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Superconducting vortex lattices, glasses, and liquids attract great interest as model systems of crystallization
and as a source of microscopic information of the nature of superconductivity. We report direct microscopic
measurements of the vortex lattice tilt modulus c44 in ultrapure niobium using time-resolved small-angle neutron
scattering. Aside from a general trend to faster vortex lattice dynamics for increasing temperatures, we observe
a dramatic changeover of the relaxation process associated with the nontrivial vortex lattice morphology in
the intermediate mixed state. This changeover is attributed to a Landau branching of the Shubnikov domains
at the surface of the sample. Our study represents a showcase for how to access directly vortex lattice melting
and the formation of vortex matter states for other systems.
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I. INTRODUCTION AND MOTIVATION

The morphology of superconducting vortex lattices (VL)
attracts great interest as a source of microscopic information
of the nature of the superconductivity and as model systems
of condensed matter. The elastic matrix �αβ of a VL thereby
describes the energy associated with a distortion of the VL
due to thermal fluctuations, gradients of magnetic field or
temperature, pinning, and the presence of transport currents.
Analogous to crystal lattices, the elastic matrix �αβ of a VL
determines the thermal stability and the state of aggregation
of superconducting vortex matter; aside from the regular
Abrikosov VL, VL Bragg glasses, liquids, and ices have been
identified.1–3

At VL melting transitions, the shear modulus discontinu-
ously jumps to c66 = 0, where the long-range order vanishes.
VL melting was observed for various superconducting sys-
tems, mostly for high-Tc compounds because of their high
transition temperature,4,5 but also in compounds characterized
by disorder as NbSe2 and MgB2.1–3 Surprisingly, a melting
transition also was recently reported for the heavy fermion
compound URu2Si2 (Ref. 6) in the clean limit. Melting
transitions show up as characteristic dips of the differential
resistivity and can also lead to tiny jumps of the local
magnetization of the order of few tenths of a Gauss, detectable
with sensitive Hall probes.7 Measurements to detect melting
transitions are intricate, as effects induced by depinning can
yield similar results. However, the presence of pinning is
required, in general, as a perfect, pinning-free VL shows no
signature in the resistivity at the melting transition.8

Moreover, the elastic matrix �αβ of VLs is intimately
related to the pinning and depinning properties of supercon-
ducting vortices. This is especially important for technical
applications: If transport currents are applied to superconduct-
ing materials, the Lorentz force acting on the vortices leads,

with increasing current, to dissipative processes such as vortex
creep,9 thermally assisted flux flow (TAFF),10 and flux flow
(FF).11 Therefore, the ability of superconducting materials
to carry large transport currents for technical applications is
closely connected to the pinning properties of superconductors
and the elasticity of the VL. The elastic constants of the VL
c11 for compression, c44 for tilt, and c66 for shear hence reflect
the microscopic nature of the superconductivity as well as
impurity or surface properties of the superconducting sample
due to pinning.12–15

The experimental access to the elastic matrix �αβ of VLs, in
particular for nonequilibrium states, by macroscopic bulk tech-
niques such as the transport properties,12 the magnetization,7

or measurements using vibrating reeds16 is strongly influenced
by parasitic pinning effects as well as geometric effects.
Moreover, the momentum dependence of the elasticity of VLs
can not be determined unambiguously by macroscopic mea-
surements. Due to the use of thin-film samples, microscopic
surface-sensitive techniques such as decoration or magneto-
optical methods suffer from similar or even stronger pinning
and geometry-induced effects. In contrast, local probes such
as muon spin relaxation (μSR) and scattering techniques such
as neutron scattering yield microscopic information on bulk
VLs. However, as the accessible time scale of inelastic neutron
scattering techniques is still too short for VL dynamical
properties, neutron scattering was, up to now, limited to
characterize the static properties of VLs with only a few
exceptions.17–20

In this paper, we report direct microscopic measurements
of the VL tilt modulus c44 with drastically reduced limitations
due to surface pinning in ultrapure bulk niobium (Nb) using a
time-resolved neutron scattering technique as combined with
a tailored magnetic field setup. With its low Ginzburg-Landau
parameter κ , situated close to the border of type-I and -II
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behavior, the superconductivity in Nb is ideally suited as a
model system for systematic studies of vortex matter.21–24

By imposing a periodic tilting of the magnetic field, we
induce a relaxation process of the VL that can be described
by a diffusion process in the limit of uniform tilt. The
diffusion constant of this diffusion process is given by the tilt
modulus c44 of the VL and the flux-flow resistivity ρFF. The
characteristic properties of the diffusion process are observed
by means of time-resolved stroboscopic small-angle neutron
scattering (SANS).25 The relaxation processes observed show
increasing VL stiffness with increasing magnetic field H

and reduced damping with increasing temperature T . This
behavior agrees well with calculations performed within a VL
diffusion model.26 Aside from these general trends, we observe
a dramatic change of the relaxation processes associated with
the nontrivial VL morphology in the intermediate mixed state
(IMS).

Our study represents a showcase for how to access directly
VL melting and the formation of vortex glass states and
slow vortex dynamics also in unconventional superconductors,
notably the cuprates, heavy-fermion systems, and borocarbide
or iron arsenide systems.

The outline of this paper is as follows: In Sec. II, we briefly
revisit the salient features of the elasticity of superconducting
VLs. The experimental setup that was developed for our mea-
surements is discussed in depth in Sec. III. The results obtained
for the tilt modulus c44 are presented in Sec. IV. The response
of the VL to a changed magnetic field environment in the k = 0
limit with a diffusion ansatz8,10,26,27 is discussed in Sec. V.
Finally, the relevance of our experimental setup for the inves-
tigation of different magnetic systems is discussed in Sec. VI.

II. ELASTICITY OF VORTEX LATTICES

In the following, we introduce the elastic properties of
VLs. We first concentrate on the derivation of the free
energy of an arbitrarily curved VL using a Ginzburg-Landau
ansatz. We then derive the elastic matrix �αβ and deduce the
eigenfrequencies, characteristic time scales, and the moduli
for compression, tilt, and shear of superconducting VLs. In
particular, we discuss the elastic moduli for uniform tilt, which
are relevant for the interpretation of our measurements of the
VL elasticity in superconducting Nb. For a detailed theoretical
description on VL elasticity, we refer to Refs. 8,10,26, and 27.

