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Effects of a particle-hole asymmetric pseudogap on Bogoliubov quasiparticles
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We show that in the presence of a pseudogap, the spectral function in the superconducting state of the
underdoped cuprates exhibits additional Bogoliubov quasiparticle peaks at both positive and negative energy
which are revealed by the particle-hole asymmetry of the pseudogapped energy bands. This provides direct
information on the unoccupied band via measurement of the occupied states. When sufficiently close, these
Bogoliubov peaks will appear to merge with existing peaks leading to the anomalous observation, seen in
experiment, that the carrier spectral density broadens with reduced temperature in the superconducting state.
Using the resonating valence bond spin liquid model in conjunction with recent angle-resolved photoemission
spectroscopy data allows for an empirical determination of the temperature dependence of the pseudogap,
suggesting that it opens only very gradually below the pseudogap onset temperature T ∗.
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Over the history of high-temperature superconductivity in
the cuprates, many fundamental questions have been posed
and some have been answered. It is now known that the charge
carriers form in Cooper pairs,1 with a pairing symmetry that
is described as spin-singlet2 dx2−y2 wave3 and the mechanism
might be spin fluctuations,4 although the latter issue is still a
subject of considerable debate. Even the applicability of stan-
dard BCS theory has been questioned although experiments
have been presented that give overwhelming evidence for a
BCS description. One such experiment, which is both relevant
to this paper and demonstrates the impact of the high-Tc field to
encourage experimental innovation and improvements in tech-
nique, has been angle-resolved photoemission spectroscopy
(ARPES). In ARPES, not only has the superconducting energy
gap �sc(k) been determined as a function of momentum
k,5 but also the predicted Bogoliubov quasiparticle (BQP)
bands ±Ek = ±√

ε2
k+�2

sc(k) and BQP amplitudes u2
k and v2

k
have been observed and verified to agree with d-wave BCS
theory.6–8 While this has provided important advances to our
understanding of the cuprates at optimal and overdoping, it was
quickly noted that for underdoped cuprates, the picture was
less clear. Indeed many properties of the superconducting state
appear non-BCS-like and the normal state harbors a not-yet-
understood energy-gap-like feature termed the “pseudogap.”9

The proximity to the antiferromagnetic Mott insulator suggests
strong correlation effects with possibly some competing order
and hence the major questions in the cuprates revolve around
understanding the source of the pseudogap and its relation
to superconductivity. Indeed, interest in these issues extend
more broadly to the cold atom field of research where a
pseudogap has been seen in a strongly interacting Fermi gas
using a momentum resolved radio-frequency spectroscopy as
an analog to ARPES.10

At present two general points of view exist. One is that
the pseudogap is simply an image of the superconducting
gap related to the existence of phase incoherent preformed
pairs above Tc.11 This is a one-gap scenario and argues
for the pseudogap to open symmetrically about the Fermi

surface. The second point of view treats the pseudogap as
a manifestation of competing order with a second energy scale
which, along with the superconducting gap, presents a two-gap
scenario.12,13 Key to this latter vision is that the pseudogap
opens up on a surface in the Brillouin zone that is different
from the Fermi surface. For instance, in the case of competing
magnetic order, the pseudogap should be associated with the
antiferromagnetic Brillouin-zone boundary. Regardless of the
details of specific models, the two-gap scenario suggests that
the pseudogap will be particle-hole asymmetric. Consequently,
experimental evidence of symmetry or asymmetry would allow
for the elimination of a number of models and provide a
significant advancement to the field. In this paper, we discuss
the effect that a particle-hole asymmetric pseudogap has on
the observation of BQPs and propose that the anomalous
broadening of the spectral function seen in ARPES14 results
from particle-hole asymmetry.

In this work, we focus on ARPES and measurements of
the spectral function A(k,ω). In an ordinary Fermi liquid, the
spectral function is a simple peak or δ function that tracks the
single-particle energy dispersion εk as a function of energy
ω and momentum k as shown schematically in Fig. 1(a). As
ARPES only measures the occupied states at zero temperature
due to a Fermi function cutoff at the Fermi level EF , the peaks
above EF are not detected. At finite T , some information
on the bands above EF can be obtained via analysis of
the thermal tails.7 In the presence of superconductivity, the
elementary excitations are the BQPs, which mix electron and
hole states. This leads to a gap of 2�sc in the dispersion
and introduces two BQP bands ±Ek = ±√

