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The number of bound states resulting from inhomogeneities in a BCS superconductor is usually established
either by variational means or via exact solutions of particularly simple, symmetric perturbations. Here, we
propose estimating subgap states using the Birman-Schwinger principle. We derive upper bounds on the number
of subgap states for small normal regions and find a suitable Cwikel-Lieb-Rozenblum inequality. We also
estimate the number of such states for large normal regions using high dimensional generalizations of the Szego
theorem. The method works equally well for local inhomogeneities of the order parameter and for external
potentials.

DOI: 10.1103/PhysRevB.83.184505 PACS number(s): 74.25.Jb, 03.65.Ge, 03.65.Sq, 74.45.+c

I. INTRODUCTION

It is well known that inhomogeneities in a superconducting
system may give rise to Andreev bound states. Such bound
states form in superconductor–normal metal–superconductor
(SNS) junctions and can affect the transmission and noise
properties of the junction. The presence of such states in
the cores of vortices is of much interest as well. Vortices
in s-wave superconductors may have Caroli–de Gennes–
Matricon (CdGM) states;1 bound states in vortices in p + ip

superfluids were studied, e.g., in Ref. 2. Zero modes in the
core of half-quantum vortices in p-wave superconductors3,4

are of extensive recent interest. Such modes are described in
terms of unpaired Majorana fermions and have non-Abelian
braiding statistics.5,6 Other inhomogeneities in the system
have been of interest as well, for example, stripes and
other structures in the pairing function of a superconductor
(see, e.g., Refs. 7 and 8).

Often, the bound sates are either directly obtained for
systems of high symmetry, such as a circular vortex, or
idealized planar SNS junctions, or studied using perturbation
theory. In addition, multiple scattering and semiclassical
(WKB) methods based on the Andreev approximation have
been developed.9

In this paper, we introduce an alternative view on Andreev
states, complementing the above-mentioned methods. Our
approach does not assume a particular symmetry, and works
even when the Andreev approximation is inadequate (see, e.g.,
Ref. 10). We base our approach on a simple adaptation of the
Birman-Schwinger counting argument to the superconducting
scenario. The Birman-Schwinger method has been widely
used to study bound states of the Schrödinger equation with a
potential. The Birman-Schwinger bound has been introduced
by Birman11 and Schwinger12 as a refinement of previous
estimates by Bargmann13 on the number of bound states
in a potential. For a discussion and review see Ref. 14.
Recently the Birman-Schwinger approach was used in the
context of estimating the critical temperature of BCS models
in Refs. 15–17.

In this paper we establish the following results:
(1) A bound on the number of subgap states in a supercon-

ductor containing a normal region. The bound on the number of

states below a given subgap energy E is expressed in Eq. (11)
and holds for general values of the chemical potential μ, the
gap �0. For example, in the limit of large chemical potential,
the inequality is given in the simple form

NE �
√

μ�4
0vol(A)

π
(
�2

0 − E2
)

3/2
+ �2

0

(
�2

0 − 2E2
)

vol(A)

8πμ3/2
√

�2
0 − E2

, (1)

where vol(A) is the volume of the normal region. Clearly, the
inequality is most effective for energies not very close to the
top of the gap.

(2) In studying the bound states of Schrödinger operators
with deep potential wells, often Birman-Schwinger inequali-
ties yield poor upper bounds to the number of bound states. In
such cases the Cwikel-Lieb-Rozenblum inequality18–20 may
be used to obtain upper bounds with power-law behavior in
line with the semiclassical expectations for deep wells. We
establish the Cwikel-Lieb-Rozenblum inequality (20) for the
Bogolubov–de Gennes equation. This bound requires more
work and has the advantage of retaining a simple form for
a spatially varying �; however, for normal regions, and in
the typical situation of gap energy being small compared
to Fermi energy, it seems to give a worse upper bound
to the number of states than the simple Birman-Schwinger
inequality.

(3) Finally, using semiclassical tools and the relation to
Szegö theory we supply an asymptotic expression for the
number of states in large regions and a conjecture (28) for
the scaling ld−1 log(kF l) of the subleading term.

