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We investigate the properties of the Heisenberg S = 1 chain with bilinear and biquadratic interactions in a
magnetic field using the density- matrix renormalization-group, Bethe ansatz, and field-theoretical considerations.
In a large region of the parameter space, we identify a magnetized ferroquadrupolar Luttinger liquid consisting
of a quasicondensate of bound magnon pairs. This liquid undergoes a continuous pair-unbinding transition to a
more conventional Luttinger liquid region obtained by polarizing the system above the Haldane gap region. This
pair-unbinding transition is shown to be in the Ising universality class on top of a Luttinger liquid, leading to
an effective central charge 3/2. We also revisit the nature of the partially polarized Luttinger liquid around and
above the Uimin-Lai-Sutherland point. Our results confirm that this is a two-component liquid and rule out the
formation of a single-component vector-chiral phase.
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I. INTRODUCTION

A particularly interesting aspect of quantum many-
body systems is their ability to host ordered phases that
emerge from the spontaneous breaking of one or several of
the symmetries of the system. In the case of spin systems, the
main focus lies on possible long-range-order (LRO) due to the
breaking of the SU(2) symmetry inherent to these systems.
For S = 1/2 Heisenberg systems, breaking this continuous
symmetry with a purely local order parameter implies mag-
netic ordering. However, when the spin is S > 1/2, there is the
alternative possibility that the SU(2) symmetry is broken by
a local quadrupolar order parameter, leading to spin-nematic
phases.1,2 Recent findings on NiGa2S4, a spin-1 material on a
triangular lattice,3 indicate the possible realization of such a
spin-nematic phase. Theoretical investigations of the bilinear-
biquadratic S = 1 Heisenberg model on this lattice geometry
have shown that it is possible to stabilize spin-nematic LRO
of ferroquadrupolar and antiferroquadrupolar type depending
on the sign of the biquadratic interaction,4,5 and that applying
an external magnetic field leads to a remarkably rich phase
diagram with, in particular, a 2/3 magnetization plateau above
the antiferroquadrupolar phase.4

In this paper we investigate the one-dimensional version of
the model defined by the Hamiltonian

H = J
∑

i

[cos θ Si · Si+1 + sin θ (Si · Si+1)2] − HSz
tot,

(1)

where J,H > 0. While a variety of materials realizing S = 1
Heisenberg systems are known,6 the biquadratic term seems
to be more difficult to realize in nature.7 However, recent
progress in the realization of effective spin Hamiltonians in
systems of ultracold atomic gases on optical lattices8–10 opens
up a promising alternative route to investigate such systems in
experiments.

At zero field, the properties of this model are well under-
stood by now.11–24 For our considerations, it is helpful to keep

in mind the following aspects of its phase diagram. Between
the two integrable points θTB = −π/4 (the Takhtajan-Babujian
point,14,15 TB) and θULS = π/4 (the Uimin-Lai-Sutherland
point,11–13 ULS) the chain possesses a finite Haldane gap.25,26

In this phase, at the so-called AKLT point (named after Affleck,
Kennedy, Lieb, and Tasaki, Ref. 16) θAKLT = arctan 1/3, the
ground state is exactly known to be a valence bond solid,
and for θ > θAKLT the spin-correlation functions become
incommensurate.22,27 Between the ULS point and θ = π/2,
the system is gapless and shows antiferroquadrupolar spin-
nematic quasi-long-range order (QLRO).24 For negative values
of θ , between θ = −3/4π and θ = −π/4, the system is
dimerized and has a finite gap.17–19,23 For the remaining values
of θ , the system is in a ferromagnetic state.

In comparison, the properties in a field have been in-
vestigated less intensively. Most of the attention has been
devoted to the region of positive and not too large biquadratic
interaction,28–31 and large regions of the phase diagram remain
unexplored. For instance, the fate of the spin-nematic phase,
realized at zero field in the region π/4 < θ < π/2,24 remains
an open issue, and the finite field properties of the model
for negative biquadratic interactions are largely unexplored,
including the finite field properties of the integrable TB point.

In this paper, we complete previous studies and consider
the full phase diagram at finite magnetic fields over the whole
range of θ by applying the density-matrix renormalization-
group method (DMRG),32,33 complemented by a Bethe ansatz
(BA) solution of the TB and ULS points in magnetic-field and
field-theoretical considerations. We put special emphasis on
the possible realization of spin-nematic QLRO in the presence
of a field by explicitly computing the spin-nematic correlation
functions in real space.

The scope of this paper is fourfold. First, by considering
the full phase diagram of the system at finite magnetic fields
we want to make precise predictions for ongoing efforts in
the realization of such models in systems of ultracold atomic
gases on optical lattices and for future quantum magnetic
materials, which eventually may be described in terms of
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FIG. 1. (Color online) (a) DMRG results for systems with L = 60 lattice sites for the magnetization of the BLBQ S = 1 chain as a
function of (H,θ ). The various colors indicate the different phases of the system. (b) Phase diagram obtained from the DMRG results for the
magnetization, the correlation functions defined in Eqs. (3)–(5) and (10), and for the central charge c as a function of (H,θ ), and (c) as a
function of (M,θ ). The black line in the magnetized dimer phase indicates a crossover line at which the exponents of C

long
S and CQ,2 are both

equal to 1; see Sec. III C 4 (the dashed lines are linear extrapolations to the boundary of the phase and serve as a guide to the eye). The green
dashed line below the kink transition indicates a crossover line between two different two-channel LL phases, one of them being a spin-nematic
LL. Note that, as discussed in Sec. III D 2, this line is not exactly at θ = π/4 but seems to wind around this value.