A. Elastic energy of vortex lattices

Similar to the elasticity of crystal lattices, which is
determined by electrostatic or covalent forces, the elasticity
of superconducting VLs is determined by the vortex-vortex
interactions. The free energy F of an arrangement of arbitrarily
curved vortices in the Ginzburg-Landau regime close to Tc has
been approximated by Brandt8 and can be written in terms of
two contributions

F (ri{z}) = φ2
0

8πλ2μ0

∑
i

∑
j

( ∫
dri

∫
drj

e−rij /λ
′

rij

−
∫

|dri |
∫

|drj |e
−rij /ξ

′

rij

)
(1)
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FIG. 1. Panel (a) schematically depicts the intervortex (dot-
ted line) and intravortex (dashed line) interactions determining
a particular symmetry, structure, and elasticity of VLs. Panel
(b) depicts the cusplike response of a superconducting VL to
a pinning force dF . Panel (c) schematically depicts a thermally
fluctuating superconducting VL for a temperature below the melting
temperature Tm.

with

rij = |ri − rj |, (2)

λ′ = λ/〈|ψ |2〉1/2 ∼ λ/(1 − b)1/2, (3)

ξ ′ = ξ/[2(1 − b)]1/2, (4)

and the reduced field b = B/Bc2. The first term of the sum in
Eq. (1) represents the repulsive electromagnetic vortex-vortex
interaction with an effective London penetration depth λ′. The
second term represents the attractive interaction of vortex lines
due to the condensation energy of overlapping vortices with
an effective coherence length ξ ′. The vortex self-energy or line
tension is included in the diagonal terms i = j . A schematic
sketch of the interactions is given in Fig. 1(a).

The elastic energy of a distorted VL, caused by pinning,
structural defects, field gradients or transport currents, tem-
perature gradients, or thermal fluctuations, is small for most
cases. Therefore, it can be calculated by linear elastic theory
expressed in k space. The displacements of a vortex line
ui(z) = ri(z) − Ri(z) = (ui,x ; ui,y ; 0) from its ideal position
Ri = (Xi ; Yi ; z) is expressed by its Fourier components

ui(z) =
∫

BZ

d3k

8π3
u(k)eikRi (5)

and

u(k) = φ0

B

∑
i

∫
dz ui(z)e−ikRi . (6)

With u(k) = (ux ; uy ; 0), the elastic free energy reads as

Felast = 1

2

∫
BZ

dk
8π3

uα(k)�αβ(k)u�
β(k), (7)

where (α,β) = (x,y). The integrals in Eqs. (5) and (6) cover the
first Brillouin zone of the VL in k space and −ξ−1 � kz � ξ−1,
respectively. �αβ(k) is called the elastic matrix of the VL.

�αβ(k) is real, symmetric, and periodic in k space and is
related to the elastic moduli c11 for compression, c44 for tilt,
and c66 for shear within continuum theory by

�αβ(k) = (c11 − c66)kαkβ

+ δαβ

[
k2
⊥c66 + k2

z c44 + αL(k)
]

(8)
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(a)
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FIG. 2. (a) Schematic depiction of the elastic constants c11 for
compression, c44 for tilt, and c66 for shear of a superconducting VL.
(b) Depiction of the k dependence of the elastic matrix �α,β and of
the elastic constants c11, c44, and c66 of the VL. Note the different
scaling for c66 (Ref. 8).

with k2
⊥ = (k2

x + k2
y) (cf. Fig. 2). The k dependence of the

elastic matrix is plotted in Fig. 2(b). The Labusch parameter
αL describes the elastic interaction of the VL with pinning
potentials caused by material inhomogeneities. For individual
pinning, αL is k independent.28 For weak collective pinning,29

αL(k) decreases when k⊥ > R−1
c or kz > L−1

c , where Rc and
Lc = (c44/c66)1/2Rc are the radius and length of the coherent
short-range ordered regions of the pinned VL.

B. Uniform distortions

For uniform distortions, the elastic moduli of the VL may
be written as8

c11 − c66 = B2∂2F

∂B2
= B2∂μ0H

μ0∂B
,

c44 = B∂F

∂B
= Bμ0H

μ0
= BH,

c66 ≈
(

Bφo

16πλ2μ0

)(
1 − 1

2κ2

)
(1 − b)2 (9)

with the Ginzburg-Landau parameter κ . c11 − c66 is the mod-
ulus for isotropic compression. H is the applied field, which
is in equilibrium with the VL at the equilibrium induction
B, given by the magnetization M = μ0H − B � 0. The
response of a VL to a change of the magnetic-field direction
is characterized by the tilt modulus c44 of the VL. Note
that c66 vanishes either for B → Bc2, which corresponds to
strongly overlapping vortex cores, for λ → ∞, corresponding
to strongly overlapping vortex fields, or for κ = 1/

√
2. In the

special case κ = 1/
√

2, all VL arrangements have the same
free energy.8

Due to the long effective interaction lengths λ′ and ξ ′, c11

and c44 strongly depend on the k vector of the disturbance,
which is referred to as nonlocality of the VL. This leads to
a strong softening of the VL for short-range distortions. This

nonlocality gives rise to large distortions caused by pinning,
disorder, or thermal fluctuations, whereby the VL reacts to
external forces in the form of a sharp cusp and not like pulling
a string (cf. Fig. 1).

C. Characteristic time scales

The elastic matrix of superconducting VLs determines the
restoring force of k-dependent distortions. The eigenmodes
and the characteristic damping of VL fluctuations are deter-
mined by the restoring force as well as the viscous damping of
the VL motion. The movement of the vortices with the velocity
v is damped by the viscosity

η = B2

ρFF
≈ BBc2

ρn

. (10)

This creates a drag force vη per unit volume, where ρFF

represents the flux flow and ρn the normal conducting
resistivity. The elastic eigenmodes of the VL are given
by a diagonalization of the elastic matrix �αβ . The result
is a compressional and a shear eigenmode, relaxing with
exponential time dependencies.8 In continuum approximation,
this yields

�1(k) = [c11(k)k2
⊥ + c44(k)k2

z ]/η ≈ �1,

�2(k) = [c66k
2
⊥ + c44(k)k2

z ]/η ≈ �1k
2
z /k2. (11)

For the VL in a typical clean low κ superconductor as, e.g.,
Nb, the the characteristic relaxation rates �1 and �2 of the VL
are in the range of 109 s−1.

III. EXPERIMENTAL SETUP

To measure the VL tilt modulus c44 by means of time-
resolved SANS, a time-varying magnetic-field setup, con-
sisting of two orthogonal pairs of Helmholtz coils, has been
designed. By imposing a periodic tilting of the magnetic field,
we induce a relaxation process of the VL, which can be
described by a diffusion process. The relaxation of the VL
is measured by means of time-resolved stroboscopic SANS.
The measurements have been performed on the small-angle
diffractometer V4 at BENSC.25,30 We introduce the details of
the experimental setup used for our study in the following
paragraphs.

A. Sample environment and magnetic-field setup

A schematic drawing of the experimental setup is given in
Fig. 3: The sample is located in the center of two Helmholtz
coils, cooled with a closed-cycle cryostat to a minimum
temperature of 4 K. Both magnetic fields and the sample can
be rocked together with respect to the vertical z axis. The
static main field Hstat, applied along the y axis, is generated by
made-to-order water-cooled copper coils.31 Hstat is oriented
approximately parallel to the incoming neutron beam. The
angle enclosed between Hstat and the incoming neutron beam,
which is also applied in the xy plane, is denoted rocking angle
φ. A magnetic field 75 mT � Hstat � 135 mT was applied.