The paper is organized as follows: In Sec. II, we derive a
Birman-Schwinger operator which is suitable for the treatment
of mean field BCS superconductors. In Sec. III we derive the
basic bound on the number of states in a normal region of
a superconductor. We proceed to present the Cwikel-Lieb-
Rozenblum inequality in Sec. IV, the derivation of which
is technical and deferred to the Appendix. In Sec. V we
consider the boundary correction to the number of states
for asymptotically large normal regions and explain their
connection to the theory of Toeplitz operators and Szegö
theorems.
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II. THE BIRMAN-SCHWINGER PRINCIPLE FOR BCS

To employ this method, we consider a superconductor
described by the mean field BCS Hamiltonian:

HBCS =
∑

σ

∫
ψ†

σ (x)

[
u(x) − μ − h̄

2m
∇2

]
ψσ (x)dx

+
∫

[�σσ ′(x,x ′)ψ†
σ (x)ψ†

σ ′(x ′) + H.c.]dx dx ′, (2)

where � is the superconducting order parameter, μ is the
chemical potential, u(x) is a local potential, and m is the
effective electron mass. � is related to the anomalous Green’s
function through a self-consistency condition. Here we will
assume that u(x) and � are given, and represent the effective
values of these parameters, which are, in principle, measurable
directly.

To diagonalize the BCS Hamiltonian we use the
Bogolubov–de Gennes (BdG) equation

HBdG

(
ψe

ψh

)
= E

(
ψe

ψh

)
, HBdG =

(
h �

�∗ −h

)
, (3)

where ψe,ψh are the electron and hole parts of the quasiparticle
wave function, and E is the quasiparticle excitation energy
measured relative to the Fermi energy. The solutions of this
equation come in +E, − E pairs (unpaired states may exist
at E = 0). We will mostly consider h = −∇2 − μ + u(x)
(throughout, we take h̄2

2m
= 1).

For a translationally invariant � and u(x) = 0, the spectrum
of the BdG operator is continuous and consists of the positive
and negative energy bands. In an s-wave superconductor these
bands are separated from zero by the gap |�|. The method will
also work for other gap functions, for example in a p-wave
superconductor or superfluid with gap �(p) ∼ �0(px + ipy)
(as in the Anderson-Brinkman-Morel phase of 3He). Andreev
states in d-wave superconductors have also been of much
interest; however, in d-wave superconductors the gap function
vanishes on the nodal lines and one needs to differentiate
between resonant states and the rest of the spectrum.

To study the introduction of bound states into the system
from an inhomogeneous � (and possibly also u), we write
the perturbed HBdG as H0 + W where H0 is translationally
invariant. Here W represents the perturbation (inhomogenous
�, disorder potential, etc.). We choose a decomposition of the
perturbation W into a product W1W2, and define the Birman-
Schwinger operator:

KE = W2
1

E − H0
W1. (4)

The key property of KE is that it has an eigenvalue 1
λ

for each
eigenvalue E of (H0 + λW ). Indeed,

(H0 + λW )φ = Eφ ⇒ 1

λ
φ

= −(H0 − E)−1W1W2φ ⇒ 1

λ
(W2φ)

= W2(H0 − E)−1W1(W2φ) = KE(W2φ). (5)

Thus, W2φ is an eigenvector of KE with eigenvalue 1
λ

. The two
major differences between the BCS system and the Birman-
Schwinger kernel KE typically used to study bound states in

FIG. 1. (Color online) The Birman-Schwinger principle: Conti-
nuity of the bound state energy as a function of λ implies that each
bound state at λ = 1 with energy in (E, − E) corresponds to at least
one crossing of the E or −E line for some λ ∈ (0,1).

Schrödinger operators is that HBdG is not bounded below, and
that KE is not Hermitian, but the ideas have been used to
estimate the number of states within a spectral gap (see, e.g.,
Ref. 21).

We now invoke the Birman-Schwinger argument:
Let NE1,E2 (V ) = number of eigenvalues of H0 + V in the

interval (E1,E2), where E1,E2 are in the gap; i.e., |E1|,|E2| <

minp(|�(p)|). Assuming that the energy of eigenvalues of
H0 + λV depends continuously on λ as we increase λ from 0
to 1, we see that each eigenvalue for λ = 1 must have crossed
the E1 or E2 line for some value of λ ∈ (0,1), as illustrated in
Fig. 1. Thus,

N (E) � number of crossings for λ ∈ (0,1)

= number of eigenvalues of KE larger than 1. (6)

Note that the inequality sign in (6) is due to the fact that in
all cases we consider perturbations that are not strictly positive
or negative. The curves in Fig. 1 may be nonmonotonous
functions of λ and an in-gap eigenvalue at λ = 1 may
correspond to several crossings. Moreover, in some situations
no bound states will be created even for very large λ.

It is important to note that for unpaired zero modes of an
unperturbed system such as the px + ipy superconductor (for
example in the presence of vortex or boundary), the principle
will still work. Such a zero mode is stable as long as it is far
from other vortices, and will not shift when adding impurity
potentials.

