
and capacitance asymmetries μ = λ = −46.6%. The red line is the
numerical coupling for the same circuit parameters. It is calculated by
diagonalizing the full Hamiltonian in the basis of eight charge states
and the first nine harmonic dc SQUID states. The inset shows the
numerical simulations of the eigenenergies of the circuit with (full
curve) and without (dashed curve) coupling from which we extract
the coupling g/h = 251 MHz at δ = 0.5π . (b) Numerical coupling
g as a function of δ when the SQUID and the ACPT are in resonance,
calculated using the circuit parameters used in (a) but with a different
capacitance asymmetry λ = 0.87μ = −36.4%.

For the asymmetric transistor with λ = μ = −41.6%, the
coupling g (red curve) is maximum at δ = ±π where it
equals to 1217 MHz; it becomes zero at δ = 0. In the case
of the symmetric transistor with λ = μ = 0, the coupling

strength reads g = α‖/2
√

E
‖
C/νS(νS − νT ). Consequently, at

the resonance, the coupling between a symmetric transistor and
a SQUID is zero. For a Cooper pair box with ET

J2 = 0 (μ = −1

and λ = −41.6%), the coupling reads g = α‖
2

√
E

‖
ChνS(1 + λ).

This corresponds to the result of Ref. 34. The calculated
coupling g (black curve) does not depend on δ and remains
equal to 514 MHz.

Figure 18(a) shows the dependence of the analytical and
numerical couplings at the resonance as a function of the
absolute value of the phase δ. The numerical simulations
allow us to check the validity of the analytical coupling.
These simulations have been realized by diagonalizing the

full Hamiltonian in the basis of 20 charge states and the
first nine excited states of the dc SQUID in the absence of
anharmonicity. The dc SQUID and ACPT Hamiltonians, as
well as the Josephson and capacitive coupling Hamiltonians,
can all be expressed naturally in these bases. The numerical
coupling is found by calculating the energy spectrum as a
function of δ between −π and π for a fixed frequency νS . The
spectrum is first calculated without the coupling terms in order
to find the two opposite values of δ = ±δr , where the ACPT
and the dc SQUID are in resonance (νS = νT ), i.e., where the
second and third energy bands intersect. In the presence of
coupling, the degeneracy between the eigenstates is lifted and
an antilevel crossing appears with an energy separation equal
to the coupling g at δ = ±δr . As an example, the inset of
Fig. 18(a) shows the energy spectrum for δr = 0.5π with and
without coupling from which we extract g/h = 251 MHz. The
numerical and analytical simulations remarkably give quite
close results, which confirms the validity of the analytical
expression (35). The theoretical coupling is calculated here
without any free parameters by assuming equal Josephson and
capacitive asymmetries (λ = μ = −41.6%). Finally, we note
the good agreement with the experimental coupling measured
in Ref. 17 and shown in black points in Fig. 18. By adjusting the
capacitive asymmetry to λ = −36.4% the numerical coupling
is in perfect agreement with the experiment as shown in
Fig. 18(b).

VIII. CONCLUSION

In conclusion, we have analyzed in detail the Hamiltonian
of a superconducting circuit based on a dc SQUID in parallel to
an asymmetric Cooper pair transistor (ACPT). The Lagrangian
of the circuit was first established from the current conser-
vation equations expressed at each node of the circuit. The
Hamiltonian, deduced from the Lagrangian, is decomposed
in three distinct terms, namely, the dc SQUID, the ACPT,
and the coupling Hamiltonians. We first studied the individual
Hamiltonians of the dc SQUID and the ACPT. Depending
on its anharmonicity, the dc SQUID can be seen either as
a harmonic oscillator or as a phase qubit, whereas the ACPT
behaves as a charge qubit. In addition to the optimal bias points
(δ = 0,ng = 1/2), which was successfully demonstrated in a
symmetric Cooper pair transistor, the ACPT presents a second
optimal point (δ = π,ng = 1/2). At these points, the charge
qubit is insensitive in first order to the charge, flux, and current
noise, and therefore shows a larger coherence time. We found
that the coupling Hamiltonian between the dc SQUID and
the ACPT is made of two different terms corresponding to the
Josephson and the capacitive couplings, which mix phases and
charges of both subcircuits, respectively.

