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We report on observations of a superconductor-normal pulsing regime in microwave (GHz) coplanar waveguide
resonators consisting of superconducting MoGe films interrupted by a gap that is bridged by one or more
suspended superconducting nanowires. This regime, which involves MHz-frequency oscillations in the amplitude
of the supercurrent in the resonator, is achieved when the steady-state amplitude of the current in the driven
resonator exceeds the critical current of the nanowires. Thus we are able to determine the temperature dependence
of the critical current, which agrees well with the corresponding Bardeen formula. The pulsing regime manifests
itself as an apparent “crater” on top of the fundamental Lorentzian peak of the resonator. Once the pulsing regime
is achieved at a fixed drive power, however, it remains stable for a range of drive frequencies corresponding to
subcritical steady-state currents in the resonator. We develop a phenomenological model of resonator-nanowire
systems from which we are able to obtain a quantitative description of the amplitude oscillations and also,
inter alia, to investigate thermal relaxation processes in superconducting nanowires. For the case of resonators
comprising two parallel nanowires and subject to an external magnetic field, we find field-driven oscillations of
the onset power for the amplitude oscillations, as well as the occurrence (for values of the magnetic field that
strongly frustrate the nanowires) of a distinct steady state in which the pulsing is replaced by stochastic amplitude
fluctuations. We conclude by giving a brief discussion of how circuit-quantum electrodynamics-based systems
have the potential to facilitate nondestructive measurements of the current-phase relationship of superconducting
nanowires and, hence, of the rate at which quantum phase slips take place in superconducting nanowires.
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I. INTRODUCTION

A variety of recent advances in quantum computing and
related fields have involved circuit-quantum electrodynamics
(QED) systems,1,2 which consist of mesoscopic elements (e.g.,
“artificial atoms”) that are strongly coupled to microwave
resonators. Circuit QED has the advantage over cavity QED,3

which involves atoms coupled to an optical cavity, in that
the strong-coupling regime, in which the resonance frequency
shifts appreciably when a single photon is added to the
cavity, is easier to attain.1 The condition for cavity-QED
effects to become significant is that the relevant excitation
energy scales of the “atomic” system should be similar
to those of a single cavity photon. To date, most of the
mesoscopic elements employed in circuit-QED settings have
been “artificial atoms” (e.g., Cooper-pair boxes4), capacitively
coupled to the resonator; in addition, a Josephson junction has,
in certain experiments, been integrated into the resonator itself
in order to facilitate the “weak” measurement5 of the internal
states of the artificial atoms.6–8 Both artificial atoms and
Josephson junctions are essentially zero-dimensional quantum
systems; the present work is motivated by the possibility of
extending the circuit-QED paradigm to spatially extended
systems, which have more complex internal structure and thus
richer excitation spectra. In particular, we focus on supercon-
ducting nanowires, which are believed to exhibit many-body
phenomena such as Little’s phase slips,9 which can occur
either by thermal activation or by quantum tunneling.10–15 It

was recently shown that superconducting nanowires act as
nonlinear inductive elements, so they have been proposed as
building blocks for qubits.16 Circuit-QED systems involving
superconducting nanowires thus raise the possibility of bring-
ing the physics of many-body cavity QED—which involves,
e.g., Bose-Einstein condensates (BECs) coupled to optical
cavities17–21—to the solid-state setting. It is known that, in
the context of atomic and optical physics, the cavity-QED
element offers new routes for probing the quantum dynamics
of the BEC,22 as well as generating coupled matter-light phases
that cannot be achieved with the BEC alone.19,20 Specifically,
resonator-induced collective behavior, which has been studied
in the cavity-QED case and which we focus on in the present
work, has no direct analog, to date, in circuit QED.

Further motivation for the present work comes from the
following points. First, the strategies used to date to probe
quantum phase slips in superconducting nanowires are com-
plicated by the need to measure very small resistances. Other
experiments have bypassed this difficulty by studying the
phase-slip-induced formation of a Joule-heated quasinormal
state.13–15 The new avenues opened up by circuit-QED-based
experiments should enable the complications of measuring
small resistances to be bypassed and compliment the studies
done by measuring switching rates into the Joule-heated
quasinormal state. In addition, working with superconducting
nanowires rather than oxide-based superconducting tunnel
junctions should ameliorate complications due to trapped
charges in the oxide material.
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Thin-film superconducting resonators have been exten-
sively studied,23–25 including a situation that incorporates a
Josephson junction as a nonlinear inductive element into the
resonator.26 In the present work we study systems involving
a microwave coplanar waveguide resonator having either one
or two superconducting nanowires integrated into it16 (see
Fig. 1). The nanowires, as well as the central conductor
of the resonator, are made of MoGe, and are fabricated by
molecular templating, as discussed in Refs. 12 and 27. The
nanowires are suspended over a trench, rather than resting
on a substrate. The nanowire-resonator systems that we have
fabricated can, in principle, be cooled to the cavity-QED
regime, as the following heuristic argument shows. The energy
cost of a phase slip vanishes as the current through the
nanowire approaches its critical value. The rms amplitude
of the antinodal current corresponding to a single photon is
given by the equipartition theorem as 〈LI 2/2〉 = h̄ω0/2: here,
ω0 is the resonator’s natural frequency (ω0/2π = 10 GHz)
and L = 1 nH is the order of magnitude of a typical circuit
inductance, corresponding to an impedance of Z0 = 50 �. For
these values, Irms ≈ ω0

√
h̄/Z0

∼= 100 nA, which is of the same
order of magnitude as the critical current of a nanowire, e.g., a
critical current of ∼200 nA was previously reported.28,29 Thus,
the quantum regime is, in principle, achievable.16 This regime
would, e.g., feature coherent superpositions of states having
distinct currents and cavity-photon numbers.

Here, we present measurements on a microwave coplanar
waveguide resonator containing one or two superconducting
nanowires at various temperatures and photon populations.
These measurements, though not in the cavity-QED regime
per se, nevertheless reveal several puzzling features that are
related to the physics of superconducting nanowires, and
that ought to be understood and accounted for before the
quantum dynamics of the composite system is addressed.
These phenomena are related to the existence, for a strongly
driven resonator, of a nonequilibrium, time-domain pulsing
regime (which, in the frequency domain, we term the “crater”)
in which the nanowire is found to switch, periodically, between
its normal and superconducting states. (resonators integrated
with microbridges have been studied in Ref. 30) We develop
a simple, quantitative model of this pulsing regime, which
captures all of its salient features; the success of our model
poses constraints on how far neglected features, such as super-
current dissipation, can influence the behavior of a nanowire in
a resonator. Furthermore, we find that for resonators that have
two nanowires embedded in them, the threshold for entering
the pulsing state depends periodically on the magnetic field
perpendicularly applied, with a period consistent with the
predictions and observations given in Refs. 31 and 32. Finally,
we report on two tantalizing phenomena: first, the unexpected
rise of the crater floor as its width approaches the maximum
value, which occurs at the magnetic field where such a phase
difference of π/2 is induced between the ends of the wire (i.e.,
at the maximally frustrated state of the device). This frustrated
state is associated with the lowest critical-power value where
the energy of the system is the same for the states having a
vortex number n and n + 1. The second phenomenon is the
appearance, at low temperatures and drive powers,
of jumps in the resonance frequency, which are

suggestive of a multivalued current-phase relationship in the
nanowire. We will present a qualitative discussion of these
phenomena.

This paper is organized as follows: In Sec. II we discuss
experimental details involving the fabrication of the resonator
and the design of the circuit. In the next two sections we discuss
the case of a resonator having a single nanowire: In particular,
in Sec. III we summarize the main features of the transmission
characteristics for a resonator featuring a single wire, and in
Sec. IV we develop a phenomenological model that fits the
transmission characteristics, and we discuss the extent to which
the transmission characteristics contain information about the
internal structure of the nanowire. In Sec. V we turn to the case
of resonators that incorporate two nanowires. These devices
exhibit a range of unanticipated effects, as the (perpendicular)
magnetic field is varied. Finally, in Sec. VI we present our
conclusions and discuss the outlook for future work involving
resonators having embedded nanowires.