ε2
k+�2

sc(k), which
show backbending from the Fermi energy and about the Fermi
momentum kF , which coincides with the position kp of the
peak in the backbending of the occupied states. The two
BQP branches also acquire weighting of u2

k = (1 + εk/Ek)/2
and v2

k = (1 − εk/Ek)/2, as illustrated in Fig. 1(b). These
pictures and their manifestation in experiment on an overdoped
cuprate material were published by Matsui et al.7 providing
a confirmation of the applicability of d-wave BCS theory.
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FIG. 1. (Color online) Schematic diagram of spectral function
intensity, A(k,ω), as a function of energy and momentum for a single
Fermi-liquid band, (a) and (b), and two asymmetric pseudogapped
bands, (c) and (d), as described in the text. (b) and (d) show the
formation of BQP bands in the superconducting state. In the presence
of superconductivity, extra spectral peaks in the pseudogapped case
at fixed k are revealed that would not be separately resolved for a
pseudogap opening symmetrically about the Fermi level.

When a pseudogap exists in the normal state, the picture
alters and the energy dispersion will be split into two bands,
as shown in Fig. 1(c). Furthermore, in the presence of a
particle-hole asymmetric pseudogap �pg, the bands do not
open about EF but rather about some other energy Ec and
the backbending peak position kp �= kF , as shown. In the
presence of superconductivity, each band now splits into two
BQP bands positioned symmetrically about EF [shown as the
dashed blue (dark gray) curve and quasiparticle peaks for the
upper band and dashed red (light gray) for the lower band in
Fig. 1(d)]. This gives rise to four BQP peaks as a function
of energy, at fixed k, with two positioned at negative energy
and two at positive energy for EF taken as 0. Note that if
the pseudogap opens in a particle-hole symmetric fashion,
the two BQP peaks at negative energy would merge into

one, as would the two above EF . It is the combination of
the particle-hole asymmetric pseudogap with the symmetric
superconducting gap that allows the extra hidden BQP peaks
to be revealed and displayed separately. Therefore information
on the unoccupied band above EF can now be obtained from
analysis of its reflected BQP band on the occupied side,
avoiding, in principle, the need for analysis of thermal tails
above EF .

To facilitate our discussion, it is necessary to adopt a
particular model. For this purpose we use a model proposed by
Yang, Rice, and Zhang (YRZ),15,16 who developed an ansatz
for the electronic Green’s function based on a resonating
valence bond (RVB) spin liquid state. This model has a
particle-hole asymmetric pseudogap and explains a large
amount of anomalous data from the underdoped cuprates.17–23

Indeed, we will show here that it is more effective at explaining
recent ARPES data14 than a prominent and extensively studied
competing model, the d-density wave (DDW) model.12,13,24–27

While the YRZ model is phenomenological, it has a base in the
microscopic theory of arrays of two-leg Hubbard ladders in a
doped spin liquid including long-range interladder hopping.
Comparison with numerical results of Troyer et al.28 for
t-J ladders additionally support the YRZ choice of Green’s
function, which is initially based on considerations of the
weak-coupling case. For a detailed discussion, see Ref. 15. A
closely related model is the algebraic charge liquid described
by Qi and Sachdev.29 It is based on a fluctuating two-
dimensional antiferromagnet and provides a Green’s function
that has a similar form to that of YRZ.

Within the ansatz for the RVB state proposed by Yang et al.,
the coherent part of the spectral function is given as

A(k,ω) =
∑
α=±

gtW
α
[
u2

αδ
(
ω − Eα

sc

) + v2
αδ

(
ω + Eα

sc

)]
, (1)

where the energy of the gapped excitations in the super-
conducting state is Eα

sc = √
(Eα)2 + �2

sc, with Bogoliubov
amplitudes u2

α = (1 + Eα/Eα
sc)/2 and v2

α = (1 − Eα/Eα
sc)/2,

which are applied to the pseudogapped bands indexed by α =
± and given as E± = ε1 ± √

ε2
2+�2

pg. Here, ε1 = (ξk − ξ 0
k )/2

and ε2 = (ξk + ξ 0
k )/2, where ξk = −2t(cos kxa + cos kya) −

4t ′ cos kxa cos kya − 2t ′′(cos 2kxa + cos 2kya) − μp, is a
third nearest-neighbor tight-binding dispersion and ξ 0

k =
−2t(cos kxa + cos kya) is that for first nearest neighbor,
which for ξ 0

k = 0 defines the antiferromagnetic Brillouin-zone
boundary. W± = (1 ± ε2/

√
ε2

2+�2
pg)/2 are weighting factors for

the pseudogapped bands in analogy with the u’s and v’s, and
gt is a Gutzwiller factor that reflects a reduction in the coherent
part of the spectral function due to strong correlations. 21 These
energy dispersions contain doping dependent coefficients:
t(x) = gt (x)t0 + 3gs(x)Jχ/8, t ′(x) = gt (x)t ′0, and t ′′(x) =
gt (x)t ′′0 , where gt (x) = 2x