The Hamiltonian of the full circuit was discussed through
two different limits of the dc SQUID. When it behaves as a
harmonic oscillator, the circuit is described by the well-known
Jaynes-Cummings Hamiltonian. The microscopic circuit is
then similar to a two-level atom coupled to a single-mode
optical cavity. Compared to the latter, it offers a better tunabil-
ity, a faster control and readout of the quantum system, and a
good scalability for complex architecture implementation. For
example, a circuit of several ACPT qubit in parallel could be
considered whose quantum information will be mediated by
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the dc SQUID.41 When the anharmonicity of the dc SQUID
is strong, it behaves as a phase qubit. The full circuit is then
described as the coupling of two different class of qubits, i.e., a
phase and a charge qubit. The coupling Hamiltonian contains
terms in σ̂ T

y σ̂ S
y and σ̂ T

x σ̂ S
x which are prominent when the two

qubits are in resonance. These terms allow two-qubit gate
operations as the

√
iSWAP gate. In addition, they enable to

read out the quantum state of the ACPT by a nanosecond flux
pulse as observed in Ref. 17. Indeed, such a pulse produces
an adiabatic quantum transfer of the state |0,+〉 into the
state |1,−〉, i.e., the energy quantum stored in the ACPT is
transferred into the dc SQUID in order to be detected. A
nonresonant term in (â − â†)σ̂ T

z or in σ̂ S
y σ̂ T

z is present in
the Josephson coupling. Although its effect on the energy
spectrum of the circuit is weak, the latter term explains the
charge qubit readout in the limit νT  νS by means of an
effective additional current in the dc SQUID. That readout
method is employed in the quantronium circuit.15

In both limits of the dc SQUID, we demonstrated that the
coupling can be strongly tuned, mainly with the Josephson
coupling term, which has a strong phase δ dependence. It can
be used to accomplish two-qubit gate operations, and can also
be turned off in order to perform one-qubit gate operations
without disturbing the unaddressed qubit.
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APPENDIX A: CURRENT CONSERVATION LAWS

The current conservation law, applied to each node of the
circuit [see Fig. 1(b)], yields six equations for the active phases
ϕ1, ϕ2, ψ , θ , and ξ . These equations are identical to the Euler-
Lagrange equations derived from the circuit Lagrangian, (2)–
(4) and read, respectively,

φ0
ξ − ϕ1

L1
− C0φ0ϕ̈1 − I0 sin(ϕ1) = 0, (A1)

φ0
γ − ϕ2

L2
− C0φ0ϕ̈2 − I0 sin ϕ2 = 0, (A2)

I T
2 sin(ξ − ψ − φT ) + CT

2 φ0(ξ̈ − ψ̈)

−Cgφ0(ψ̈ − θ̈ ) − CT
1 φ0ψ̈ − I T

1 sin(ψ) = 0, (A3)

Cgψ̈ − (CP + Cg)θ̈ = 0, (A4)

φ0
γ − ξ − φS

L3
− φ0

ξ − ϕ1

L1

−CT
2 φ0(ξ̈ − ψ̈) − I T

2 sin(ξ − ψ − φT ) = 0. (A5)

In Sec. II C, we show that this system of six equations can
be reduced to four equations by ignoring the high-frequency
quantum dynamics of the phases γ and ξ .

TABLE IV. Electric parameters of the coupled circuit studied by
Fay et al. (Ref. 17).

Label Value

Parameters of the dc SQUID
Critical current I0 1.356 μA
per Josephson junction (JJ)
Capacitance per JJ C0 227 fF
Loop inductance Ls 190 pH
Inductance asymmetry η 0.28
Bidimensionality parameter b 1.28

Parameters of the ACPT
Critical current of the first JJ I T

1 30.1 nA
Critical current of the second JJ I T

2 12.4 nA
Capacitance of the first JJ CT

1 2.0 fF
Capacitance of the second JJ CT

2 0.9 fF
Critical current asymmetry μ −41.6%

Capacitance asymmetry λ −37.7%
Gate capacitance Cg 29 aF

APPENDIX B: PARAMETERS OF THE COUPLED CIRCUIT
STUDIED IN Ref. 17

Throughout this article, we illustrate the theory with
numerical values and plots calculated by using the parameters
of the circuit studied in Ref. 17. These parameters are collected
in Table IV.