The time-varying field Hosc is generated by a small air-
cooled set of Helmholtz coils inside the main coil, driven
with an arbitrary waveform generator and an amplifier. Hosc is
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FIG. 3. (Color online) Schematic depiction of the experimental
setup used for time-resolved SANS measurements of the VL tilt
modulus c44. The sample is located in the center of two orthogonal
magnetic fields, generated by Helmholtz coils. With a combination
of a static magnetic field Hstat ‖ y and a time-varying magnetic field
Hosc ‖ x with Hosc � Hstat, the resulting magnetic field can be rotated
with respect to the sample in the xy plane. Both magnetic fields and
the sample can be rocked around the vertical z axis with respect to the
incoming neutron beam by the angle φ. The resulting magnetic field
Htotal is roughly parallel to the incoming neutron beam. The scattered
intensity is recorded on a two-dimensional detector.

oriented along the x axis perpendicular to Hstat. A rectangular
pulse shape with an amplitude of Hosc = 0 mT ↔ 5 mT and
a repetition rate of 0.2 Hz was applied. The resulting field
Htotal is rotated with respect to Hstat by the angle ε =
arctan |Hosc|/|Hstat| in the xy plane. Hstat � Hosc yields that
|Htotal| ≈ |Hstat| = |H|. Due to the perpendicular alignment,
we omit the vectorial notation of Hstat and Hosc. A smearing
of the applied pulses is caused by the rise and fall time of the
amplifier used for Hosc. It has been determined with a Hall
probe at the sample position and found to be ∼5 ms.

Hence, two equilibrium positions for the magnetic field
and also the VL emerge, which are separated by ε ≈ 2◦ if Hosc

is alternated between Hosc = 0 mT and Hosc = 5 mT. The
cylindric sample is aligned with its symmetry axis parallel
to the z axis, i.e., a constant demagnetizing factor N = 1/2
applies for all angles ε.

For the magnetic-field range of our experiment, the VL
assumes a six-fold scattering pattern with a Bragg angle of
a few tenths of a degree. The instrumental resolution in the
direction perpendicular to the scattering vector q yields a value

of 0.2◦ for a collimation length of L1 = 8 m, a sample detector
distance of L2 = 8 m, a source aperture of R1 = 10 mm, and
a sample aperture of R2 = 2 mm, respectively.32 The shift of
the VL direction of ε ≈ 2◦ is hence much larger than the
instrumental resolution, giving rise to a large contrast.

B. Measurement principle

In the following, we describe the principle used for the
measurement of the VL motion and relaxation, driven by the
time-dependent transverse magnetic field. The rocking angle
φ is initially adjusted to satisfy the Bragg condition for a
reciprocal lattice vector of the VL q = GVL = ki − kf (lying
in the xy plane) for Hosc = 0 mT, i.e., ε = 0◦. The observed
scattering intensity at the two-dimensional (2D) detector at
GVL thus is a measure for the quantity of VL that points
in this direction. Hosc oscillates between μ0Hosc = 0 mT
and μ0Hosc = 5 mT. Thus, the relaxation process between
these two equilibrium positions can be followed by measuring
the integrated intensity at the Bragg reflection at GVL as a
function of time. Two different time-dependent processes can
be measured:

(a) The first process (μ0Hosc decreases from 5 to 0 mT) is
attributed to the VL relaxing into the Bragg condition. (Note
that the instrumental resolution �βkf = 0.2◦ is significantly
smaller compared to the angular separation of both VL
equilibrium positions ε ≈ 2◦.) The corresponding time scale
is denoted τ1.

(b) The latter process (μ0Hosc increases from 0 to 5 mT)
describes a time scale, necessary to pull the VL out of the
Bragg condition denoted as τ3.

In the following, this method is denoted as the fixed-angle
scan. Typical data for a temperature of T = 4 K and a magnetic
field of μ0H =100 mT is shown in Fig. 4(a), where the red line
indicates the modulus of Hosc. The whole relaxation process
of the VL can be traced angle and time resolved, when such
scans are performed for each rocking angle φ. The latter
method is denoted as time-resolved mapping. A representative
scan is given in Fig. 4(b) for T = 4 K and μ0H = 100 mT.
Fixed-angle scans are represented by cuts at a fixed rocking
angle φ in the time-resolved mappings. It is important to note
that the angular distribution of the VL is always integrated
over the complete sample and, thus, is additionally convoluted
with the intrinsic VL mosaicity and the angular resolution of
the small-angle scattering instrument.

C. Stroboscopic small-angle neutron scattering

The fundamental principle of stroboscopic neutron scat-
tering is the excitation of the sample by an external control
parameter followed by a measurement of the time-dependent
dynamic response and relaxation, in our case the direction
of the magnetic field. (Note that only elastic scattering is
considered for the stroboscopic small-angle neutron scattering
technique used for our experiment.) To increase time resolution
and signal statistics, these measurements are performed in
a stroboscopic manner, i.e., the measurement is repeated
many times where the data obtained for the individual cycles
are summed coherently.25 The stroboscopic SANS technique
is realized, using a standard SANS setup, extended by a
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FIG. 4. (Color online) Panel (a) shows a typical fixed-angle scan.
A transverse magnetic field deflects the direction of the VL in the
sample leading to a drop in the Bragg intensity. The red line indicates
the modulus of Hosc. Panel (b) shows a typical time-resolved map for
varying rocking angles φ. Two equilibrium positions for the VL, as
induced by the change of Hosc, are visible for φ = 0.5◦ and 2.5◦.
The switching process between these equilibrium positions can be
monitored as a function of time. The broken horizontal white line in
panel (b) represents the fixed-angle scan given in panel (a). Both
scans (a) and (b) have been performed at T = 4 K and μ0H =
100 mT.

time-resolved position-sensitive detector. The repetition cycles
of the time-resolved detector and the control parameter are
phase locked.

The time resolution is mostly determined by a smearing of
the single frames, caused by the wavelength spread �λ/λ of
the neutron beam leading to a variation of the neutron time
of flight from the sample to the detector. The time of flight
is given by the equation25 tTOF[ms] = λ [Å] ·L2[m] · 0.253.
λ represents the wavelength of the neutron beam and L2 rep-
resents the sample-detector distance, respectively. For SANS
measurements, L2 and λ determine the accessible q range.
A large sample-detector distance L2 and large wavelength λ

is desirable to resolve large real-space structures associated
with small q vectors. This leads to a significant loss in time

resolution. For the measurements on the VL in Nb, presented
in this paper, a wavelength λ = 8 Å, a wavelength spread
�λ/λ = 0.1, and a detector distance L2 = 8 m lead to a time
resolution of ±1.6 ms.