We now find the explicit form of the Birman-Schwinger
kernel useful for the study of Andreev bound states in a normal
domain of general shape embedded in the superconductor.
First, we decompose � = �0 + δ�, δ� = δ�1δ�2, and note
that (

0 δ�

δ�∗ 0

)
=
(

δ�1 0

0 δ�∗
2

)(
0 δ�2

δ�∗
1 0

)
. (7)
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FIG. 2. A normal region A inside the superconductor.

To further simplify the system we assume an s-wave
superconductor. This will be described by � = �0 outside
the region and � = 0 inside (Fig. 2). Thus we write δ�1 =
σxχA(x) and δ�2 = −�0IχA(x), where I is the identity
matrix, and χA(x) is the characteristic function of the region
A, so χA(x) = 1 if x ∈ A and 0 otherwise. The Birman-
Schwinger operator (4) can be written explicitly. Assuming
real �0 for simplicity, we find

KA,E(x,x ′) = �0√
�0

2 − E2
(σxE − �0)χA(x)Im g+(x − x ′)

×χA(x ′) − i�0σyχA(x)Re g+(x − x ′)χA(x ′),
(8)

where

g±(x − x ′) = e±ik±|x−x ′ |

4π |x − x ′| , (9)

where k± =
√

μ ± i
√

�0
2 − E2, and Re k > 0.

Note that from the numerical point of view studying the
Birman-Schwinger kernel (8) has an immediate advantage:
The kernel is only supported on the region A. Thus, computa-
tion of the spectrum of bound states requires merely finding the
eigenvalues of this operator restricted to the region A. Since
the operator in (8) is known analytically, one can numerically
compute eigenvalues by simply discretizing the region A.

Let us proceed and consider limits where the application of
these ideas is particularly interesting

III. NORMAL REGIONS

Here we use KA,E to obtain an upper bound to the number
of states. The basic inequality is

NE(V ) �
∑

λ|μn(λ)=E1 or E2 for some λ∈(0,1)

1

�
∑

λ|μn(λ)=E1 or E2 for some λ∈(0,1)

1

λ2

�
∑

λ eigenvalue of KE1

1

λ2
+

∑
λ eigenvalue of KE2

1

λ2

� TrK∗
E1KE1 + TrK∗

E2KE2. (10)

The last inequality is due to the fact that KE is, as opposed
to the usual Birman-Schwinger case, not self-adjoint;
therefore we used that for a compact operator∑

eigenvalues |λ|p �
∑

singular values |s|p for p � 1 (Schur-
Lalesco-Weyl theorem).

This allows us to write a simple inequality for the number
of subgap states. Plugging KE,A from (8) in (10) we find

N (E) � 4�2
0

∫
A×A

dxdx ′
(

�2
0 + E2

�0
2 − E2

|Im g−(x − x ′)|2

+ |Re g+(x − x ′)|2
)

. (11)

As E → 0 the number of states NV (E) goes to zero; thus,
the estimate (11) is effective only when the expression on
the right-hand side of (11) is less than 1 in that limit. Let us
estimate the size of the region A where this holds, assuming
a typical gap much smaller than kF . Using that for E → 0,
k± ∼ √

μ ± i �0√
μ

, we see that

N (E) � �2
0

4π2

∫
A×A

dxdx ′ e
−
√

�2
0−E2

μ
|x−x ′ |

|x − x ′|2

×
(

2E2

�0
2 − E2

sin2(
√

μ|x − x ′|) + 1

)
, (12)

and so the decay is set by coherence length ξ =
√

μ

�0 . This
means that we need the condition 1

π

√
μ�0Vol(A) < 1 to make

(11) effective at low energies.
Much like for the Schrödinger equation in 3D, we see that

for a small enough normal region, the right-hand side of (11)
will be less than 1, and so no subgap states will be present
below this energy E.

Numerically, we have checked the utility of this approxi-
mation for simple situations on a lattice compared to the exact
result. The agreement is fairly good for E small, E < 0.25�0.

Let us estimate the leading volume dependence of the bound
(11). We write

g±(r) = e±ik±|r|

4π |r| = e−ar±ib|r|

4π |r| (13)

with

a = (μ2 + �2
0 − E2

)1/4
sin

⎡
⎣1

2
arctan

√
�2

0 − E2

μ

⎤
⎦ ,

(14)

b = (μ2 + �2
0 − E2

)1/4
cos

⎡
⎣1

2
arctan

√
�2

0 − E2

μ

⎤
⎦ .