II. SAMPLE FABRICATION AND EXPERIMENTAL
DESIGN

The nanowire-resonator samples were fabricated using
the molecular templating technique.12,27 The nanowire is
integrated into a superconducting coplanar waveguide (CPW)
resonator using optical lithography. To make the nanowire,
single-walled carbon nanotubes were deposited on a Si-SiO2-
SiN substrate, which contained a 100-nm-wide trench across
the center of the chip. The trench is produced through a process
involving e-beam lithography, reactive ion etching, and wet
etching in HF (to produce an undercut). The trench was aligned
with the center of the resonator in order to create a gap in the
resonator’s center conductor [see Fig. 1(a)]. Then a thin film
(here 10 or 25 nm) of Mo0.76Ge0.24 (from Super Conductor
Materials, Inc.) was deposited across the surface of the sample
using an AJA dc magnetron sputtering system (ATC 2000 from
AJA International, Inc.). The nanotubes that cross the trench
became substrates for superconducting MoGe nanowires, as
a result of the metal sputtering. Following Boaknin et al.,26

the resonator was patterned by photolithography, and the
photomask was positioned so that just one or two nanowire(s)
connect the two halves of the center conductor, which, as
mentioned above, is interrupted by the trench (see Fig. 1).

This fabrication technique results in high-quality
nanowires, which seamlessly connect the two halves of the
resonator. The center conductor of the resonator is either 10
or 25 nm thick and ∼10 μm wide, and the gap between the
ground plane and center conductor is ∼5 μm. A Fabry-Pérot
resonator is formed by gaps of ∼3 μm between the center
conductor and the input and output ports of the resonator. These
gaps form two capacitors having capacitances of ∼45 fF each,
which act as two semitransparent mirrors to impose a rigid
boundary condition such that the supercurrent through these
gaps is exactly zero. The total length of the center conductor
between the two coupling gaps is 10 mm and the expected
fundamental resonant frequency was ∼10 GHz; however, the
measured resonant frequency at low temperature was ∼4 GHz,
due to the kinetic inductance contributed by the MoGe film.
All samples were designed to be overcoupled to have quality
factors that are dominated by external dissipation from the
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FIG. 1. (Color online) (a) Resonator-nanowire schematic and
measurement setup. The microwave signal, composed of one or two
sinusoidal waves [added through a power combiner (denoted

∑
)],

is directed to the input of the Fabry-Pérot resonator through a total
of ∼30 dB of isolators and attenuators, which are maintained at a
cryogenic temperature. The input and output of the resonator are
capacitively coupled to the center conductor (blue) through coupling
capacitors of ∼45 fF, formed by a 3-μm gap in the MoGe film. The
center conductor is either 10 or 25 nm thick and 10 μm wide. It
is interrupted, halfway along its length, by a trench, and connected
through the nanowire(s). The output signal of the resonator travels
through ∼20 dB of isolators and attenuators (also at a cryogenic
temperature) and then ∼60 dB of amplifiers, including one at a
cryogenic temperature, before arriving at the input port of the
network analyzer (NA), where the transmitted power is measured.
The spatial profiles of the supercurrents corresponding to the λ/2 and
λ modes are shown as dashed lines. (b) Examples of the individual,
25-nm-wide, MoGe nanowires from double-nanowire sample S5.
The trench over which the wires are suspended appears black.
(c) Double-nanowire sample S5, showing the pair of nanowires,
which appear geometrically similar. (d) Double-nanowire sample, S6,
showing the pair of nanowires, which appear geometrically somewhat
different.

energy leakage thorough the capacitive mirrors to the input
and output ports, rather than by internal dissipation in the
resonators.

Figure 1(b) shows scanning electron micrograph (SEM)
images of typical superconducting MoGe nanowires (here

having lengths and widths of ∼105 and ∼25 nm, respectively).
The supercurrent oscillations in the resonator are excited by
applying a microwave signal to the input, which is coupled to
the resonator via the capacitive mirror. If desired, this signal
can be a sum of two such waves (via a power combiner).
The signal power that is transmitted through the resonator and
escapes through the coupling capacitor at a given frequency is
measured using an Agilent N5230A vector network analyzer
(NA), on the output port of the resonator, after the signal has
passed through a series of isolators, attenuators, and amplifiers.
The transmission coefficient for this process, which we call
the S parameter, is defined via S21 = 10 log10(P in

NA/P out
NA ) (or,

equivalently, S21 = P in
NA − P out

NA , if P in
NA and P out

NA are expressed
in dB), where P out

NA is the power of the signal sent from the
NA to the resonator input, and P in

NA is the power measured
on the NA input port which arrives from the resonator ouput
port through a series of isolators, attenuators, and amplifiers.
Isolators and attenuators adding up to ∼30 dB on both the
input line and output line from the resonator are inserted at low
temperatures, in order to eliminate the thermal noise impact
from the environment. A cryogenic low-noise amplifier (from
Low Noise Factory) and room-temperature amplifiers are also
employed in order to increase the signal-to-noise ratio. For all
curves showing a crater behavior, the input power corresponds
to the power sent from the NA to the input port of the resonator
and the drive power is set to zero. For all curves showing a
periodic set of peaks, a single drive source is used where the
input power corresponds to the drive power and the NA power
is negligibly small.

III. ONE-WIRE CASE: SUMMARY OF EXPERIMENTAL
RESULTS

For low values of the input signal power (e.g., ∼−60 dB),
the transmitted power shows sharp, Lorentzian, resonance
peaks centered at signal wavelengths, λ, obeying L = λ/2
(fundamental mode), =λ (first harmonic), =3λ/2 (second
harmonic), etc., where L is the length of the resonator defined
as the distance between the two mirrors [see Fig. 2(a)]. As the
power is increased toward −47 dBm, the frequency-dependent
response near the λ/2 resonance first bends over toward lower
frequencies, as shown in Fig. 2(b), doing so in a manner
consistent with the behavior of the Duffing oscillator.16 The
nonlinear inductance of the nanowire, LNW = h̄

2e
( dI
dϕ

)−1, is
the source of the Duffing nonlinearity, in which e is the
electronic charge, h̄ is Planck’s constant divided by 2π , I is
the supercurrent, and ϕ is the superconducting phase difference
between the ends of the wire. As the power is increased further,
the resonance then develops a marked dip in transmission near
the center of the shifted peak [see Fig. 2(b)]. In what follows,
we refer to this dip as a Lorentzian crater. By contrast, we
note that the resonance corresponding to the λ mode remains
Lorentzian up to much higher input powers (i.e., by a factor
of ∼3000). This difference in behavior is not accounted for
by the difference in Q factors (i.e., quality factors) between
the resonances.33 Indeed, the 3λ/2 resonance, which is of still
smaller Q than the λ mode, develops a crater at a lower input
power [see Fig. 6(a)]. The frequency width of the crater at
this mode is larger than in the λ/2 mode because the crater
width is inversely proportional to the quality factor. The crater

184503-3



MATTHEW W. BRENNER et al. PHYSICAL REVIEW B 83, 184503 (2011)

FIG. 2. (Color online) (a)Transmission characteristic of sample
S1, showing peaks at the fundamental frequency, corresponding
to L = λ/2, and the first harmonic, at L = λ. Inset: The λ/2
transmission peak measured at low power with the corresponding
Lorentzian line-shape fit using Q = 685. (b) (Left-hand side)
Shape of the λ/2 transmission peak for a relatively low power
(black curve) and for a relatively high power (red curve). The peak
becomes more asymmetrical and develops a “crater.” (Right-hand
side) Shape of the λ peak (Q = 335) for the same powers as
in the left-hand panel; unlike the λ/2 peak, the λ peak shows no
appreciable dependence on the input power in this regime. Note that
the vertical axis is on a logarithmic scale, and that the quality factor is
found by fitting the transmission curve to the Lorentzian line shape,
S21 = 10 log( A

(f0/Q)2+4(f −f0)2 ), where A is a scaling factor and f0 is the
resonance frequency.

width also grows with an increasing input power. Thus, one
is led to regard the crater as being related to the properties of
the nanowire itself, and as being manifested at resonances that
have an antinode at the location of the nanowire (the λ/2, 3λ/2,
etc., modes).16 The properties of the film are expected to be
observed at the λ, 2λ, etc., modes where there exists a node at
the location of the nanowire. This view is corroborated by the
relationship between the threshold power for crater formation,
Pc, and the temperature (see Fig. 3), which has the form

Pc ∝ [1 − (T /Tc)2]3, (1)

where Tc is the critical temperature for the onset of supercon-
ductivity in the nanowire.