D. Experimental parameters

Measurements of the tilt modulus c44 of the VL have been
performed for an applied magnetic field μ0H =75, 100, and
135 mT, each for sample temperatures between 4 K and Tc. A
schematic sketch of the measurement range with respect to the
phase diagram, obtained in previous SANS measurements,24

is given in Fig. 5(a): Both the IMS and the crossover to
the Shubnikov phase are covered, where the vortex-vortex
interaction changes from attractive to repulsive.

The intrinsic mosaicity of the VL as inferred from static
rocking scans is given in Fig. 5(b): For the highest tempera-
tures, the mosaicity of the VL is limited by the instrumental
resolution. For decreasing temperatures T � 6 K for μ0H =
75 mT and T � 5 K for μ0H = 100 mT, the mosaic spread
shows a pronounced increase. However, in the Shubnikov
phase for μ0H = 135 mT, only a weak increase of the
mosaic spread is observed for decreasing temperatures. The
increase of mosaicity for decreasing temperature is attributed
to the crossover to the IMS, where an additional bending of
vortices is caused by the complicated VL domain structure in
combination with increasing Meissner effect.

To avoid hysteretic effects, all measurements have been
taken after cooling in a field to the desired temperature (FC).
Furthermore, the direction of the magnetic field is oscillating
continuously due to Hosc. This leads to an effective depinning
of the VL. An equilibrium state can thus be assumed. In
analogy to HFC paths in the B-T phase diagram of type-I
superconductors in the intermediate state, where the magnetic

 

(a)

(b)

FIG. 5. (Color online) Panel (a) depicts the phase diagram ob-
tained by previous SANS measurements (Ref. 24). A demagnetizing
factor N = 1/2 applies. The dashed red lines locate scans, performed
for our measurements of c44, in the phase diagram. Panel (b) depicts
the intrinsic mosaicity of the VL as measured with SANS as a function
of temperature for magnetic fields μ0H = 75, 100, and 135 mT. The
lines serve as a guide to the eye.
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flux is expelled for decreasing field, a similar behavior and
morphology is expected in the IMS for type-II superconductors
upon FC. The result is supposed to be an open, multiply
connected topology of Shubnikov domains enclosing regions
of Meissner phase. In addition, the IMS is characterized by
Landau branching of the Shubnikov domains at the surface of
the sample.

E. Sample used for our study

For our studies, a cylindrical Nb single crystal with a length
of 20 mm and a diameter of 4.5 mm was cut by spark erosion
from a rod that had been produced at the ZFW Dresden
more than 30 years ago. The cylindric symmetry axis of the
sample coincides with a crystallographic 〈110〉 axis. A further
〈110〉 axis is oriented parallel to the incident neutron beam.
The preparation process of the rod consisted of purification
by liquid-liquid extraction combined with chlorination and
thermal decomposition of NbCl5 followed by electron beam
floating zone melting, decarburization in oxygen atmosphere,
and annealing in UHV.33,34 The impurity content was estimated
to be less than 1 ppm for interstitial and better than 2 ppm for
substitutional impurities.

To remove the surface layer of the cut sample and to
decrease the surface roughness, the sample was etched with a
mixture of concentrated HF and HNO3 for several minutes. In
order to remove interstitials, in particular, hydrogen introduced
due to the spark erosion cutting process as well as the long
storage, the sample was again RF annealed in UHV above
2000◦ at the University of Birmingham for one week followed
by surface oxygenation to reduce the Bean-Livingston barrier
for surface pinning.23 The sample shows a smooth, highly
polished surface with a pale golden color without any signs of
pores, scratches, or damages.

The residual resistivity ratio (RRR) of the sample was
measured with an eddy current decay method at the University
of Birmingham. The RRR was extrapolated to T → 0 at B = 0
for a temperature range of 14.5–9.3 K assuming ρphonon ∝ T 3

as well as extrapolated to B = 0(T = 4.2 K) from Bc2(T =
4.2 K) assuming ρB ∝ B, yielding values from RRR = 8000
to 16 000, respectively. However, the temperature extrapola-
tion is more reliable, leading to a value of RRR ∼ 104. This
leads to a Ginzburg-Landau coefficient κ ∼ 0.74 at 0.9T/Tc.33

The AC susceptibility and the magnetization, measured at the
Technische Universität München, were consistent with the
literature. Previous small-angle neutron scattering measure-
ments on the sample have shown no indications of trapped flux
for decreasing magnetic field, further indicating an excellent
sample quality24 and a vanishing surface pinning barrier for
the vortices.

The flux-flow resistivity ρFF, responsible for the damping
of vortex motion in superconductors, is related to the normal
conducting resistivity ρn by Eq. (10). For high purity Nb in
the clean limit, ρn was numerically approximated33 by

ρn(T ) = ρ0 + cn

(
bT 2 + cT 3

7.212

∫ �D/T

�min/T

x3

(ex − 1)(1 − ex)
dx

+ dT 5

124.4

∫ �D/T

�min/T

x5

(ex − 1)(1 − ex)
dx

)
, (12)

with b = 1.63 · 10−6 K−2, c = (2.864 ± 0.003) · 10−7 K−3,
d = (1.81 ± 0.004) · 10−10 K−5 a Debye temperature of
�D = 270 K, �min = 35 K, and the normalization constant
cn = 1.8 · 10−7. The RRR of 104 and the literature value
for ρn (300 K) ∼ 1.3 · 10−7 �m (Ref. 35) lead to ρ0 ∼
1.3 · 10−11 �m. This yields an increase of the normal state
resistivity ρn in the relevant temperature range of the experi-
ment from 4 to 8 K by a factor of about 2 from 1.8 to 3.2 n�cm.

IV. EXPERIMENTAL RESULTS

A. Time-resolved mappings

In the following, we present our data obtained for the VL
relaxation and diffusion. First, we focus on the time-resolved
mappings. Figure 6 depicts the relaxation of the VL at a
magnetic field μ0H = 100 mT for a temperature of T = 6.5 K
[panels (a) and (b)] and T = 4 K [panels (c) and (d)].
The integrated Bragg intensity is plotted on a linear scale.
The horizontal broken white lines marked with the black
arrows indicate the time when the magnetic-field direction
is switched between the two equilibrium positions. The time
range displayed corresponds to the gray shading in Fig. 4(b),
however, the axes have been rotated for better visibility. Both
equilibrium positions (indicated with vertical broken white
lines) at φ = 0.5◦ and 2.75◦ are clearly visible for the data
obtained at T = 4 K. The measurement range was reduced for
T = 6.5 K due to the limited beam time. Salient features of
the VL relaxation are as follows:

(i) A larger intrinsic mosaicity of the VL is observed for
T = 4 K in comparison to T = 6.5 K. The additional mosaic
spread, caused by a possible bending of the vortices due
to the domain structure of the IMS in combination with
demagnetizing effects, is in agreement with static data as
displayed in Fig. 5(b).