By (11) we have N (E) � N1, where

N1 = 4�2
0

∫
A×A

dxdx ′
(

�2
0 + E2

�0
2 − E2

|Im g−(x − x ′)|2

+|Re g+(x − x ′)|2
)

. (15)
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Now, we change to variables x,x ′ → x,r = (x ′ − x). Taking
the r integral over all space we get that N1 � N ′

1 with

N ′
1 = 16π�2

0vol(A)
∫ ∞

0
r2d

(
�2

0 + E2

�0
2 − E2

|Im g−(r)|2

+ |Re g+(r)|2
)

= �2
0vol(A)

∫ ∞

0
dr

e−2ar

π

×
(

�2
0 + E2

�0
2 − E2

sin2(br) + cos2(br)

)
.

This last integral can be carried out analytically, yielding

N ′
1 = �2

0

4πa
vol(A)

⎛
⎝1

2
+

2E2

�2
0−E2√

μ2 + �2
0 − E2

b2

⎞
⎠ . (16)

Finally, we can write N ′
1 as

N ′
1 =

vol(A)�2
0

((
2�2

0−E2
)√

μ2+�2
0−E2+μE2

)
4π
(
�2

0−E2
) (

μ2+�2
0−E2

) 3
4 sin

(
1
2 tan−1

√
�2

0−E2

μ

) .
(17)

The upper estimate N ′
1 in (16) is in fact a good approxima-

tion to N1 whenever the size of A is larger than 1/a the decay
scale for the Green’s function.

The most physically common situation for BCS is μ � �0.
In this limit we have

N ′
1 ∼

√
μ�4

0vol(A)

π
(
�2

0 − E2
)

3/2
+ �2

0

(
�2

0 − 2E2
)

vol(A)

8πμ3/2
√

�2
0 − E2

. (18)

Taking μ fixed and �0 large, while keeping α = �0/E fixed,
we get

N ′
1 ∼ (2 − α2)�3/2

0

2
√

2π (1 − α2)5/4
+ (α2 + 2)μ

√
�0

4
√

2π (1 − α2)7/4
. (19)

IV. CWIKEL-LIEB-ROZENBLUM INEQUALITY

Often, the estimate (10) may be quite poor because of
large contributions from small eigenvalues of KE,A. This
behavior may sometimes be remedied by considering other
inequalities, such as the celebrated Cwikel-Lieb-Rozenblum
inequality.18–20

To do so we consider the BdG equation with a gap function
�0 + �1(x). Using the ideas in Refs. 18 and 22 and adapting
to the superconducting scenario we find that the inequality

N (0,E) � C
μ1/2|�0|2

(|�0|2 − E2)2

∫
|�1(x)|� |�0 |2−E2

4|�0 |

dx

× [�3/2
0 |�1(x)|3/2 + |�1(x)|3] (20)

is valid for μ �
√

�2
0−E2

18
√

2
, with C a constant of order 1. The

details of this calculation are given in the Appendix.

For the case μ <

√
�2

0−E2

18
√

2
, the inequality is changed to

N (0,E) � 2−3/4C

3
(
�2

0 − E2
)3/4

∫
|�1(x)|� |�0 |2−E2

4|�0 |

dx

× [�3/2
0 |�1(x)|3/2 + |�1(x)|3]. (21)

The bounds (20) and (21) are closely related to the bound
of Ref. 22 on the number of bound states of perturbed Dirac
operators. The main technical difference with Ref. 22 is the
presence of a chemical potential and thus the presence of
a nonvanishing Fermi surface (technically, these change the
weak norms appearing in the Cwikel inequalities for singular
numbers).

Note that the denominator (|�0|2 − E2)2 in (20) shows that
this bound is only useful for E < |�0|. However, most of our
interest here is actually with states that are not too close to the
top of the gap itself. The reason for this is that in practice, if
the BCS self-consistency is taken into account, the first states
that are affected are those with energy very close to the gap.
Such states will often be washed out from the spectrum, since
the gap function may decrease slightly in the vicinity of the
normal region.

In the case of a system defined by a normal region �1(x) =
−�0χA(x), we have N (E) � NCLR with

NCLR = C
2μ1/2|�0|5

(|�0|2 − E2)2
vol(A). (22)

Let us compare the simple CLR and BS estimates. Consider
the large μ limit (22) vs (18). We have

N ′
1/NC ∼

√
�2

0 − E2

�0
< 1. (23)

We conclude that for the typical BCS situation, the simple
Birman-Schiwnger bound (18) is more effective in dealing
with normal regions.