Equation (1) matches the temperature dependence predicted
by the Bardeen formula34 for the square of a nanowire’s critical

FIG. 3. (Color online) Temperature dependence of the threshold
input power, Pc, required for the onset of a crater for sample S2. That
the onset power, Pc, is proportional to [1 − (T /Tc)2]3 suggests that it
is proportional to I 2

c , where Ic is the critical current of the nanowires,
and hence that the crater is a consequence of the nanowire current
being driven past its critical value. Such a conclusion follows from
the fact that, according to Bardeen (Ref. 34), the critical current of a
nanowire depends on temperature as [1 − (T /Tc)2]3/2 at all measured
temperatures. In the fit, a value of 5.54 K was used for Tc, which is
close to the Tc values of other measured and similarly dimensioned
nanowires. The quality factor of sample S2 at a temperature of 1.5 K
was 725. The inset illustrates how the threshold power is determined:
The red (middle) curve is taken to be the threshold, as it constitutes
the power at which a crater just becomes observable. The uncertainty
of the determined Pc is ∼0.05 dB.

current given by Ic = Ic(0)[1 − (T/Tc)2]3/2, where Ic(0) is
the critical current at zero temperature and Tc is the critical
temperature of the nanowire. Thus, the crater is a result
of dissipation triggered when the nanowire current exceeds
its critical current, resulting in Joule heating. The argument
presented above is based on the assumption that, in general, the
power carried through the resonator or a coplanar waveguide
in general is proportional to the square of the amplitude of the
supercurrent, i.e., P ∼ I 2.

Note that the positive curvature of the bottom of the crater
at the λ/2 resonance [see Figs. 2(b) and 4(b)] is incompatible
with a scenario (such as that presented for the simpler case
of a resonator without any nanowires in Ref. 35) in which
the Q factor of the resonance decreases abruptly at some
critical input power, and the system thus enters a dissipative
stationary state. The behavior at the λ resonance is, however,
consistent with this scenario [see Fig. 4(a)]: This is to be
expected because, for this resonance, the current amplitude is
very small in the region where the nanowire is located, so that
the nanowire dynamics does not participate strongly in this
resonance. Under the simple Q-factor reduction scenario, the
transmission coefficient would jump to a smaller value when
the current exceeds the switching current (the value of the
supercurrent at which the wire switches to the normal state) of
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FIG. 4. (Color online) (a) Transmission curve at the λ resonance
as the input signal power is increased, showing the onset and
expansion of the “crater” for sample S1. Note that there is no
Duffing-type nonlinear behavior at this resonance, and that for powers
above the threshold, the shape of the “crater” is concave down.
(b) Evolution of the transmission curve at the λ/2 resonance as
the input power is increased, showing the onset and expansion
of the crater. Note that for powers well above the threshold for
crater formation, the transmission curve becomes hysteretic (i.e.,
irreversible with frequency sweeping). (c) The transmission spectrum
[or, equivalently, in the time domain the supercurrent amplitude
oscillations (see main text)] when the drive frequency is fixed
at 3471 MHz. The four curves, from top to bottom, correspond
to drive powers with the same values as given in panel (b).
The curves in (c) have been translated vertically for ease of
viewing.

FIG. 5. (Color online) Typical transmission characteristics cor-
responding to two widely separated sweep speeds (red, fast; black,
slow) for sample S1. The width of the hysteretic region (as well as the
entire shape of the curve) does not depend noticeably on the sweep
rate, at least for the sweep rates used in these measurements.

the nanowire36 and rise to its original level when the current
falls below the retrapping current, but the line shape would
exhibit a negative curvature, as a perfect Lorentzian peak does.
In other words, regardless of the Q factor, there would be more
transmission at the resonance than away from it.

A more striking inconsistency with the Q-factor reduction
scenario is the occurrence of current-amplitude oscillations
when the input power exceeds the threshold for crater
formation. In this regime, the frequency spectrum of power
transmitted by the resonator exhibits a periodic array of
satellite peaks [see Fig. 4(c)], spaced at integer multiples
of a certain frequency �f away from the drive frequency;
�f increases with input power, and the height of these
satellite peaks scales approximately as 1/n, where n is the
nth peak, counting from the drive frequency. As the Fourier
coefficients associated with a function that is periodic and
has discontinuities decay as 1/n,37 the behavior of the satellite
peak heights indicates that, in the time domain, the transmitted
power exhibits periodic jumps.

For input powers near the threshold for crater formation, the
crater is nonhysteretic; as the input power is increased further,
however, hysteresis appears on the high-frequency side of the
crater, and for still higher powers on the low-frequency side
as well. Besides using a quasi-one-dimensional nanowire as
opposed to a microbridge, the coexistence of hysteresis and
amplitude oscillations is an important difference between our
results and those presented in Ref. 30. The hysteresis that we
observe does not appear to be sensitive to the sweep rate (see
Fig. 5).

Whereas nearly all of the data that we present is for a sample
containing a MoGe nanowire of diameter 25 nm at the λ/2
resonance, we have observed essentially identical phenomena
at the 3λ/2 resonance (see Fig. 6), and also for even thinner
nanowires. In addition, similar phenomena have been observed
in resonators having much larger Q factors, which incorporate
much longer, thicker, and wider Nb wires, where the width is
much larger than the coherence length (Fig. 7).
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FIG. 6. (Color online) (a) Transmission characteristics of sample
S2 (25-nm-thick MoGe) at 1.45 K at its 3λ/2 resonance, as the input
signal power is increased. In this case, the crater is qualitatively
similar to that at the λ/2 resonance; however, it exhibits additional
features, such as secondary dips near the edges of the crater. We
attribute these new features to the fact that the 3λ/2 resonance is
relatively broad (Q ∼ 60), and therefore requires higher input power
for a crater to form. At these high input powers, the nonlinearities
in the rest of the resonator (i.e., not the nanowire part), and the
associated parasitic resonances, can no longer be neglected. (b) The
satellite peaks when the driving frequency and power [which is in
the same range as in (a)] resides in the crater (for the same sample
S2). When the drive frequency is in the crater, the satellite peaks
are qualitatively similar in shape to those at the λ/2 resonance.
The curves in this panel have been vertically translated for ease of
viewing.

IV. THEORETICAL MODEL

A. Ingredients

We have developed a phenomenological model for res-
onators with integrated nanowires, which may be summarized
as follows. The resonator is modeled as a Duffing nonlinear
oscillator16,38 via the identification of the amplitude of oscil-
lation with the supercurrent through the nanowire. We add to
the model the following element, which we term a “switching
rule”: If the amplitude of oscillation exceeds a certain critical
value (which corresponds to the switching current of the
nanowire), the oscillation amplitude is instantaneously reset

FIG. 7. (Color online) Microwave measurements on sample S3,
which is a Nb film resonator with an incorporated microbridge. The
wire is 200 nm thick, 1 μm wide, and 10 μm in length, and was
fabricated using e-beam lithography. (a) Transmission characteristics
of sample S3 at its λ/2 resonance, for a range of input powers. At the
measurement temperature of 1.5 K, the quality factor of the low-power
curve is 43 500. The shape of the crater that forms is similar to that
for the MoGe case. (b) Satellite peaks when the driving frequency
and power lie inside the crater. The driving frequency is indicated
by the vertical dashed line in (a), and has a power of 7.6 dB. (c)
Superconducting Nb resonator, grown on a sapphire substrate and
containing a microbridge.

to zero. This switching rule is meant to capture the fact that
when the current in the nanowire exceeds its switching current,
the nanowire enters the normal state, in which it has a normal
resistance of the order of 1 k�; while the nanowire is in its
resistive state, the effective Q factor of the resonator is very
small, hence, the steady-state amplitude of the supercurrent is
essentially zero. The switching rule represents the underlying
assumption that, as the wire switches to the normal state, it
will dissipate all the energy stored in the resonator (which
is stored in two forms, namely, the kinetic energy of the
moving condensate and the potential energy of the electric
field between the center conductor and the ground planes of
the resonator). An additional element of the switching rule is
that, after switching, the amplitude of the oscillator is held
at zero for a fixed time thold, which corresponds to the time
the nanowire takes to cool down and relax to its equilibrium
superconducting state. (Alternatively, one can describe thold as
the duration for which the Q factor of the resonator is taken
to be zero.) At the end of thold, the Q factor is returned to its
original value, and the oscillation amplitude regrows according
to the Duffing oscillator equation of motion.

An important aspect of the model, which is necessary
for it to describe the observed hysteresis, is the continuous

184503-6



CRATERED LORENTZIAN RESPONSE OF DRIVEN . . . PHYSICAL REVIEW B 83, 184503 (2011)

manner in which we take the drive frequency to be swept. This
mimics the experimental situation in which both the input
current and the current in the resonator change continuously,
as the network analyzer progresses from one value of the
probe signal frequency to the next one. In particular, the initial
conditions for the resonator at each drive frequency depend
on the previous value of the drive frequency, and thus on
the direction of the sweep. We must therefore ensure that the
drive signal does not change discontinuously in our numerical
simulation of the frequency sweep; as we shall see, this can be
arranged by choosing the relative phase of the drive signal at
frequencies ω and ω + �ω appropriately.