1+x
and gs(x) = 4

(1+x)2 are the energy
renormalizing Gutzwiller factors for the kinetic and spin terms,
respectively. These factors account for the narrowing of the
bands with increased correlations. The pseudogap is taken to
have the same d-wave symmetry as the superconducting gap
and to be nonzero only for doping x below a quantum critical
point at x = xc = 0.2. A detailed statement of our parameters
and the model’s doping dependence is given in Ref. 20. Here,
we will show generic results for that set of parameters with
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a doping x = 0.16. It is only in our final figure of this paper
where we compare directly with experimental data and for that
case we adjust the parameters to match the Fermi surface of
the material under investigation. A finite pseudogap leads to
Fermi-surface reconstruction from the large contours of Fermi-
liquid theory to small holelike Luttinger pockets confined
to the vicinity of the nodal direction. As the pseudogap first
opens, there are, as well, electron pockets in the antinodal
region but these progressively shrink to zero as the Mott tran-
sition is approached. The dispersion ξk uses μp as a chemical
potential determined by the Luttinger sum rule in the form

1 − x = 2

(2π )2

∫
G(k,ω=0)>0

d2k, (2)

where the Green’s function is in the normal state with finite
pseudogap for x < xc. Thus the chemical potential becomes
dependent on both the value of the pseudogap and doping. It
will also change at finite temperature.

In Fig. 2, we show how the bands change with temperature.
As in the experiment that we compare to (Ref. 14) the
dispersions are presented as a function of k = (π,ky), with
ky varying about zero. This is a momentum cut in the
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FIG. 2. (Color online) The band dispersions about the point
k = (π,0) for a momentum cut along ky . (a) Fermi-liquid state at
T = T ∗. The pseudogap state for (b) T = 0.8T ∗ where the upper
band still shows below the Fermi level and (c) T = 0.5T ∗. (d) The
superconducting state shows four BQP bands that arise from the two
particle-hole asymmetric pseudogap bands. (e) gives the case of (d)
now presented as a color map of I = A(k,ω)f (ω). (f) Same as (e)
except I is now convoluted with a Gaussian of σ = 0.04t0.

antinodal region of the Brillouin zone where the pseudogap
is maximal. In Fig. 2(a), the Fermi-liquid state at T = T ∗
gives a single band which dips below the Fermi level as seen
in the experiment. As the pseudogap develops in (b) and (c),
the gap opens about a line below the Fermi level, breaking
particle-hole symmetry. Initially, a double dip feature appears
in the upper band positioned near the Fermi level [Fig. 2(b)]
as is also seen in experiment14 (we do not find such a feature
in the DDW model). In the superconducting state shown in
(d), the secondary BQP bands appear, shown with the dashed
curves, which are mirror reflections about the Fermi energy of
the original pseudogapped bands. An image of the original
unoccupied band [solid blue (dark gray)] is now seen on
the occupied side [dashed blue (dark gray)]. Figure 2(d) is
shown again in (e) as a color map representing the intensity,
I = A(k,ω)f (ω), where the cutoff due to the Fermi function
f (ω) is applied and the quasiparticle weights are included. One
sees the two bands at negative energy clearly separated, but not
far apart. To represent instrument resolution, in (f) we show
the convolution of (e) with a Gaussian of standard deviation
σ = 0.04t0, which would correspond to roughly 5–15 meV,
depending on the value of t0. The two bands now appear
as one broadened band, particularly around the point of the
backbending peak, near kF , where the experiments reported
anomalous broadening.14 Indeed, as the temperature is lowered
and �sc increases, the extra BQP band gains weight and the
net result appears as though there is an anomalous increase
in broadening at low temperature. We are not including
incoherent processes here. In reality, there will be a large
incoherent background associated with the carrier spectral
function, which will give tails that additionally fill in the region
between the two peaks and consequently less broadening than
we have used here will be needed to make them overlap and
appear as a single line with a shoulder.

This is further brought out in Fig. 3 where the intensity
is shown for several temperatures below Tc at fixed ky = kF

and for varying ω/t0. At Tc, the intensity contains two peaks
that are not symmetric about EF . Recent experiments indicate
that a minimum in the spectral intensity occurs at the Fermi
level.14,30 One suggestion for this effect might be the existence
of regions of spatially inhomogeneous superconductivity
which persist above Tc.31 While our pseudogap model is
intrinsically asymmetric, superconductivity, which opens on
the Fermi surface, restores particle-hole symmetry on an
energy scale of the order of the superconducting gap. In the
superconducting state there is a second weaker BQP peak
at negative energy which, due to the convolution, appears
as a shoulder on the main peak. This shoulder-type feature
(which is traced by the arrows) exists in the experimental
data of Hashimoto et al.14 and disappears above Tc and, while
unexplained in the experimental work, it acquires a natural
explanation here as the BQP band arising from the second
pseudogap band at positive energy.