(ii) Relaxation time τ1: As expected, the general trend is a
relaxation characteristic of an exponential decay ∝ e−t/τ1 for
both T = 4 and 6.5 K, indicated by the continuous red lines.
The corresponding time constant τ1, obtained for T = 6.5 K,
yields τ1 = 0.04 ± 0.008 s, whereas τ1 = 0.16 ± 0.02 s for
T = 4 K. In addition, we further define τ ′

1 as the characteristic
time scale, when the VL has reached its new equilibrium
position. For T = 6.5 K,it yields τ ′

1 = 0.2 ± 0.05 s, whereas
τ ′

1 = 0.45 ± 0.1 s for T = 4 K.
(iii) Relaxation time τ3: τ3 indicates the time at which the

intensity at the Bragg spot GVL has decreased to 1/e of its
initial value. We obtain τ3 = 0.06 ± 0.008 s for T = 4 K and
τ3 = 0.025 ± 0.005 s for T = 6.5 K, respectively.

(iv) The intensity map obtained for T = 4 K is charac-
terized by a drastic increase of mosaic spread immediately
after the magnetic-field direction is changed. The time scale
observed for this feature is found to be less than τ3. In contrast,
only a moderate increase of mosaic spread is observed for
T = 6.5 K.

B. Fixed-angle scans

New light is shed on the details of the VL relaxation process,
focusing on the fixed-angle scans as a function of applied
magnetic field H and temperature T . The data are given in
Figs. 7(a) and 7(b) for a magnetic field of μ0H = 75 mT, in
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(a) (c)

(d)(b)

FIG. 6. (Color online) Panels (a) and (b) depict time-resolved
mappings for an applied magnetic field μ0H = 100 mT and a
temperature of 6.5 K. Panels (c) and (d) depict similar scans for
μ0H = 100 mT and 4 K. Note the reduced measurement range for
T = 6.5 K. The contours are plotted on a linear scale. The change of
magnetic-field direction is indicated by horizontal broken white lines
marked with black arrows, whereas the equilibrium positions of the
VL are marked with vertical broken white lines. The continuous red
lines indicate the relaxation process of the VL. The red lines serve as
a guide to the eye.

Figs. 8(a) and 8(b) for μ0H = 100 mT, and in Figs. 9(a) and
9(b) for μ0H = 135 mT. The time range displayed for the
three figures corresponds to the gray shadings in Fig. 4(a).

We first focus on Figs. 7(a), 8(a), and 9(a), which show
fixed-angle scans for increasing sample temperature from
T = 4 K to Tc [as labeled in Figs. 7(b), 8(b), and 9(b)]. The
increase of scattering intensity after the vertical line, labeled
with trigger, is attributed to the relaxation of the VL into
the Bragg condition, the characteristic relaxation time was
denoted τ1. However, it turns out that the qualitative shape of
the relaxation process changes as a function of temperature.
It is therefore not possible to determine the characteristic
time scale τ1, in a way similar to the time-resolved mappings.
(Due to the limited beam time, the systematic temperature and
magnetic-field dependence of the VL relaxation was measured
only for the fixed-angle scans.) In order to cover the systematic
trends, the magnetic field and temperature dependence of τ ′

1
were analyzed. The salient features are as follows:

(i) The same general trend as observed for the time-
resolved mappings can also be identified: Increasing tempera-
ture and increasing magnetic field lead to a significantly faster
relaxation. The relaxation time τ ′

1 is indicated with a black
marker in each fixed-angle scan. The resulting magnetic field
and temperature dependence of τ ′

1 are shown in Fig. 10(a): For
low temperatures T ≈ 4 K and magnetic fields of μ0H = 75
and 100 mT, τ ′

1 = 0.5 ± 0.1 s. For increasing temperatures, τ ′
1

decreases characteristic of a smooth crossover to values of τ ′
1 =

0.2 ± 0.05 s. The crossover temperature thereby decreases
with increasing field from T = 6.5 K at μ0H = 75 mT to
T = 5.5 K at μ0H = 100 mT. In contrast, for a magnetic
field of μ0H = 135 mT, τ ′

1 assumes a constant value of
τ1 = 0.2 ± 0.05 s except at the lowest temperature, where a
slight shift to τ ′

1 = 0.25 ± 0.05 s is observed. The crossover
temperature for μ0H = 135 mT is expected to be at ≈3.5 K,

FIG. 7. (Color online) Panel (a) shows fixed-angle scans for
μ0H = 75 mT for increasing temperature as labeled in panel (b).
The increase of scattering intensity after the trigger is attributed to
the relaxation of the VL into the Bragg condition as a function of
time. The characteristic relaxation time is denoted τ ′

1, indicated with
black markers. Panel (b) shows fixed-angle scans for μ0H = 75 mT
for increasing temperature. The decrease of intensity after the trigger
is attributed to the VL being pulled out of the Bragg condition. The
characteristic relaxation times are denoted τ2 and τ3, indicated with
green (upward) and blue (downward) arrows, respectively. Note the
different time scale for panel (a) compared to panel (b). The different
plots have been shifted vertically for clarity reasons, with the lines
serving as a guide to the eye. The phase region of the IMS in indicated
on the rhs.

i.e., slightly below the accessible temperature regime. The
magnetic-field dependence of the crossover temperature of τ ′

1
corresponds to the crossover from the IMS to the Shubnikov
phase. The data points obtained for τ1 from the time-resolved
mappings are given in Fig. 10(a) as well.

(ii) The characteristic shape of the relaxation changes
as a function of temperature and magnetic field: For the
low-temperature data points at each magnetic field, namely,
for 4 K � T � 6 K at μ0H = 75 mT, for 4 K � T � 5 K
at μ0H = 100 mT, and for T = 4 K at μ0H = 135 mT, the
relaxation is characterized by a sharp kink, associated with a
distinct increase of intensity immediately after the magnetic

FIG. 8. (Color online) Panel (a) shows fixed-angle scans for
μ0H = 100 mT analogous to Fig. 7.
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S. MÜHLBAUER et al. PHYSICAL REVIEW B 83, 184502 (2011)

FIG. 9. (Color online) Panel (a) shows fixed-angle scans for
μ0H = 135 mT analogous to Fig. 7.

field is changed. This sharp increase is more pronounced
at lowest temperatures. It is associated with the steplike
broadening of the VL mosaic, as observed in the time-resolved
mappings, e.g., for T = 4 K and μ0H = 100 mT [Figs. 6(c)
and 6(d)]. The steplike increase is followed by a slow
relaxation characteristic of the time scale τ ′

1. Note that the
data points at low temperatures and low fields, where the kink
is observed, are situated in the IMS.

(iii) In contrast, the characteristic shape of the relaxation
process exhibits a smooth increase with exponential shape
for high temperatures, namely, for 6.5 K � T � 7.25 K at
a magnetic field of μ0H = 75 mT, for 6 K � T � 6.75 K
at μ0H = 100 mT, and for 5 K � T � 6.25 K at μ0H =
135 mT. This is attributed to the lack of the above-mentioned
sharp increase of intensity directly after the magnetic field is
changed.