The algorithm outlined above is straightforward to imple-
ment numerically (for this we use the LabView environment),
as we describe in Sec. IV C. As we shall see there, it yields
results that fit our data very well, as shown in Figs. 10, 12, and
14. Before we do that, we explain in simple, physical terms why
our model predicts the phenomenology that it does. For ease
of presentation, we further simplify the model by neglecting
the nonlinear character of the oscillator. The nonlinear element
is responsible for the asymmetric nature of the crater, but is
otherwise unrelated to the underlying physics. The nonlinear
effects have been investigated elsewhere.16

B. Phenomenology

1. Basic picture of the oscillatory state

The value x(t) of the supercurrent in the resonator evolves
in time t according to the oscillator equation

ẍ(t) + 2κẋ(t) + ω2
0x(t) = V eiωt	(t), (2)

where κ is the damping coefficient, ω0 is the resonance
frequency, and V eiωt	(t) is the driving signal, which as
an amplitude V and frequency ω and, as indicated by the
	 function, is switched on at time t. The physical current
in the resonator is given by the real part of x(t). When
the instantaneous value of the supercurrent in the resonator
exceeds the critical current of the nanowire, the following
sequence of events occurs:

(1) The nanowire enters the normal state.
(2) The Q factor, and, correspondingly, the supercurrent in

the resonator and voltage, both drop to zero, thus reducing the
total stored energy to zero. All of these quantities remain zero
for a time, which we denote thold.

(3) The Q factor then returns to its equilibrium value
(i.e., the value corresponding to small current-oscillation
amplitudes), and the current begins to build up in the resonator,
according to the oscillator equation.

(4) The current through the nanowire once again reaches
its switching threshold, the nanowire switches, and the entire
process repeats itself.

This cyclic process has a frequency �, which is much lower
than the resonance frequency ω of the oscillator. In other
words, the frequency � is the frequency of the oscillations
of the total amount of energy stored in the resonator and, at the
same time, of the amplitude of the supercurrent oscillations.
The time dependence x(t) of the displacement of the oscillator

(i.e., the supercurrent in the resonator) is thus given by

x(t) = cos(ωt)
∞∑

n=0

Cn cos(n�t)

= 1

2

∞∑
n=0

Cn{ cos[(ω + n�)t] + cos[(ω − n�)t]}, (3)

where Cn is the nth Fourier component of the amplitude
oscillations. Evidently, the Fourier transform of x(t) consists
of an array of regularly spaced spikes, offset from the central
frequency ω by integer multiples of the amplitude oscillation
frequency �. The model thus readily explains the experimental
fact that the nth spike is ∼1/n times the height of the first spike
(for n � 1)—this corresponds to the asymptotic power-law
decay behavior of the set of Fourier coefficients, discussed
above.

2. Form of the crater

We now turn to step (3) of the amplitude oscillation cycle,
viz., the growth of current in the resonator. Once again, we
treat the instructive case of a damped, driven linear harmonic
oscillator, governed by the oscillator equation, Eq. (2).

Here, the step function 	(t) reflects the fact that the drive
begins abruptly at the end of thold. (Equivalently, and more
physically, we could have attached the step function to the
inverse of the dissipative term; however, the present form
is simpler to analyze.) The general solution for x(t) may be
written in terms of the corresponding Green function G(t,t ′)
as follows:

x(t) =
∫ t

−∞
dt ′ G(t,t ′)V eiωt ′	(t ′) =

∫ t

0
dt ′ G(t,t ′)V eiωt ′ ,

(4)

where G is given (for t > t ′) by

G(t,t ′) = 1

2
√

ω2
0 − κ2

{e−κ(t−t ′) sin[ω1(t − t ′)]}, (5)

in which

ω1 ≡
√

ω2
0 − κ2 (6)

is the shifted resonance frequency. Upon performing the
relevant integration, one finds that the current is given by

x(t) = V

2iω1

(
eiωt − e−κt eiω1t

ω − ω1 + iκ

)
− c.c. − r.r. (7)

Note that we have omitted the complex conjugate (c.c.)
terms as well as the much smaller, rapidly rotating (denoted
r.r. and on the order of GHz) terms, as our primary focus is
on the shape of the envelope of the current, i.e., the manner
in which the amplitude grows. Note that x(t) vanishes at t=0,
as desired, and that eventually the amplitude saturates to its
steady-state sinusoidal form, doing so on a time scale given
by 1/κ . In Fig. 8 we show the behavior of x(t) at fixed κ

for various values of the detuning (with the aforementioned
rapidly oscillating terms omitted), which is given by |ω − ω0|.
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FIG. 8. (Color online) Time-averaged transmission characteristic
curves (main panel) and the growth of transients (insets) computed
for a linear oscillator. The lower panel shows the transmitted power
as a function of input frequency for a linear oscillator, for two
input powers; the horizontal line indicates the power required to
form a crater. For low input power, the onset of the crater lies near
resonance; in this regime, the growth of transients is monotonic, as
shown in the upper left-hand panel, and (as explained in the text)
no hysteresis occurs. For high input power, the onset of the crater
is far from resonance; in this regime, the growth of transients is
nonmonotonic, as shown in the upper right-hand panel. Hence, the
maximal transient amplitude xmax exceeds the steady-state amplitude
xss, and thus bistability arises, as explained in the main text. The thin,
horizontal lines in the two upper panels correspond to the critical
current of the nanowire; the thick lines correspond to xmax and xss as
defined in the text.

We now proceed to explain how the nature of the process
by which the current grows explains both the concave-up form
of the crater and the existence of hysteresis.

3. Shape of the crater

The scenario outlined in the previous section offers a natural
explanation for why the craters predicted by the model are
concave up rather than concave down. From the model, and
specifically Eq. (7), we know that (a) the rms value of x(t)
grows linearly, for t � 1/κ , with a frequency-independent
slope, and (b) the second derivative of the rms value of x(t)
is negative for times until the point at which x saturates at its
maximum value xmax, which must be greater than some critical
value xc if a crater is to form. (The two typical forms of x are
shown in the insets of Fig. 8.)

It follows from point (a) that, if x reaches xc at a very early
time (i.e., if the drive power is very large) then the rms value
of x(t) (which we term x̄ and define to be the mean taken
over the interval 2π/�, i.e., over one cycle of the amplitude

oscillation) can be arrived at by expanding the exponential to
first order in t:

x̄ = xc

2

(
2ω1xc

/
V

thold + (2ω1xc

/
V )

)
. (8)

On the other hand, it follows from point (b) that, as the drive
frequency is swept away from resonance, x(t) takes a relatively
long time to reach xc (i.e., when xmax is relatively close to xc,
as it would be at driving frequencies relatively far from the
resonance) and the average transmission increases. This occurs
for two reasons: (i) as the amplitude of x(t) saturates toward
xmax, a larger part of each cycle is spent at higher supercurrent
amplitudes [by observation (b); see also Figs. 11(c) and 11(d)];
and (ii) the amplitude oscillation period 2π/� increases, and
therefore thold occupies a smaller part of the cycle, resulting
in an increase in transmission. Thus, as one moves away from
the resonance, xmax decreases, the transmitted power increases,
and consequently the crater is concave up.

4. Hysteresis

Depending on whether or not the detuning exceeds κ ,
the oscillation amplitude either (i) overshoots its steady-state
value or (ii) does not. For instance, if the drive is exactly on
resonance, we know from Eq. (7) that the envelope behavior
of the current amplitude A(t) takes the form

A(t) ∼ 1 − e−κt , (9)

and thus approaches its steady-state value monotonically. By
contrast, if the detuning is large compared with κ , the envelope
behavior of the supercurrent amplitude exhibits beats, i.e.,

A(t) ∼ sin[(ω − ω1)t], (10)

and can overshoot its steady-state value by up to a factor
of 2. [Note that if the drive were turned on adiabatically
(or, equivalently, the Q factor were decreased adiabatically),
the amplitude would achieve its steady-state value without
overshooting. In this case there would be no hysteresis.
Therefore, the point at which switching occurs depends on
whether the current is increasing rapidly or adiabatically; as
we shall see, this leads to hysteresis.]

For large drive strengths, as the frequency is swept, x first
reaches its critical value relatively far from resonance, and case
(i) applies. In this case, xmax exceeds the steady-state amplitude
xss. If xc lies between xss and xmax [see Fig. 8(b)], the model
predicts that bistability occurs—if the system is initialized
in its steady state, it can stably continue in the steady state;
however, once the system switches, it cannot reenter the steady
state because to do so it would have to go through the entire
transient, which overshoots xc. Therefore, the sweep toward
resonance (during which the amplitude adiabatically increases
and the resonator enters the bistable region initialized in the
steady state) differs from the sweep away from resonance
(during which the system is initialized in the oscillatory or
pulsing regime, and cannot reach the steady state), and the
transmission curve thus exhibits hysteresis.