V. ASYMPTOTIC REGIME, SZEGÖ THEOREM

Here we are interested in the large l behavior of the
eigenvalues of KE,lA, where lA is the region A rescaled by
a factor l (i.e. lA = {x : l−1x ∈ A}). In this limit semiclassical
methods are often useful. To study the eigenvalues of KE,lA,
it is convenient to characterize the behavior of Trf (KE,lA)
for various functions f . We immediately see, since in our
situation [H0(p),�] is supported only on the boundary of the
system, that in the volume term we may commute the χA

terms in the perturbations Wi and the free propagator. This
gives the asymptotic leading term for the number of subgap
states as the number of eigenvalues of KE,lA larger than 1. The
semiclassical approximation expresses it as an integral over
the classical phase space:

N (E,0) ∼ ldvol(A)
∫

�{[H0(p) − E]−1σx − 1}ddp, (24)

where � is the Heaviside step function.
We may view the operator KE,A as a higher dimensional

block of a Toeplitz operator: The kernel depends only on x −
x ′; however, the x,x ′ indices are restricted to be in A. This
is equivalent to chopping a “block” from a regular matrix.
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The theory describing the asymptotic properties of blocks of
Toeplitz matrices is based on various Szegö theorems and
appears in numerous problems in physics. Most famously, the
strong (two-term) Szegö limit theorem was initially used in
the celebrated computation of the spontaneous magnetization
for the 2D Ising model by Onsager (see, e.g., Ref. 23). The
Szegö limit theorem also plays a special role in entanglement
entropy studies; see in particular Refs. 24 and 25.

To try and describe the next term, we turn to a higher
dimensional generalization of the Szegö limit theorem,
which has been extensively studied by Widom.26 Denote
GE(p) = (H0(p) − E)−1σx . Given a unit vector direction nx ,
we can define an operator acting on functions of a single
variable, with kernel

GE,nx,p⊥ (s − t) =
∫

eip||(s−t)GE(p⊥ + nxp||)dp||. (25)

Using Ref. 26 we see that

Trf (KE,lA)

∼ ldvol(A)

(2π )d

∫
f [GE(p)]ddp

+ ld−1

(2π )d−1

∫
∂A

dx

∫
p⊥·nx=0

dd−1p⊥tr

× [f (χ+GE,nx,p⊥χ+
)−χ+f

(
GE,nx,p⊥

)
χ+
]

+ o(ld−1), (26)

where nx is the normal to ∂A at x. For the case of an
s-wave superconductor the operator GE,nx,p⊥ can be computed
explicitly:

GE,nx,p⊥ (s − t)

= −
√

π�2
0

2
(
�2

0 − E2
) Im

(
e−|s−t |k+(p⊥)

k+(p⊥)

)
(�0 + zσx)

+ i

√
π

2
�0Re

(
e−|s−t |k+(p⊥)

k+(p⊥)

)
σy, (27)

where k±(p⊥) =
√

p2
⊥ − μ ± i

√
�0

2 − E2, and Re k± > 0
[here iσy = (0,1, − 1,0)].

In our case, we are interested in the number of eigenvalues
above 1. Thus we need to solve this problem for f (λ) = �(λ −
1). However, for this function the arguments leading to (26)
are no longer applicable, but rather, due to the discontinuous
nature of f , the area term as written in (26) is divergent. We
conjecture that in such a case, the boundary term should be
modified to

ld−1

(2π )d−1

∫
∂A

dx

∫
p⊥·nx=0

dd−1p⊥tr
[
f
(
χl+GE,nx,p⊥χl+

)
−χl+f

(
GE,nx,p⊥

)
χl+
]+ o(ld−1), (28)

where χl+(s) = θ (0 < s < l). In analogy to the appearance of
logarithmic corrections when considering similar expressions
for the entanglement entropy of fermions in d dimensions, we
expect this term to scale as O(ld−1 log l), which also seems to
be consistent with a preliminary numerical investigation.

In this case (as well as for any isotropic superconductor),
this integral is independent of the direction nx , and so we have
that the boundary term is given by

ld−1 log l

(2π )d−1
vol(∂A)mf (E) (29)

for some function mf (E). The transformation f → mf is
independent of the shape, and we believe it can be studied
using Wienner-Hopf methods for specific cases.

Finally, we remark that it has been argued that there is a
minigap present in the local density of states if the shape of the
normal region corresponds to a chaotic “Andreev billiard.”27–30

The minigap is of order �0 log(kF l), and its nature depends on
τE/τD , where τD is dwell time in the normal region and τE is
the Ehrenfest time. This question has recently been revisited in
Ref. 31. To arrive at this result, the strategy is to consider the
BdG equation within the Andreev approximation and analyze
possible classical trajectories. It would be of interest to see
whether such a result may come out of a Birman-Schwinger-
like analysis.