Much of our discussion to this point has been generic to
any model displaying particle-hole symmetry breaking. Now
we address more specifically the issue of the temperature
dependence of the pseudogap, which can be inferred from
experiment, and demonstrate that the model used here is able
to explain the distinct qualitative features of the data that a
competing model, the DDW, cannot.
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FIG. 3. (Color online) Intensity I versus energy at kF [convoluted
as in Fig. 2(f)] for various temperatures. Each subsequent curve
is offset for clarity. Arrows track the extra BQP peak emerging at
negative energy for T < Tc.

In Fig. 4(a) we plot the energy of the lower band at (π,0)
and at (π,kp) (the position of the peak in the backbending) as
a function of temperature. The curve for (π ,kF ) is similar
to (π,kp). To obtain a good fit to the data of Hashimoto
et al.,14 we have adjusted the band-structure parameters to
fit the antinodal region of the normal-state Fermi surface and
have used a pseudogap value of 84 meV and a superconducting
gap on the Fermi surface of 24 meV. Along with t0 = 300 meV,
these values are close to those obtained by Yang et al.18 in their
consideration of Andreev reflection in an underdoped Bi-based
sample of similar Tc, which provides support to both of our fits.
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FIG. 4. (Color online) (a) Temperature-dependent energy of
lower band at (π,0) and (π ,kp), with and without superconductivity
(solid and dashed lines, respectively). Data from Ref. 14, scaled by
T ∗ in the x axis, are shown as dots. Using �3

MF(T ) (see inset) for the
temperature dependence of the pseudogap gives a good fit to the data
with the RVB model, whereas �MF(T ) does not. (b) The DDW model
differs from the RVB model and cannot explain the data at T ∗.

Additional fits with smaller gap values, for example 12 meV,
give no significant changes to the results of Fig. 4(a) except
in the superconducting state where the additional increase
(hatlike structure) is considerably reduced. In our prior figures,
we used a mean-field temperature dependence, �MF (T ), for
both �sc and �pg. The actual temperature dependence of �pg

is still open to debate. Some argue for the pseudogap feature
in the density of states to fill but not close,9,32 suggesting a flat
T dependence with a sudden drop at T ∗. With a mean-field
temperature dependence for the two gaps (dashed line in
the inset) we were not able to agree with the nearly linear
temperature dependence observed in the data between Tc and
T ∗. However, choosing �pg(T ) to have a �3

MF (T ) behavior
we find good agreement with experiment, suggesting that
the pseudogap may open more gradually in temperature than
previously thought.

In Fig. 4(b) we compare this RVB model and a DDW
model. These two models differ in that the pseudogap opens
on the antiferromagnetic Brillouin-zone boundary, ξ 0

k = 0, and
hence at (π,0) for the DDW and on a surface ξk + ξ 0

k = 0 for
the RVB model, which is offset from the region of (π,0).
Keeping the band-structure parameters the same, along with
the temperature dependence of the gaps, we find a qualitative
difference between the two models. The two curves for the
DDW model merge to the same point at T ∗ as kp goes
continuously to zero, i.e., the backbending peak closes to
an energy that is the bottom of the Fermi-liquid band, Ebot,
shown in Fig. 2(a) and located at ky = 0. The (π,0) curve of
the RVB model also merges to this point but the kp curve
does not as the backbending peak in RVB closes at Ec,
as can be seen in Fig. 2(b). The lack of separation of the
two curves for T = T ∗ in the DDW model excludes it as
a candidate for the pseudogap in comparison with the RVB
model.

In summary, the anomalous broadening and shoulder
feature seen in ARPES measurements has a natural explanation
in a second peak due to a BQP band in the superconducting
state, which can only appear in the case of particle-hole
asymmetry in the pseudogap state. Further, we find that the
pseudogap closes rather gradually with increasing temperature
toward T ∗. We have also ruled out the DDW model as an
alternative competing order, as it cannot explain the present
ARPES data. As a general final comment, the existence of
BQPs is fundamental to our understanding of the nature
of the many-body coherence in the superconducting state.
The observation and measurement of their spectral weight
in ARPES was a significant milestone. In the underdoped
cuprates, the BQP peaks may be further split by a particle-hole
asymmetric pseudogap leading to a richness in BQP structure,
which has only been hinted at in recent experiments. This
effect also allows for the unoccupied bands to be studied in the
occupied region of the spectral intensity. It would be important
to find other systems where this phenomenon would reveal
itself more clearly.
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