By contrast, for relatively small drive powers, such as those
that are barely sufficient to generate a crater, x reaches xc at
frequencies less than κ from the resonance. Now it is case (ii)
that is realized, and therefore x is in the monotonic growth
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regime, in which xmax = xss, and the model therefore predicts
that no hysteresis should occur, as found in the data.

We conclude this heuristic discussion with some brief
remarks on how the inclusion of thermal or quantum fluctua-
tions, or the Duffing nonlinearity, would affect the foregoing
arguments. One would expect fluctuations of the photon
number in the resonator to cause fluctuations in the current
through the nanowire, and these would sporadically drive
the current across xc, and should therefore cause switching
between the two stable states in the hysteretic region [see
Figs. 7(a) and 12(a)]; at sufficiently high temperatures this
would lead to the disappearance of hysteresis. As for the
Duffing nonlinearity, which must be incorporated to achieve
quantitative agreement with the data, it does not qualitatively
affect the above considerations: It causes the two sides of the
resonance curves to have a distinct hysteretic behavior and
forms of the crater, but each side would still individually
behave essentially as one would predict using the linear-
oscillator model.

C. Fits to data

We implement the model using a LabVIEW program that
solves the circuit sketched in Fig. 9, which uses the Josephson
junction inductance as the nonlinear Duffing element. The
three circuit parameters used to fit the data—viz., the ca-
pacitance, inductance, and resistance—are obtained by fitting
the low-power, near-Lorentzian resonance. We model the
nanowire as an effective Josephson junction having a switching
current Isw and kinetic inductance (in the zero current limit)
Lk that is determined, as discussed below, by fitting the extent
to which the resonance is non-Lorentzian at the onset of the
crater. A time step of 1 ps is used to advance the computation.
Using much smaller time steps results in inaccurate low-power
simulations owing to the large periods of the supercurrent

FIG. 9. Schematic depiction of the circuit diagram used to model
the spectrum of transmission curves. The diagram consists of a
resistively and capactively shunted junction (RCSJ) [ 39, 40] circuit
having an inductor inserted in series with the nanowire. The circuit is
driven by a sinusoidal bias current of amplitude ID and frequency ω.

oscillations, and a loss in accuracy of the order parameter phase
due to precision limits within the program. Also, using much
larger time steps results in the breakdown of the approximation
used to advance the iterative method in solving the differential
circuit equation. The value for the S21 parameter is calculated at
each particular frequency as S21 = 10 log[〈I 2

s 〉/I 2
D] + offset,

where Is is the supercurrent in the resonator, ID is the bias
current applied to the circuit in Fig. 9, and the offset is
used to account for the reference value of S21 effected by
the combination of attenuators, isolators, and amplifiers.

The model described in Secs. IV A and IV B, if we
augment the left-hand side of the oscillator equation with
the nonlinearity arising from the wire (as explained below),
is able to quantitatively reproduce the data taken at various
temperatures. In particular, at a temperature of 1.5 K, as
shown in Figs. 10–12, the model quantitatively reproduces
the following features: (1) the evolution of the crater shape,
as the input power is increased; (2) the dependence of the
satellite-peak spacing �f on the input power at a fixed
frequency; and (3) the dependence of the satellite-peak spacing
on input frequency at a fixed power.

The supercurrent, which is given by Is = Ic sin(φ), was
calculated as a function of time by numerically integrating
the circuit equation for Fig. 9 to evolve the phase across the
junction at each time step according to

φ̈ =
[

Icap
/
C + IcLφ̇2 sin (φ)

h̄
/

2e + IcL cos (φ)

]
. (11)

This equation was derived by equating the voltages on the
capacitive and junction branches of the circuit given in Fig. 9
and solving for φ̈. Once φ̈ is known, Kirchhoff’s current law
can be used to solve for Icap to advance the computation as
follows: Icap = Ib − Is − IR , where each term on the right-
hand side is known given the value of φ or one of its derivatives
from the previous time step. The superconducting phase φ and
all of its derivatives are initialized to zero.

In a frequency and power regime outside the crater and
near to the resonance, the model shows the supercurrent
monotonically growing [Fig. 11(a)] as expected from Eq. (9),
whereas far from the crater, the model reveals the nonmono-
tonic growth analogous to that in Fig. 8, as expected from
Eq. (10) [Fig. 11(b)]. Inside the crater regime, the supercurrent
grows monotonically; even far from the resonance there is
monotonic growth, due to the fact that the supercurrent reaches
its maximum amplitude before another period in its oscillatory
behavior is reached when the transient would overshoot and
cause nonmonotonic growth. Thus, monotonicity is enforced
inside the crater. The role of thold can also be clearly visualized
in Figs. 11(c) and 11(d): It corresponds to the interval in which
the supercurrent is held at zero after the nanowire switches to
the normal state. Once this time is over, the supercurrent begins
to grow. Additionally, the satellite peak frequency spacings �f
can be obtained from the model, which are calculated by taking
the Fourier transform of the supercurrent versus time profile.
These fit the data well, as can be observed in Figs. 11(c) and
11(d).

As discussed in Sec. IV B, at finite temperatures, thermal
fluctuations can reduce the hysteresis by causing switching
between the two stable states. The difference in thresholds
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FIG. 10. (Color online) Comparison of experimental data for
sample S1 and predictions of the model at T = 1.5 K. (a) Transmission
characteristics for input powers in 2-dB increments (thick colored
lines), and fits to the model (thin black lines). At an input power
of −33 dB, two other simulations are shown in gray and dark
gray corresponding to thold = 0 and thold = 4 ns, respectively. The
crater grows deeper (shallower) as the thold parameter is increased
(decreased). Thus, thold is a sensitive and necessary fitting parameter
that only affects the depth of the crater in this graph. Here thold =
1.65 ns results in the best fit. (b) Satellite peak spacing (�f) vs drive
power at a fixed drive frequency of 3471 MHz. (c) Satellite peak
spacing (�f) vs drive frequency at a fixed drive power of −33.6 dB.
All fits were calculated using the following fitting parameters: C =
16.7 pF, L = 0.113 nH, R = 995 �, Lk = 13.1 pH, Isw = 8.98 μA,
and thold = 1.65 ns.

the system would exhibit with and without the presence of
significant thermal (or quantum) fluctuations on the sweep
toward resonance would be greater than on the sweep away
from resonance. This can be seen as follows: On the sweep
toward resonance, the current grows adiabatically to its critical
value, as described in Sec. IV B, whereas on the sweep away
from resonance, the current grows rapidly to its critical value.
In the former case, the current amplitude is constantly near
its critical value; therefore, any fluctuation will carry it past
this value and cause the system to enter the crater. In the latter
case, only fluctuations that occur during the brief interval when
the current is near critical will have an effect. This effect can
be seen in Fig. 12(a), where, for a power of −41 dB, the
simulation is shown for both the case of including and not
including thermal fluctuations. In these fits, thermal noise can
be included by adding a random number with a given amplitude
(here, 1.91 × 10−4) to the phase at each time step. The choice
of the phase fluctuation amplitude can then be checked by cal-
culating the resulting supercurrent fluctuations Ifluct predicted
by the model and comparing them to the estimate from the
equipartition theorem, 1

2LI 2
fluct = 1

2kBT , where L is the total
inductance of the resonator-nanowire system. At a temperature
of 1.5 K and with an inductance of ∼0.2 nH, the supercur-
rent fluctuation in the resonator can be estimated from the
equipartition theorem to be Ifluct≈300 nA, which matches
the modeled supercurrent fluctuations. This agreement of
the predicted fluctuations and the fluctuations needed to
produce the best fits confirms that thermal fluctuations are
responsible for the observed small value of the hysteresis in this
sample with a relatively low critical current.

The data at much lower temperatures, such as 300 mK,
deviate slightly from the model’s predictions, in that the
crater has a pronounced left-to-right gradient, as shown in
Fig. 13(b). The origin of this effect is not clear; however,
subtracting a linear term (having a coefficient of 87 ndB/Hz)
from all the resonance data is sufficient to bring the data into
good agreement with our model, as shown in Fig. 13(a). We
therefore believe that this slope is extrinsic to the properties
of the nanowire, and is due, instead, to the low-temperature
behavior of the two-dimensional parts of the resonator or to
the other circuit elements, or due to parasitic coupling through
the vacuum.