VI. CONCLUSIONS AND OUTLOOK

To summarize, in this paper we studied the bound states in
superconductors using a Birman-Schwinger approach. The ad-
vantage of the method is its validity for general perturbations,
and beyond the Andreev approximation. Our main results
are stated in the following equations: The bound on subgap
states (11), the Cwikel-Lieb-Rozenblum type inequality for
BdG (20), and the asymptotic expression for the number
of states in large regions with the conjecture (28) for the
scaling ld−1 log(kF l) of the subleading term. For most physical
situations the Birman-Schiwnger bound (11) seems a better
bound than the CLR bound (20), since it gives a lower upper
bound for large Fermi energy μ.

In the same way it is possible to study the effect of adding
disorder potentials, as well as spatially varying or momentum
dependent �. Because of the wide interest in the properties of
vortices in such systems it is also of great interest to understand
whether the Birman-Schwinger methods can be useful in the
study of bound states in vortices. Indeed, it is not immediately
clear how this should be done: The presence of core states in
vortices seems to be mainly due to the phase winding around
the vortex core (see, e.g., Ref. 32), and arguably less sensitive
to the supression of order parameter in the core. Since the
phase winding is of a topological nature (i.e., it is discrete) it
cannot be considered as a perturbation which is turned on in a
continuous way from zero, as in the case we have considered.
The present approach may be utilized to understand the
interplay between the topological and nontopological state
binding. To do so, one should take as the unperturbed vortex
an idealized radially symmetric vortex, and then add phase
gradients and order parameter suppression as perturbations,
and study the additional bound states introduced in this manner.
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APPENDIX : CWIKEL-LIEB-ROZENBLUM FOR BDG

1. Estimates on singular values

To control the spectrum of the Birman Schwinger operators,
we will use the following inequality (p > 2) (theorem XI.22
in Ref. 33):

sn(âb) � n−1/pCp,d ||a||p||b||p,w, (A1)

where sn is the nth singular value of the operator âb =
a(x)b(i∇), i.e., the nth largest eignvalue of the operator√

(âb)†âb. Here Cp,d is a constant, ||a||p = (
∫

dx|a(x)|p)1/p

is the Lp norm, and the value ||b||p,w is defined as follows
(page 30 in Ref. 34). Defining

Mb(t) = vol(x||b(x)| > t), (A2)

||b||p,w is given by

||b||p,w = inf
C

{
C : Mb(t) <

Cp

tp
∀t

}
. (A3)

Note ||b||p,w is not strictly speaking a norm, since it does not
satisfy a triangle inequality. It is called weak since Lp ⊂ Lw

p .
To familiarize ourselves with computing ||b||p,w consider

first the following example.
Example: Let us compute ||b||3,w for b(x) = (x2 + c)−1/2

assuming c > 0. We have

Mb(t) = vol(x|(x2 + c)−1/2 > t)

= vol

(
x2 <

1

t2
− c

)
θ

(
1

t2
− c > 0

)
. (A4)

In 3D this gives

Mb(t) = 4π

3

∣∣∣∣ 1

t2
− c

∣∣∣∣
3/2

θ

(
1

t2
− c > 0

)
� 4π

3

1

t3
. (A5)

Since the above inequality approaches equality for t → 0,
the infimum in (A3) is given by ||b||3,w = ( 4π

3 )1/3. Note that
||b||3,w does not depend on c.

In the derivation of the Cwikel-Lieb-Rozenblum inequality
we will need the ||b||3,w estimate for

b(i∇) = [(−∇2 − m)2 + c]−1/2, (A6)

with m,c > 0. Here we show that

||b||3,w � c− 1
4 (v3)1/3max

[
1,

(
324m2

c

)1/12
]

. (A7)

As in the example above, we define

Mb(t) = vol(x|((x2 − m)2 + c)−1/2 > t)

= vol

(
(x2 − m)2 <

1

t2
− c

)
θ

(
1

t2
− c > 0

)
.

(A8)

Let vd = πd/2

�(d/2+1) be the volume of a d-dimensional sphere.
Then,

Mb(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vd

(
m +

√
1
t2 − c

)d/2
if 0 < t < (m2 + c)−1/2,

vd

[(
m +

√
1
t2 −c

)d/2−(m−
√

1
t2 − c

)d/2]
if

(m2 + c)−1/2 < t < 1√
c
,

0 if t > 1√
c
.

(A9)

From the small t behavior, we see that to bound Mb uniformly
as in the definition (A3) the power has to be at least 1/td/2, i.e.,
p � d/2. In the first sector we see also that the constant has
to be at least vd . However, vd may not be good enough since
the bound in the region 2 may be different. Let us estimate it.