We now concentrate on Figs. 7(b), 8(b), and 9(b). The
decrease of intensity after the vertical line, labeled with trigger,
is attributed to the VL being pulled out of the Bragg condition.
The decreasing intensity is characterized by two different
time scales: τ3 characterizes the overall time after the change
of magnetic-field direction when the scattering intensity has
decreased to 1/e of its initial value. τ3 is indicated with a

FIG. 10. (Color online) Panels (a) and (b) show the values
obtained for time constants τ1, τ ′

1, τ2, and τ3 as a function of
temperature T and magnetic field μ0H . Note the different scaling
for panels (a) and (b). The lines serve as a guide to the eye.

blue arrow (downward) in each scan. In contrast, τ2, indicated
with a green arrow (upward), describes the characteristic delay
time between the change of magnetic field direction and
the response of the VL. The temperature and magnetic field
dependence of τ2 and τ3 are shown in Fig. 10(b):

(i) τ3 exhibits a linear decrease as a function of increasing
temperature for all magnetic fields measured: For μ0H =
75 mT, τ3 decreases from τ3 = 0.08 ± 0.01 s at T = 4 K to
τ3 = 0.02 ± 0.005 s at T = 7.25 K. For μ0H = 100 mT, τ3

decreases from τ3 = 0.06 ± 0.01 s at T = 4 K to τ3 = 0.02 ±
0.005 s at T = 6.75 K, and, for μ0H = 135 mT, τ3 decreases
from τ3 = 0.045 ± 0.01 s at T = 4 K to τ3 = 0.02 ± 0.005 s
at T = 6.25 K. No signature of a crossover from the IMS
to the Shubnikov phase is observed in the temperature and
magnetic-field dependence of τ3.

(ii) The temperature dependence of τ2 is characterized by
a linear decrease from τ2 = 0.047 ± 0.01 s at T = 4 K to
τ2 = 0 at T = 7.25 K for a magnetic field of μ0H = 75 mT.
For a magnetic field of μ0H = 100 mT, τ2 decreases from
τ2 = 0.03 ± 0.005 s at T = 4 K to τ2 = 0 for temperatures
above T = 6 K. In contrast, for μ0H = 135 mT, τ2 = 0 for
all temperatures. Note that τ2 �= 0 in the IMS.

V. INTERPRETATION

For an interpretation of our data, we first review the VL
diffusion for uniform tilt before we qualitatively describe
the VL relaxation for a displacement of the magnetic-field
direction. Following this, we calculate the temperature and
magnetic-field dependence of the VL tilt modulus c44 using
the VL diffusion model for uniform distortions. We finally
consider the peculiarities of the relaxation process of the VL
in the IMS.

A. Vortex lattice elasticity and diffusion for uniform distortions

We have derived the characteristic relaxation rates �1 and
�2 of VLs in Sec. II, which are in the range of 109 s−1 for Nb.
In our experimental setup, the magnetic-field direction was
oscillated with a frequency of 0.2 Hz. Therefore, the associated
relaxation process of the superconducting VL can be calculated
in the k = 0 limit. For a change of the magnetic-field direction,
as used in our experimental setup, the relaxation process is
essentially given by the VL tilt modulus c44(k = 0).

For uniform distortions, the VL tilt modulus c44 = BH

depends only on the applied magnetic field H , which is in
local equilibrium with the equilibrium induction B.8 For the
case in which the spatially varying part of B is smaller than the
average value of B, the highly nonlinear equations of motion
may be linearized. The response of the VL in a bulk sample
(sample diameter r � λ′) to a changed magnetic direction
field may then be written as damped diffusion process,26 using
the diffusion equation derived by Kes.10

It is important to note that the VL initially responds to
a change of applied magnetic field H solely at the surface
of the superconductor, as the magnetic field is screened by
supercurrents from the bulk of the specimen (in particular,
by the Meissner domains in the IMS). Due to continuity
conditions, the slope of the VL is slightly refracted at the
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surface of the sample. However, for the following description,
the refraction of the magnetic field is neglected.

According to the diffusion model, the distortion of the VL
propagates from the surface of the sample into the bulk due to
the finite elastic constants of the VL. The resulting diffusion
equation of the tilt distortion u(x,t) of the VL is given by

du

dt
= D

d2u

dx2
(13)

with the diffusion constant D given by the ratio of the tilt
modulus c44 and the viscosity η (Ref. 36):

D = c44

η
. (14)

η describes the viscous damping of the vortex motion by flux-
flow resistivity, assuming either vanishing pinning effects or an
efficient depinning due to thermally assisted flux-flow effects
[cf. Sec. II, Eq. (10)]. This yields, for the diffusion constant
D,

D(T ) = Hρn(T )

Bc2(T )
. (15)

The diffusion equation can be solved easily if the sample
is approximated by a flat plate with thickness 2r , ignoring
the pre-existing field Hstat: We consider a conducting plate
to which the transverse field Hosc is applied at t = 0. The
distribution of the field across the plate is then described
through a square wave. As time progresses, the edges and
then the middle of the sample relax to the outside applied
field. This corresponds to the so-called Dirichlet condition of
the diffusion equation, which is generally solved by a sum of
cosine waves with a half period of 2r:

u(x,t) =
∞∑

n=1

Dn

(
cos

nπx

2r

)
e

−n2π2Dt

4r2 , (16)

where n = 1,3,5, . . . and

Dn = 2

2r

∫ 2r

0
f (x) cos

nπx

2r
dx (17)

with the initial condition f (x,t = 0).
The Fourier components thereby decay independently with

a characteristic time ∝ 1/n2, so that, after a short time, only
the fundamental remains. This yields, for the relaxation time
for the mode with n = 1,

τ = − 4r2

Dπ2
. (18)

For a sample of cylindrical shape and radius r with the
magnetic field applied perpendicular to the cylinder axis, the
resulting diffusion constant for a rotation of the magnetic field
with respect to the cylinder axis was calculated by Brandt.26

The resulting relaxation time is

τr ≈ r2

(2.405)2D
, (19)

where x0 = 2.405 is the first node in the Bessel function J0(x).

B. Vortex lattice relaxation process

We qualitatively describe the diffusion process of the VL.
As the repetition cycle of Hosc = 0.2 Hz is slow compared
to the relaxation processes τ1, τ ′

1, τ2, and τ3 of the VL, a
complete relaxation can be presumed for each measurement
cycle of the stroboscopic measurement, i.e., the VL is in the
same equilibrium state before each change of magnetic-field
direction.