1. Interpretation of fit parameters

In the fits to the data shown in Figs. 10(a), 12(a), and 13(a),
the Duffing oscillator parameters are determined by fitting
the subcritical (i.e., craterless) resonance data. There are two
further fitting parameters: (1) the drive power Pc required for
the onset of the crater, and (2) the interval thold, for which the
resonator is taken to be quiescent, once the nanowire enters
its normal state. As discussed in Sec. III, our identification of
Pc with the power at which the current through the nanowire
reaches Ic is supported by the temperature dependence of Pc.
In principle, Ic is deducible from the coefficient of the Duffing
term, using the current-phase relation (CPR) of the nanowire:
however, to date, the CPR appropriate for MoGe nanowires
has not been well characterized; we have therefore found it
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FIG. 11. (Color online) Model prediction of supercurrent growth in the resonator, and comparison between satellite peak data and model
for two powers for sample S1. (a) Supercurrent growth in the resonator at a power of −37 dB and a frequency of 3467.5 MHz, which is near the
resonance and outside, but near the crater shown in Fig. 10(a). The supercurrent growth is monotonic in this regime. (b) Supercurrent growth
in the resonator at a power of −31 dB and a frequency of 3481.3 MHz, which is far from resonance and also outside, but near the crater shown
in Fig. 10(a). (c) The upper panel shows the supercurrent growth in the resonator inside the crater at a drive power of −37 dB and a frequency
of 3471 MHz. The lower panel shows the satellite peaks (i.e., the Fourier transform of the upper panel) at this drive power and frequency and
the corresponding fits to the model. (d) Same as (c), except for a drive power of −35 dB. As the drive power is increased, the satellite peak
spacing increases, as the model predicts. The central peak in (c) and (d) is too narrow to be observed in the data.

more reliable to determine experimentally the coefficient of
the nonlinearity.

2. Implications for relaxation phenomena in the nanowire

Our other fit parameter, thold, is sensitive to relaxation
processes in the nanowire. Prima facie, it might seem that
thold should depend on the longer of the following intervals:
the time scale on which the current in the resonator relaxes
to its dissipative steady-state value, and the time scale on

which enough heat flows out of the nanowire that it can
reenter the superconducting state after it enters the normal
state due to heating. As we can infer from the inductance
and normal-state resistance of the nanowire (which is on
the order of ∼100 pH and 1 k�, respectively), the former
interval is too short to explain the measured value, which
can be estimated by L/R = 0.1 ps; besides, in order to fit
the data within our model, it is natural to assume that the
current in the circuit goes to zero, which would not be the
case if the nanowire were to reenter its superconducting state

184503-11



MATTHEW W. BRENNER et al. PHYSICAL REVIEW B 83, 184503 (2011)

FIG. 12. (Color online) Comparison of experimental data for
sample S4, which is a 10-nm thick MoGe resonator and nanowire,
and predictions of the model at 1.5 K. (a) Transmission characteristics
for input powers in 2-dB increments (colored lines), and fits to the
model (black lines). The bright green curve at −41 dB shows the
model simulation upon excluding phase noise. The quality factor is
665. (b) Satellite peak spacing vs input power at a fixed frequency of
3525 MHz. The data and model show good agreement. All fits were
calculated with the following fitting parameters: C = 7.55 pF, L =
0.204 nH, R = 3.2 k�, Lk = 65.4 pH, Isw = 1.584 μA, thold = 1.8 ns,
and Rth = 0.38 m�.

before the resonator had relaxed. Thus, we can assume that thold

depends on the relaxation rate of the nanowire back into the
superconducting state. This being so, one might expect thold to
depend strongly on the temperature of the leads (i.e., the bath
temperature), as the thermal conductivity of a gapped BCS
superconductor decreases exponentially at low temperatures.
In fact, however, thold does not seem to depend appreciably on
the bath temperature at low bath temperatures (i.e., in the range
0.3–1 K), as can be seen from Fig. 13(b). (At bath temperatures
higher than 2 K, however, our fits find thold to be zero, to within
our uncertainty.)

FIG. 13. (Color online) (a) Transmission characteristics of sam-
ple S1 at 324 mK for input powers in 2-dB increments (thick colored
lines), and fits to the model (thin black lines). At this temperature
the thermal fluctuations are negligible and were not included in the
modeling. At low power, Q = 425. The fits were calculated using the
following fitting parameters: C = 15.2 pF, L = 0.125 nH, R = 1005 �,
Lk = 13.1, Isw = 10.39 μA, and thold = 2.9 ns. (b) Dependence of
crater depth on temperature for craters of fixed width (for two different
widths). Within our model, this depth should be sensitive only to the
fit parameter thold; the very weak temperature dependence of the crater
depth indicates that thold does not depend strongly on temperature, at
least over the range 300 mK to 1 K. Two features are of note here: (i)
thold is slightly longer for lower temperatures; and (ii) as the model
predicts, the crater depths at higher input power are more sensitive
to the value of thold. (c) Craters at various temperatures that exhibit
similar crater widths. At lower temperatures the crater can be fit with
the model including a nonzero thold. At slightly higher temperatures,
thold begins to decrease toward zero. At still higher temperatures,
the current noise in the system becomes comparable to the signal
current and the crater becomes flat. Each graph was horizontally and
vertically translated to compensate for the temperature dependence
of the resonance frequency and other parasitic effects for easier
crater-width comparison.

Thus, taken together, our measurements and modeling lead
us to the perhaps surprising conclusion that, at low enough
temperatures, the time it takes the nanowire to relax back into
the superconducting state, in the absence of a current, does not
depend strongly on the bath temperature. A possible scenario
that is consistent with this observation goes as follows: In the
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FIG. 14. (Color online) Dispersion relations of trapped Bogoli-
ubov quasiparticles expected under the scenario outlined in the
present section, at high and low bath temperatures. The chief
difference between the two cases is the value of the superconducting
gap �, which is larger at low temperatures. The average quasiparticle
velocity [given by ∂E/∂(h̄k)] decreases as the gap increases, which
can be observed in the k-space denoted by the thick red line; hence,
the rate at which quasiparticles diffuse into the leads also decreases.
However, this diffusion rate, along with the gap, is essentially constant
with respect to temperature at low temperatures.

middle of the nanowire the superconducting gap collapses and
reforms essentially immediately (i.e., on the Ginzburg-Landau
time scale). This does not give the normal electrons and
holes created during the collapse of the gap sufficient time
to equilibrate; thus, located near the center of the wire are
a substantial number of Bogoliubov quasiparticles, having
energies comparable to the gap energy. Within this scenario,
the number of quasiparticles created depends only on the
highest temperature achieved by the nanowire during the
collapse process, and is therefore essentially independent of
the bath temperature. Relaxation of the nanowire occurs via
the diffusion of these quasiparticles into the leads; this process
occurs at a rate that depends on the effective mass of the
Bogoliubov quasiparticles, which is proportional to the gap,
as illustrated in Fig. 14. However, the magnitude of the gap
saturates at low temperatures, and therefore so does the rate of
diffusion of quasiparticles. Thus, the scenario outlined above
would suggest that thold should saturate at low temperatures,
as we observe experimentally.

V. RESONATORS BRIDGED BY TWO NANOWIRES

A. Motivation and background

We now turn to the case of resonators that incorporate
two wires, as shown in Figs. 1(c) and 1(d). These devices
are similar in some respects to the resonators interrupted by
superconducting quantum interference devices (SQUIDs) that
were studied in Refs. 41 and 42; they differ, however, in two
crucial respects. (i) Nanowires, unlike Josephson junctions,
can support metastable states having one, or many, virtual
vortices trapped in the region between the wires; these devices
may therefore enable the study of, e.g., the quantum tunneling
of vortices across the nanowires. (ii) If the entire device—
resonator, including nanowires—is placed in a perpendicular
magnetic field, various properties of the system, such as the

intrinsic resistance and the switching current, are periodic in
the magnetic field; however, the period is much shorter than
what can be estimated by dividing the flux quantum by the
area of the loop formed by the nanowires (or, equivalently,
the conventional Little-Parks geometrical area dictated value).
Suppose that the wires are separated by a distance a, and is
each of length b, so that the area between the wires is given
by ab: For the conventional Little-Parks effect, the properties
of the wires should oscillate with magnetic field with a period
given by �B = �0/ab, where �0 is the superconducting flux
quantum. This effect is, however, greatly modified in situations
such as the present one, in which the leads are themselves
mesoscopic, i.e., have widths smaller than the perpendicular
penetration depth λ. In such cases, it can be shown31,43 that
the magnetic-field periodicity of the properties of the system
as a whole is largely set by screening currents in the leads,
which do not depend on the length of the wires. Thus, e.g., if
the width l of the leads is much greater than a, the effective
periodicity of the physical properties of the wires for small
fields is given not by �B = �0/ab, but by �B = �0/c1al,
where c1 is a geometry-dependent number of order unity.
At stronger magnetic fields, vortices enter the leads, and the
periodicity changes.