For (m2 + c)−1/2 < t < 1√
c
,

vd

⎡
⎣(m +

√
1

t2
− c

)d/2

−
(

m −
√

1

t2
− c

)d/2
⎤
⎦

= vd

∫ 1

−1
ds∂s

(
m + s

√
1

t2
− c

)d/2

= dvd

2

√
1

t2
− c

×
∫ 1

−1
ds

(
m + s

√
1

t2
− c

)d/2−1

� dvd

t
(2m)d/2−1,

where we use that in this region m �
√

1
t2 − c.

Now we have to write this as bounded by a 1/td/2

expression. If d/2 < 1 we are done, but if not, d/2 − 1 > 0,
as in the d = 3 case, using 1

t
√

c
> 1 we have

dvd

t
(2m)d/2−1 � dvd

t
(2m)d/2−1 1

td/2−1(
√

c)d/2−1

= dvd (2m)d/2−1

(
√

c)d/2−1td/2
. (A10)

Combining all these results we see that (for d > 2)

Mb(t) � max

[
1,

d(2m)d/2−1

(
√

c)d/2−1

]
vd

t3/2
.

And thus we see that in this case we are in the weak L
3/2
w space;

i.e., ||b||3/2,w � [vdmax(1, 3(2m)1/2

c1/4 )]2/3.
The Cwikel estimates require p > 2 let us estimate ||b||3,w.

Since t−3/2 < t−3, say, for t < 1, we need to deal with the
large t behavior of Mb. Let us use the following.

Lemma: If Mb < Ct−α , and Mb = 0 for t > t0, then we
have, for any α1 > α that

||b||α1,w �
(
t
α1−α
0 C

)1/p
. (A11)

Proof: For t < t0 we have

Mb(t) � Ct−α < Ct−α(t0/t)α1−α < Ct−α1 t
α1−α
0 ,

and Mb = 0 for t > t0; therefore Mb < Ct
α−α1
0 t−α1 for all

t > 0. �
In our case Mb drops to zero when t = c−1/2. Therefore,

for b(x) = [(x2 − m)2 + c]−1/2 we have, for p > 3/2,

||b||p,w � c−1/2c
3

4p

{
vdmax

[
1,

3(2m)1/2

c1/4

]}1/p

, (A12)
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and in particular,

||b||3,w � c− 1
4 (v3)1/3max

[
1,

(
324m2

c

)1/12
]

. (A13)

2. Derivation of the main inequality

Here we repeat almost exactly the analysis of Cancelier,
Levy-Bruhl, and Nourrigat, “Remarks on the Spectrum of
Dirac Operators.”22 The main difference between our work
and theirs is the presence of the chemical potential, which
appears in the estimates such as (A30).

Assume ||V − Vλ|| � |�0|λ/4, then

||(H0 + V )u|| � �0
√

1 − λ||u||
⇒ ||(H0 + Vλ)u|| � �0

√
1 − λ/2||u||. (A14)

To check this note that

||(H0 + Vλ)u||2
� ||(H0 + V )u||2 + 2||(H0 + V )u||||(Vλ − V )u||

+ ||(V − Vλ)u||2

�
[
|�0|2(1 − λ) + |�0|2 λ

2

√
1 − λ + |�0|2 λ2

16

]
||u||2

� |�0|2
(

1 − λ + λ

2

√
1 − λ + λ2

16

)
||u||2

� |�0|2
[

1 − λ

2

]
||u||2. (A15)

The last inequality can be checked by differentiation. Thus we
have

||(H0 + Vλ)u||2 − |�0|2
[

1 − λ

2

]
||u||2 � 0

⇒ 〈u|(H 2
0 −|�0|2

)+[H0,Vλ]+ +
(

V 2
λ + |�0|2 λ

2

)
|u〉 � 0.

Noting that for BdG H 2
0 = (−∇2 − μ)21 + |�0|21, we get for

such u’s:

〈u|(−∇2 − μ)2 + |�0|2 λ

2
+ Sλ|u〉 � 0, (A16)

where Sλ = [H0,Vλ]+ + V 2
λ . Therefore we are interested in

the number of bound states of (−∇2 − μ)2 + |�0|2 λ
2 + Sλ.

These are given by a Briman-Schwinger method. Observing
the Birman Schwinger kernel,

KBdG = 1[
(−∇2−μ)2+|�0|2 λ

2

]1/2 Sλ

1[
(−∇2−μ)2+|�0|2 λ

2

]1/2 .

(A17)

We now note that the Sλ contains several terms, of the following
forms (there are also matrix indices, but let us ignore these,
since we are going to add the estimate for each element). We
also assume �0 real for simplicity; also, here the perturbation
is actually of the form −�1(x)σx , so we appropriately define
�λ as we defined Vλ.