APPENDIX C: CONJUGATE VARIABLES

The phases (X‖,Y⊥,ψ,θ ) and their conjugate momenta
(−h̄P‖, − h̄P⊥, − h̄n, − h̄nQ) are the appropriate variables
of the circuit Hamiltonian (15). The momenta are related to
the velocities (Ẋ‖,Ẏ⊥,ψ̇,θ̇ ) involved in the kinetic part of the
Lagrangian (13) by the following expressions:25

−h̄P‖ = ∂L
∂Ẋ‖

=φ2
0

{(
2C0+α2

‖C
T
2

)
Ẋ‖−α‖CT

2 (α⊥Ẏ⊥+ψ̇)
}
,

(C1)

−h̄P⊥ = ∂L
∂Ẏ⊥

=φ2
0

{(
2C0+α2

⊥CT
2

)
Ẏ⊥ − α⊥CT

2 (α‖Ẋ‖−ψ̇)
}
,

(C2)

−h̄n = ∂L
∂ψ̇

= φ2
0

{
C�ψ̇ − CT

2 (α‖Ẋ‖ − α⊥Ẏ⊥) − Cgθ̇
}
,

(C3)

−h̄nQ = ∂L
∂θ̇

= φ2
0

{
(CP + Cg)θ̇ − Cgψ̇

}
. (C4)

APPENDIX D: PAULI MATRIXES

The Pauli matrices related to the dc SQUID are defined in
the eigenbasis of the phase qubit {|1〉,|0〉} as

σS
z =

(
1 0
0 −1

)
, σ S

x =
(

0 1
1 0

)
, σ S

y =
(

0 −i

i 0

)
. (D1)

Similarly the Pauli matrices related to the ACPT (σT
z , σT

x , σT
y )

are defined in the eigenbasis of the charge qubit {|+〉,|−〉}.

184510-17



A. FAY, W. GUICHARD, O. BUISSON, AND F. W. J. HEKKING PHYSICAL REVIEW B 83, 184510 (2011)

*Present address: Low Temperature Laboratory, Aalto University,
P.O. Box 15100, FI-00076 AALTO, Finland.
1J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,
565 (2001).

2D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.
Phys. 75, 565 (2003).

3C. Tannoudji-Cohen, J. Dupont-Roc, and G. Grynberg, Photons
and Atoms: Introduction to Quantum Electrodynamics (Wiley
Interscience, New York, 1997).

4A. Steane, Rept. Prog. Phys. 61, 117 (1998).
5M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero,
M. Neeley, A. D. OConnell, D. Sank, J. Wenner, J. M. Martinis,
and A. N. Cleland, Nature (London) 459, 546 (2009).

6L. DiCarlo, J. M. Chow, J. M. Gambetta, Lev S. Bishop, B. R.
Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin,
and R. J. Schoelkopf, Nature (London) 460, 240 (2009).

7A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet,
D. Vion, D. Esteve, and A. N. Korotkov, Nat. Phys. 6, 442 (2010).

8O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov Jr., Yu. A. Pashkin,
T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, Science
327, 840 (2010).

9J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E.
Mooij, Nature (London) 447, 836 (2007).

10C. M. Wilson, T. Duty, F. Persson, M. Sandberg, G. Johansson, and
P. Delsing, Phys. Rev. Lett. 98, 257003 (2007).

11H. Nakano, S. Saito, and K. Semba, and H. Takayanagi, Phys. Rev.
Lett. 102, 257003 (2009).

12T. A. Palomaki, S. K. Dutta, R. M. Lewis, A. J. Przybysz, Hanhee
Paik, B. K. Cooper, H. Kwon, J. R. Anderson, C. J. Lobb, F. C.
Wellstood, and E. Tiesinga, Phys. Rev. B 81, 144503 (2010).

13E. Hoskinson, F. Lecocq, N. Didier, A. Fay, F. W. J. Hekking,
W. Guichard, O. Buisson, R. Dolata, B. Mackrodt, and A. B. Zorin,
Phys. Rev. Lett. 102, 097004 (2009).

14Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357
(2001).

15D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina,
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