The effects discussed above have been explored both exper-
imentally and theoretically for the case of dc currents.31,32,43

The experiments reported here confirm that the Lorentzian
crater is also periodic in the magnetic field, with the same
periodicity.

B. Magnetic-field dependence of resonance and
Lorentzian crater

Given our previous association, discussed in Sec. III, of the
power required for the onset of the crater with the switching
current of the nanowire, one would expect that the power
required for the onset of the crater in the two-nanowire
situation would depend periodically on the applied magnetic
field. We do indeed find such a dependence (Fig. 15), with a
periodicity consistent with that predicted in Refs. 31,32, and
41. The critical power Pc at the onset of the crater is obtained
using the S21 parameter in the dB scale: Pc = S21 + P out

NA .
The theoretical period of the magnetic field, for which the
sample is tilted at an angle, θ , with respect to the magnetic
field in order to fit in our measurement system, is calculated
from �B = �0/c1alsin |θ |. A wire separation of 6.63 μm,
a lead width of 10 μm, and an approximate tilt angle of
35◦–40◦ results in a theoretical prediction of �B = 48.5–
54.4 μT, assuming c1 ≈ 1. This is close to the experimentally
measured value of �B = 41.4 μT. The small difference in the
predicted magnetic field period can be accounted for through
the geometic parameter c1, and through the uncertainty of our
knowledge of the exact angle between the resonator surface
and the applied magnetic field (the sample was not horizontal
due to practical limitations related to the dimensions of the
sample holder and the cryostat).

In addition, the resonance frequency for fixed drive power
shifts with magnetic field, owing to the fact that the effective
inductance of the nanowire depends on its critical current,
which in turn depends on the magnetic field. At low tem-
perature and low power, this resonant frequency shift can
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FIG. 15. (Color online) (a) Oscillations of crater onset power Pc as a function of magnetic field for sample S5, which is a 25-nm-thick
MoGe resonator containing two relatively symmetrical nanowires (having similar critical currents) separated by 6.63 μm, and connecting a
center conductor that is 10 μm in width. (b) Map of the transmission coefficient as a function of magnetic field and drive frequency, at fixed
input power, showing the periodic onset and disappearance of the Lorentzian crater (i.e., the dark islands in the middle). Regions of higher
transmission are shaded more lightly. (c) Two transmission curves for the same input power but at differing magnetic fields. The drive power
in this case lies between the minimum and maximum drive powers for magnetic-field-dependent crater onset. The black (red) curve in (c) is
shown in (b) as a dashed black (red) line.

be as large as ∼5 MHz (Fig. 16). When the drive power
is large enough to give rise to a crater, this frequency shift
has the same periodicity as that of Pc (see Fig. 15) and is
continuous. At lower input powers, however, the dependence
of the resonance frequency on the magnetic field becomes
discontinuous (see Fig. 16). At higher powers or higher
temperatures (for which the critical current is lower), the
barrier to vortex entry is lower, hence one expects the system
to return to periodic behavior, as is seen experimentally (see
Fig. 16). We interpret the discontinuous resonant frequency as
a manifestation of the multivalued nature of the current-phase
relationship of a long nanowire (i.e., L/ξ> 4.4).43 There are
multiple possible metastable states differing in their values of
the current circulating in the nanowires, corresponding to the
presence of one or more virtual vortices trapped in the area

between the wires; the resonance frequency of the resonator
is thus shifted by an amount that is related to the number of
vortices trapped between the wires, and the entry or exit of
vortices corresponds to a jump in the resonance frequency.

The vortex-entry process in a resonator differs crucially
from that in the dc geometries considered in Ref. 31, in the
sense that the overall system is not maintained at a particular
bias current: The minimal input current required to observe
the resonance shift is far lower than the circulating current.
The present ac approach therefore raises the prospect of
noninvasive measurements of phase slip and vortex dynamics
in a two-wire device. It would thus be of considerable interest
to perform analogous measurements on resonators containing
thinner wires that are closer to the superconductor-insulator
transition: We shall return to this idea in future work.

FIG. 16. (Color online) Color map of transmission characteristics as a function of magnetic field and frequency for sample S5. The left-hand
graph is measured at 365 mK and an input power roughly six orders of magnitude less power than Pc. The middle graph is also measured at
365 mK but at only 3 dB less power than Pc. Here, periodicity returns, as the barrier for vortex jumping into and out of the loop formed by the
two nanowires is reduced. The right-hand graph is measured at 3.25 K and using approximately four orders of magnitude less power than Pc.
Again, periodicity returns, due to the reduction of the barrier for vortex jumping at higher temperatures. Lighter (darker) color denotes higher
(lower) transmission.
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C. Anomalous transmission in the frustrated state

The scenario is developed so far, viz., that the magnetic
field affects the properties of the resonator by introducing a
Meissner current and phase vortices between the wires (where
we understand a “phase vortex” to be a state in which the
phase changes by 2π over a loop formed by the wires).
The additional currents flowing through the wires add to the
microwave-induced current, thus reducing the power Pc at
which the crater appears. This leads one to expect that the
crater should grow broader and deeper, monotonically, as the

FIG. 17. (Color online) (a) Transmission characteristics for
sample S6, which is a two-wire device incorporating somewhat
asymmetric nanowires separated by 1.65 μm and connecting a center
conductor that is 10 μm in width, measured at 308 mK and at an input
power of −21 dB. In the frustrated state (denoted by F.S.), for which
the critical power is at a minimum, an anomalous transmission effect
is observed. For low input power and at zero magnetic field, Q = 475
for this sample. (b) The transmission power spectrum of the amplitude
oscillations when the drive frequency is fixed at 4138 MHz and a
power of −20.8 dB. Near the frustrated state, the satellite peak spacing
increases. (c) Color map of the transmission coefficient as a function
of magnetic field and frequency, exhibiting the anomalously enhanced
transmission effect near the frustrated state (the corresponding regions
are marked “F.S”). (d) The transmission power spectrum measured in
the crater regime at high temperature (2 K) for drive frequency and
power fixed at 4124 MHz and −39 dB. As one tunes the wires to the
frustrated state (F.S.; middle curve), the satellite peaks vanish and are
replaced by a broad central feature, thus indicating that the periodic
superconductor-normal oscillations have been entirely replaced by
stochastic dissipative events of a lesser strength. The terms “below”
and “above” the F.S. indicate the magnetic field corresponding to the
phase induced on the wires that is an integer multiple of 2π , directly
below and above the F.S., respectively.

FIG. 18. (Color online) Color maps of the transmission coeffi-
cient as a function of magnetic field and frequency, with an input
power of −17 dB at the two indicated temperatures for the case of
a device incorporating two symmetric nanowires (sample S5). The
anomalous transmission effect only appears at higher temperatures.

magnetic field is swept so as to decrease the critical power Pc.
Although this expectation is borne out as regards the width
of the crater, it is not borne out for the depth. Instead, for a
narrow range of magnetic fields near the field corresponding
to the lowest critical current (which we refer to as the fully
“frustrated” state, i.e., states at which the loop cannot acquire
the correct number of phase vortices to compensate the
Meissner current; such a state occurs when the leads impose a
phase difference of 2πn + π on the wires), the crater becomes
much flatter and shallower [see Fig. 17(a)], meaning that the
average supercurrent amplitude actually becomes large near
this frustration point, which seems to go against expectations.
Concomitantly, the satellite peaks in the transmitted power
spectrum are broadened and decreased in height relative to the
unfrustrated state, and a wide feature develops near the drive
frequency [see Figs. 17(b) and 17(d)]. At higher temperatures,
the satellite peaks disappear altogether at the frustration field.

This anomalous transmission effect is most evident at
higher temperatures. Additionally, of the two samples that we
measured, the more asymmetric sample (i.e., the one in which
the wire critical currents are presumed less similar based on
the differences in their physical appearance) exhibited a much
more pronounced anomalous transmission feature (i.e., the rise
of the bottom of the crater near the frustration point). Whereas
in the more symmetric sample, the anomalous transmission
set in only at temperatures above T ∼ 2 K (Fig. 18), in the
asymmetric sample this effect persisted down to the lowest
temperature at which we took data, i.e., T = 308 mK.