We assume that the VL has relaxed for μ0Hosc = 5 mT. The
VL thus does not satisfy the Bragg condition. No scattering
intensity is observed. We then consider the next cycle of the
stroboscopic measurement where μ0Hosc = 5 mT is decreased
to μ0Hosc = 0 mT: the VL first interacts with the changed
magnetic-field direction at the surface of the sample. The
perturbation then diffuses into the sample. The VL relaxates
into the Bragg condition. The relaxation of the VL from the
equilibrium position for μ0Hosc = 5 mT (and thus ε = 2◦) to
μ0Hosc = 0 mT (and thus ε = 0◦) yields a large displacement
u � λ′ of the vortices. This relaxation process is characteristic
of a slow exponential relaxation with the time scales τ1 and
τ ′

1 as defined in the previous section. The temperature and
magnetic-field dependence of τ1 and τ ′

1 is given in Fig. 10(a).
We now assume that the VL has relaxed for μ0Hosc = 0 mT,

giving rise to maximum scattering intensity. If the direction of
the magnetic field is shifted as Hosc is increased from μ0Hosc =
0 to 5 mT, the VL again interacts with the changed magnetic-
field direction at the surface of the sample. The perturbation
diffuses into the sample, the VL is pulled out of the Bragg
condition, and the scattering intensity at the detector decreases.
After τ3, the intensity has decreased to 1/e of its initial value.
τ3 is thus a measure for the time scale when the perturbation
of the VL propagates across the complete sample. (Strictly
speaking, the perturbation propagates through the sample from
both sides, as the geometry is symmetric.)

C. Vortex lattice tilt modulus c44

According to the diffusion model for uniform distortions
introduced by Kes10 and Brandt,8,26 the VL tilt modulus c44 can
be derived from τ1 and τ3 using Eqs. (14), (10), (15), and (19).
The temperature dependence of ρn(T ) is given by Eq. (12).
The equilibrium induction B is inferred from the modulus of
the reciprocal lattice vector |GVL| of the VL. Its temperature
and magnetic-field dependence is given in Fig. 11(b).

The temperature and field dependence of c
τ1
44(T ,H ), cal-

culated from the measured values of τ1, as well as c
τ ′

1
44(T ,H )

calculated from τ ′
1 and c

τ3
44(T ,H ), calculated from τ3, is given

in Fig. 12, respectively.

FIG. 11. (Color online) Depicts the temperature dependence of
the equilibrium magnetization B for μ0H = 75, 100, and 135 mT.
The lines serve as a guide to the eye.
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FIG. 12. (Color online) Panels (a) and (b) show the calculated
temperature and magnetic-field dependence of the VL tilt modulus

c
τ1
44(T ,H ), c

τ ′
1

44(T ,H ), and c
τ3
44(T ,H ), according to the model of Brandt

(Ref. 26). The lines serve as a guide to the eye.

Only two data points could be obtained for c
τ1
44(T ,H )

at μ0H = 100 mT for T = 4 and 6.5 K from the time-
resolved mappings. c

τ1
44 shows increasing vortex stiffness with

increasing temperature, increasing from c
τ1
44 ≈ 1 · 104 T Am−1

for T = 4 K to c
τ1
44 ≈ 1.4 · 104 T Am−1 for T = 6.5 K.

The VL tilt modulus c
τ ′

1
44(T ,H ) shows increasing VL stiff-

ness with increasing magnetic field. Moreover, for magnetic

fields μ0H = 75 and 135 mT, c
τ ′

1
44 exhibits a weak decrease

by a factor of 2 for increasing temperature from T = 4 K

to Tc. In contrast, for μ0H = 100 mT, c
τ ′

1
44 = 0.3 · 104 T

Am−1 shows no temperature dependence. For a temperature

of T = 4 K and a magnetic field of μ0H = 135 mT, c
τ ′

1
44 yields

c
τ ′

1
44 ≈ 1 · 104 T Am−1. For a temperature of T = 4 K and

magnetic fields of μ0H = 75 and 100 mT, the VL tilt modulus

c
τ ′

1
44 ≈ 0.3 · 104 T Am−1.

c
τ3
44(T ,H ) also shows increasing VL stiffness with in-

creasing magnetic field. However, no significant temperature
dependence is observed. Due to τ ′

1 � τ3, cτ3
44 yields c

τ3
44 ≈ 5.5 ·

104 T Am−1 for μ0H = 135 mT, c
τ3
44 ≈ 2.5 · 104 T Am−1 for

μ0H = 100 mT, and c
τ3
44 ≈ 2 · 104 T Am−1 for μ0H = 75 mT.

The expected temperature and magnetic-field dependence
of c44, calculated from literature values for Nb, is given
in Fig. 13(a). The calculated diffusion time τD is given
in Fig. 13(b). The effects of thermal depinning have been
neglected. For a magnetic field of μ0H = 135 mT, c44 assumes
a value of 1.7·104 T Am−1, for μ0H = 100 mT, c44 = 0.8 ·
104 T Am−1, and, finally, for μ0H =75 mT, c44 = 0.6 · 104 T
Am−1. The temperature dependence of c44 is weak for all fields
and reflects the temperature dependence of the equilibrium
induction B.

Qualitatively, the measured values of c
τ1
44(T ,H ), c

τ ′
1

44(T ,H ),
and c

τ3
44(T ,H ) compare well with the theoretical value of

c44(T ,H ). First, the magnetic-field behavior is consistent with
an increased VL stiffness c44 for increasing field, according to
Eq. (9). The most accurate agreement is obtained for c

τ1
44(T ,H ).

The origin of the deviation is most likely due to uncertainties of
the extrapolation of the normal conducting resistivity ρn to low

FIG. 13. (Color online) The VL tilt modulus c44 calculated from
literature values is plotted in panel (a), whereas panel (b) yields the
calculated time scale for the diffusion of a VL distortion in a cylindric
Nb sample, according to the model of Brandt (Ref. 26). The lines serve
as a guide to the eye.

temperatures, associated with the extrapolation of the RRR.