Next we use the Cwikel inequalities (A1) for p = 3 and the
standard inequalities for singular numbers:

Fan’s inequality:

μn+m+1(A + B) � μn+1(A) + μm+1(B) (A18)

and

μn(AB) � ||B||μn(A),

μn+m+1(AB) � μn+1(A)μm+1(B) (A19)

to deal with the different terms in KBdG.
We get estimates for the nth singular number of three

different forms [here b is as above in (A6)]:
(i)

A1 = �0
1[

(−∇2 − μ)2 + |�0|2 λ
2

]1/2

√
�λ(x)

×
√

�λ(x)
1[

(−∇2 − μ)2 + |�0|2 λ
2

]1/2 , (A20)

sn(A1) � �0

(
||
√

�λ||3C3,d ||b||3,w

1

(n/2)1/3

)2

. (A21)

Here we used standard inequalities for the singular values of
sums and products of operators as in (A19), to have sn(AB) �
s[n/2](A)s[n/2](B).

(ii)

A2 = �0
1[

(−∇2 − μ)2 + |�0|2 λ
2

]1/2 �λ(x)

×�λ(x)
1[

(−∇2 − μ)2 + |�0|2 λ
2

]1/2 (A22)

gives, in the same way,

sn(A2) �
(

||�λ||3C3,d ||b||3,w

1

(n/2)1/3

)2

. (A23)

(iii)

A3 = 1[
(−∇2 − μ)2 + |�0|2 λ

2

]1/2 (−∇2 − μ)

×�λ(x)
1[

(−∇2 − μ)2 + |�0|2 λ
2

]1/2 . (A24)

Since || 1
[(−∇2−μ)2+|�0|2 λ

2 ]1/2 (−∇2 − μ)|| < 1, we have

sn(A3) � ||�λ||3C3,d ||b||3,w

1

(n)1/3
. (A25)

Combining these estimates and adding them (and noting that
||√�λ||23 = ||�λ||3/2) we conclude the inequality:

sn(KBdG) � C ′
[
�0||�λ||3/2||b||23,w

1

n2/3
+ ||�λ||23||b||23,w

× 1

n2/3
+ ||�λ||3||b||3,w

1

n1/3

]
. (A26)

Now we can get the inequality as follows: We are looking for
the largest N for which sN � 1. Thus we multiply by N2/3 the
above inequality:

N2/3 � C ′[�0||�λ||3/2||b||23,w + ||�λ||23||b||23,w

+ ||�λ||3||b||3,wN1/3]. (A27)

Thus if Nm satisfies

N2/3
m = C ′[�0||�λ||3/2||b||23,w + ||�λ||23||b||23,w

+ ||�λ||3||b||3,wN1/3
m

]
, (A28)
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the number of bound states must have N � Nm. Let us
bound Nm from above. We write N

2/3
m = A + BN

1/3
m ⇒

N
1/3
m = B+√

B2+4A
2 . Since

√
B2 + 4A � B + 2

√
A, we have

N
1/3
m � B + √

A. Furthermore, using the generalized mean
inequality (|a| + |b| + |c|)k � 3k−1(|a|k + |b|k + |c|k), we
have

Nm � C ′[(�0||�λ||3/2||b||23,w

)3/2

+ (||�λ||23||b||23,w

)3/2 + (||�λ||3||b||3,w

)3]
� C ′′||b||33,w

[
�

3/2
0 ||�λ||3/2

3/2 + ||�λ||33
]
. (A29)

In the BdG context we have m = μ and c = λ
2 |�0|2 in (A6).

There are two cases:

(i) μ >

√
�2

0−E2

18
√

2
: We have

||b||3,w � 2(v3)1/3

(
9μ

2λ4|�0|4
)1/6

. (A30)

Using (A30) we have

||b||33,w � 8v3

(
9μ

2λ4|�0|4
)1/2

. (A31)

So finally

Nm � C
μ1/2

λ2|�0|2
[
�

3/2
0 ||�λ||3/2

3/2 + ||�λ||33
]

(A32)

for some C.
We can now write this explicitly as an integral:

Nm � C
μ1/2

λ2|�0|2
∫

|δ�(x)|� |�0 |λ
4

dx
[
�

3/2
0 (δ�x)3/2 + (δ�x)3

]
.

The optimal constants in (A1) are not known in general, but
the various upper bounds for them are all of order 1. Finally,
relating λ and E we get (A20).

(ii) Similarly, for μ <

√
�2

0−E2

18
√

2
and using (A13) we

get (A21).
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