D. Qualitative explanation of the anomalous transmission

The anomalous transmission effect seems to depend
strongly on the asymmetry between the two wires. Therefore, a
natural starting point for explaining it is to consider a resonator
containing one wire that is much thicker than the other, i.e., the
geometry shown in Fig. 19. This geometry is related to that
of a rf SQUID that is capacitively coupled to the ac input.
The analogy with a rf SQUID explains how a plateau in the
transmission could arise: When the driving power exceeds a
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FIG. 19. Illustration of a two-wire sample in the rf SQUID limit
of extreme asymmetry between the wires. The capacitive coupling
between the resonator and its input is analogous to the coupling
between a rf SQUID and its “tank” circuit (Ref. 36).

certain flux-dependent value, vortices are free to enter and
leave the circuit via the weak link, thus dissipating energy.
In contrast to the process discussed in Secs. III and IV B
for the one-wire device, however, this dissipative process
does not cause the Q factor of the resonator to drop to
zero when the weaker wire undergoes a dissipative process,
as the two halves of the resonator remain connected by the
stronger nanowire; instead, the total current in the resonator is
expected to stay rather large in this regime.36 This picture also
accounts for the broad peak in frequency space near the drive
frequency [see Fig. 17(d)], as the processes of vortex entry
and exit are stochastic. Despite its idealization, therefore, this
picture does qualitatively account for the high-temperature,
asymmetric-wire data shown in Fig. 17(d).

The crucial difference between the scenario considered
above and the one considered in Secs. III and IV is that
in the former case the dissipative processes are concen-
trated in one of the wires. In the experimentally relevant
regime, the disparities between the critical currents of the
two wires are not as dramatic as in the limit considered
above; the “anomalous” dissipative state, in which only one
wire becomes dissipative, must compete with the “normal”
dissipative state, in which both wires become dissipative,
and the phenomenology described in Secs. III and IV is
realized. The threshold input power for the anomalous process
is lowest in the frustrated state, whereas that for the normal
process does not depend on the magnetic field; therefore, the
anomalous process is most likely to occur in the frustrated
state. In less asymmetrical situations, the weaker wire carries
an appreciable fraction of the current in the circuit when
superconducting; therefore, when the weaker wire switches to
the normal state, one would expect the steady-state current in
the circuit to drop to some fraction of its maximum achievable
value. In particular, it is possible for the weaker wire alone
to undergo amplitude oscillations (the stronger wire would
always remain superconducting), in which case the current
amplitudes in the circuit would oscillate between the low value,
which equals the supercurrent in the stronger wire, and the high

FIG. 20. (Color online) (a) Transmission characteristics for a
two-wire sample (S6) having noticeably asymmetric nanowires,
measured at 308 mK and an input power of −21 dB. In the
frustrated state an anomalous transmission effect is observed.
The model described in Sec. III is used to fit the curve, but
with a modified switching rule such that when the supercurrent
hits Ic, it drops to a fraction of Ic, here, 0.64, because the
stronger nanowire maintains superconductivity. The fits were cal-
culated using the following fitting parameters: C = 18.12 pF,
R = 545 �, Lk = 6.55 pH; and for the unfrustrated (frustrated) state,
L = 0.07498 (0.07493) nH; Isw = 22.07(18.50) μA; thold = 6.3 (0)
ns. Additionally, a small slope of 87 ndB/Hz was subtracted from
each set of data to account for low-temperature parasitic resonances
as discussed in Sec. IV B. (b) Transmission power spectrum of the
amplitude oscillations for drive frequency fixed at 4138 MHz. In the
frustrated state, the period of amplitude oscillations is reduced, thus
increasing the satellite peak spacing �f. (c) Model prediction for the
supercurrent profile as a function of time at the unfrustrating magnetic
field. (d) Model prediction for the supercurrent time evolution at the
frustrating field; notice that the supercurrent does not drop to zero
after it reaches Ic.

value corresponding to the addition of supercurrents from both
wires.

These expectations are borne out by the data shown in
Fig. 20. The fact that the satellite peak spacing �f increases by
a factor of ∼3 in the frustrated state has a natural explanation in
the scenario sketched in the present section: The current should
take ∼1/3 the time to grow from ∼2Ic/3 to Ic as it does to grow
from 0 to Ic. Therefore, the amplitude oscillation period should
be reduced by a factor of ∼1/3, and the frequency �f tripled, as
the data shown in Fig. 20(b) indicates. We are also able to fit the
shape of the anomalous crater by using the model presented
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in Sec. IV but with a modified switching rule, in which the
current is reduced to some fraction of Ic (here ∼2/3) rather
than to zero. In the fits for the frustrated case, the diffusive
parameter thold is not included, so as to simplify the simulation.
If thold were included, it would serve to slightly increase the
depth of the crater and would have forced (within the model)
the supercurrent to drop to a slightly higher fraction of Ic,
resulting in a slightly larger �f. In the unfrustrated case the
model predicts �f = 44 MHz, whereas the experimental value
we have obtained is 50 MHz; in the frustrated state the model
predicts �f = 12.4 MHz, whereas the experimental value is
found to be 15 MHz. Therefore, the model has reasonable
semiquantitative agreement with the experiment.

The effective interwire asymmetry—parametrized, e.g., by
the ratio of the critical currents of the wires—is enhanced at
temperatures that are high enough to be comparable to the
critical temperature of the weaker of the two wires; thus, the
anomalous transmission effect becomes more pronounced at
higher temperatures. (The critical temperature is related to
the critical current by the Bardeen formula, as discussed in
Sec. III.) A further, relatively minor, factor is that at high
temperatures the thermal current noise in the resonator be-
comes comparable to the nanowire’s critical current, thus, the
deterministic amplitude-growth process delineated in Sec. IV
becomes swamped by the effects of thermal fluctuations.
(Thus, one sees behavior that is superficially similar to anoma-
lous transmission at temperatures ∼4 K, even in the single-wire
case.) This effect cannot, however, account for the existence
of anomalous transmission presented in this section because
(i) at 300 mK in the asymmetric sample the thermal noise is
much lower at this temperature and (ii) as the magnetic field is
swept away from the frustrated state, the crater is observed to
increase and not decrease in depth, which would be the wrong
trend if the anomalous transmission effect were not present.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In the present work we have characterized a microwave
stripline resonator interrupted by one or two nanowire bridges.
We have identified two nonequilibrium steady states: one,
which we have identified as an oscillatory steady state of the
resonator-nanowire system, in which the nanowire periodically
enters and leaves the superconducting state; and a second,
stochastic steady state, which emerges in the two-wire device
near what we have termed “frustrating” magnetic fields, and
which we conjecture to be associated with vortex (or, equiva-
lently, phase slip) motion across the weaker of the two wires.
We have presented evidence for the fact that the oscillatory
steady state exists in a range of resonators containing quasi-
one-dimensional elements, and is associated with the driving
of the nanowire (or another quasi-one-dimensional element)
being past its critical current. In addition, we have developed
a simple phenomenological model that explains the salient

features of the oscillatory steady state, and also captures some
qualitative features of the stochastic steady state. Moreover,
while accounting for the features of the oscillatory state,
our model also enables us to extract information about the
relaxation of heat pulses in nanowires; we find that, contrary
to what one might expect, this relaxation does not slow down
appreciably at temperatures far below Tc, but rather it saturates.
We have also offered a qualitative picture of the “anomalous”
stochastic state exhibited by two-wire devices, a feature that
we hope to address in more detail in future work.

We believe that the primary avenue for future investigations
of nanowires embedded in superconducting resonators should
involve the study of nanowires that are much narrower than
those measured to date. As discussed in the Introduction,
such nanowires would have critical currents that are not
much greater than the current due to a single photon in the
resonator. Therefore, resonators containing them could be used
both to investigate quantum phase slips via a novel probe
and to explore many-body circuit-QED, in which a single
photon is coupled to the elementary excitations of an extended
quantum-mechanical system. Such devices would differ from
the artificial-atom-based systems studied to date in a variety of
ways; we briefly mention two. First, it has been predicted45,46

that successive quantum phase-slip events in nanowires are
coherent at low temperatures. As discussed in Refs. 47 and 48,
such coherence gives rise to an effective energy band structure
for the states of the field representing charge transfer across the
wire; this effective band structure is accompanied by interband
“excitonic” transitions having frequencies in the microwave
regime.47 It is plausible that one could detect such excitonic
transitions—which would provide strong evidence for the
coherent quantum-mechanical character of phase slips—via
their influence on cavity resonances, which would include, e.g.,
vacuum Rabi splitting.3 Second, the physics of a single photon
coupled to a quantum field (e.g., the superconducting phase
fluctuations of the nanowire) would pave the way for realiza-
tions of quantum impurity-like models in which the photon acts
as the impurity and the nanowire acts as a (one-dimensional)
environment or bath. Quantum impurity models are believed to
exhibit nonperturbative phenomena of considerable theoretical
interest, such as the Kondo effect; moreover, the coupling of a
low-dimensional system to a controllable “impurity” has been
proposed as a method for probing the quantum mechanics of
low-dimensional systems.49
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