The values of c
τ ′

1
44(T ,H ) are lower by a factor of 2 from the

expected values. In contrast, the values for c
τ3
44(T ,H ) exceed the

calculated values by a factor of 3.5. This deviation presumably
results from the definition used for τ ′

1 and τ3.
We have introduced in the previous paragraphs that the

Fourier modes of the VL relaxation decay independently with
a time constants ∝ 1/n2. Note that the values of τ1 exceed τ3

by a factor of approximately 2 to 3. Whereas the fundamental
relaxation mode τ1 may be identified with the Fourier mode
for n = 1 (after a certain time, only the fundamental mode
survives), the values obtained for τ3 suggest that the corre-
sponding relaxation process is a mixture of several different
mechanisms. Moreover, the involvement of the shear modulus
c66 in the relaxation process is still unclear. The shear modulus
is responsible for the perfection of the local structure of the VL.
However, no azimuthal smearing of the scattering pattern was
observed during the relaxation process of the VL, indicating a
disordering akin to a melting transition of the VL. This leads to
the following picture of the VL relaxation, already accounting
for most of the observed features:

(i) In general, a faster propagation of perturbations in the
VL is observed for increasing temperatures and increasing
magnetic fields. This general behavior is explained by the
decreased damping η for increasing temperature, according to
an increase of ρn(T ) with T as given in Eq. (10) and increasing
VL stiffness c44 with increasing field according to c44 = BH .

(ii) The time-resolved mappings show that at high tempera-
tures and high magnetic fields in the Shubnikov phase, the VL
responds to the changed magnetic-field direction as a single,
stiff lattice with its motion characterized by the diffusion
constant D. A single, exponential relaxation is thus observed.

(iii) In contrast, due to the low stiffness and strong damping
for low temperatures and fields in the IMS, the macroscopic
relaxation is typical of a slow exponential relaxation with
large mosaic spread, which is characterized by an additional
fast process on a short time scale. This is attributed to
the decomposition of the VL into Shubnikov domains and

184502-10



TIME-RESOLVED STROBOSCOPIC NEUTRON SCATTERING . . . PHYSICAL REVIEW B 83, 184502 (2011)

Meissner phase domains in the IMS. The origin of the
additional fast process will be discussed below.

(iv) The macroscopic relaxation of the VL between the
two equilibrium positions is associated with a large vortex
displacement. It is strongly dependent on the VL topology, as
the crossover from the IMS to the Shubnikov phase is reflected
in the mere temperature dependence of τ ′

1.
(v) τ3 is a measure for the time of a VL distortion propa-

gating through the sample. No signature of the transition from
IMS to the Shubnikov phase is observed in the temperature
and magnetic field dependence of τ3, which is thus insensitive
to the VL topology.

D. Vortex lattice relaxation in the intermediate mixed state

Certain characteristic features show up exclusively for data
points in the IMS. Typical data of the relaxation process for
T = 4 K and μ0H = 100 mT are shown in Fig. 14. The time
range displayed corresponds to a short time scale after the
magnetic-field direction was changed. In the time-resolved
mapping [Fig. 14(a)], a sharp increase of mosaicity shows up,
which is associated with a sharp increase of intensity observed
in the fixed-angle scans for the equilibrium position at φ =
2.75◦ [Fig. 14(b)]. We note that the characteristic time scale
of this feature is well below τ3 for all temperatures and fields
in the IMS.

FIG. 14. (Color online) Panel (a): time-resolved mapping for T =
4 K and μ0H = 100 mT. The relaxation process of the VL is shown
for a short time scale after the magnetic-field direction was switched.
Panel (b) shows the associated fixed-angle scans for φ = 0.5◦ and
2.75◦ as indicated with the vertical broken red lines in panel (a).

We have introduced τ3 as a measure for the time, necessary
for a perturbation of the VL to cross the sample. This locates
the related relaxation process responsible for the sharp increase
of intensity and mosaicity at the surface of the sample. In
turn, the effect is attributed to branching of the Shubnikov
domains at the surface of the sample in the IMS. The branching
of Shubnikov domains leads to a fine VL structure at the
surface, consisting of connected Shubnikov domains with open
topology enclosing Meissner islands. In particular, no rigid VL
is observed. Branching of the VL is responsible for the large
intrinsic mosaicity as well.

As a remaining feature, we now discuss the characteristic
delay τ2 when the VL is pulled out of the Bragg condition.
A delay τ2 = 30 ms is visible in both the time-resolved
mapping [Fig. 14(a)] and the corresponding fixed-angle scan
for φ = 0.5◦ [Fig. 14(b)]. Note that τ2 �= 0 solely for data
points in the IMS. A sharp increase of intensity is observed
simultaneously at the new equilibrium position (φ = 2.75◦) for
these measurement points. This sharp increase was attributed
to a mechanism close to the surface of the sample. The IMS
is characterized by a bending of vortices at the surface. The
scattered intensity exactly at the position q = GVL = ki − kf

is caused by the VL, which points to the initial equilibrium
position, which is not bent due to branching. τ2 thus describes
the delayed reaction of the unbranched VL buried beneath the
surface of the sample.

VI. CONCLUSIONS AND OUTLOOK

In our study, we measure the dynamic properties of
bulk VLs with time-resolved stroboscopic SANS combined
with a time-varying magnetic-field setup. We show that the
qualitative magnetic field and temperature-dependent behavior
of the VL in the Shubnikov phase for uniform distortions can
be described in reasonable agreement with a diffusion model
by Brandt8,26 and Kes.10 The values obtained for the VL tilt
modulus c44, diffusivity D, and damping η can be reproduced
theoretically. We further argue that the topology of the VL is
reflected sensitively in the associated diffusion process. This
is readily seen for measurement points in the IMS where
a second, very fast relaxation process maybe attributed to
branching of the VL domains at the surface of the sample.
Such a branching was observed by previous high-resolution
decoration techniques on bulk Nb single crystal samples.37–39

The effect of surface treatment and roughness on the details of
the Landau branching remains as a subject of future studies.

Our study represents an experimental technique for how
to access directly VL melting and the formation of vortex
glass states in unconventional superconductors, notably the
cuprates, heavy-fermion systems, and borocarbide or iron
arsenide systems. The possibility to precisely determine the
pinning properties of vortices in future experiments on samples
of varying purity is of great relevance for the research on
technical applications of superconducting devices, as the
pinning properties are intimately related to the maximal critical
current density of superconductors.

Furthermore, the technique developed for our study is of
general relevance for materials exhibiting complex forms of
magnetic order, i.e., long-range helical order as observed in
materials without inversion symmetry,40,41 magnetic Skyrmion
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lattices, as observed recently in the helimagnet MnSi (Ref. 42)
or colloidal magnetic suspensions, liquid crystals, and also
Bose condensates and glasses of magnetic triplet excitations
in quantum magnets.43

To further increase the time resolution, the TISANE
technique can be used instead of stroboscopic small-angle
neutron scattering.44 TISANE benefits from a neutron chopper
that is placed upstream of the sample position at the distance
L1 to the sample. By carefully adjusting the distances L2 and
L1, the chopper and control parameter duty cycle frequencies
and phase, a coherent summation of the scattered neutrons at
the detector position in space and time without time smearing
can be achieved. The accessible time resolution of TISANE

is mainly determined by the time resolution of the detector
and the opening time of the chopper system. Time scales
from μs to several ms are possible, closing the gap to the
inelastic technique neutron resonance spin echo. For a detailed
description, we refer to Refs. 25 and 44.
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