the bilinear-biquadratic (BLBQ) chain. Second, we address
the possibility to realize unconventional QLRO by explicitly
computing the spin-nematic correlation functions in real space.
Third, we consider in detail the phase transitions at finite
field and study their critical behavior. Fourth, we address the
possibility to realize vector-chiral LRO as identified previously
in frustrated S = 1/2 chains in a magnetic field, which has
been proposed for the BLBQ chain in a magnetic field.34

We will demonstrate that the magnetic field leads to the
realization of five different Luttinger liquid (LL) phases, and
that these magnetic phases are connected to each other by
either continuous phase transitions or crossovers. Our findings
are summarized in Fig. 1, which shows our DMRG results for
the magnetization as a function of (H,θ ) and the main result of
this paper, which is the complete phase diagram of the BLBQ
chain in a magnetic field.

The paper is organized as follows. In Sec. II we introduce
the observables relevant for the description of the various LL
phases. In Sec. III we present the complete phase diagram
as a function of (H,θ ) by discussing our results for the
magnetization (Sec. III A), for the central charge (Sec. III B),
for the correlation functions in the single-component LL
phases (Sec. III C), and for the correlation functions in the
two-component LL phases (Sec. III D). Concerning the single-
component LL phases, we demonstrate in Sec. III C 3 that a
ferroquadrupolar LL phase is realized, and we discuss the
extension of the magnetized Haldane phase in Sec. III C 5.
In Sec. III D 1 we demonstrate the absence of vector-chiral
order in the two-component LL phases, and in Sec. III D 2
we show that one of them is a spin-nematic LL. In Sec. IV
we discuss in detail the transition from the magnetized dimer
phase to the magnetized Haldane phase, which we identify to
be an Ising transition with central charge c = 1 + 1/2 = 3/2.
This scenario is further corroborated by a field-theoretical
treatment in the vicinity of the TB point discussed in Sec. V.
We summarize our findings and conclude in Sec. VI. Finally,
we provide in Appendixes A and B a more detailed discussion

of the BA solutions of the model at the TB and the ULS point
at finite magnetic fields, respectively.

II. OBSERVABLES AND CORRELATION FUNCTIONS

A. Magnetization

The properties of the model have been identified by
calculating with DMRG a number of characteristic quantities.
The first one is the magnetization defined by

M = 1

L

∑
i

〈
Sz

i

〉
, (2)

which has been determined as a function of θ and applied
magnetic field H [Fig. 1(a)].

B. Spin-correlation functions

The second source of information comes from the be-
havior of correlation functions characterizing magnetic, spin-
nematic, and vector-chiral (quasi-)long-range order. We inves-
tigate possible algebraic decay of these correlation functions
and compare the numerical values of the exponents with each
other, the exponent with the smallest absolute value giving the
dominant correlation function. This is of particular interest for
the characterization of the gapless LL phases at finite field.

The first type of QLRO is identified by the correlation
functions of the local spins,

C
long
S (i,j ) = 〈

Sz
i S

z
j

〉 − 〈
Sz

i

〉〈
Sz

j

〉
, (3)

C trans
S (i,j ) = 〈S−

i S+
j 〉. (4)

In one dimension, an algebraic decay of C
long
S (i,j ) indicates

magnetic QLRO along the field, while a power-law behavior of
C trans

S (i,j ) can be interpreted as magnetic QLRO perpendicular
to the field or as a quasicondensate of magnons.
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C. Quadrupolar correlation functions

For systems with S > 1/2, however, QLRO can also be
identified by considering the on-site spin-nematic correlation
functions

CQ(i,j ) = 〈 �Qi · �Qj 〉 − 〈 �Qi〉 · 〈 �Qj 〉, (5)

where we have introduced the local quadrupolar order param-
eter

�Qi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2√
3

[ (
Sz

i

)2 − 1
4

(
S+

i S−
i + S−

i S+
i

) ]
1
2

(
S+

i Sz
i + Sz

i S
+
i + S−

i Sz
i + Sz

i S
−
i

)
− i

2

(
S+

i Sz
i + Sz

i S
+
i − S−

i Sz
i − Sz

i S
−
i

)
− i

2

[ (
S+

i

)2 − (
S−

i

)2 ]
1
2

[
(S+

i )2 + (S−
i )2

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Note that only the first entry of this vector conserves
Sz

total, while the other ones change this quantum number
by �Sz = 1 or �Sz = 2, respectively. This leads to three
components of the correlation functions (5): the longitudinal
component CQ,0 considering the terms conserving Sz

total,
the transverse component CQ,1 considering the entries of
Eq. (6) with �Sz = ±1, and the pairing component CQ,2

considering the entries with �Sz = ±2. In particular, we
compute

CQ,0(i,j ) = 2
(

1
12

〈[
S−

i S+
i + S+

i S−
i − 4

(
Sz

i

)2 ]
×[

S−
j S+

j + S+
j S−

j − 4
(
Sz

j

)2]〉 − 〈
Q

(1)
i

〉〈
Q

(1)
j

〉)
,

(7)

CQ,1(i,j ) = 1
2

〈 (
S+

i Sz
i + Sz

i S
+
i

) (
Sz

jS
−
j + S−

j Sz
j

) + H.c.
〉
,

(8)

CQ,2(i,j ) = 1
2 〈(S+

i )2(S−
j )2 + H.c.〉. (9)

At zero magnetic field, these three components are identical
due to the SU(2) symmetry of the system. At finite field,
however, the SU(2) symmetry is reduced to U(1) and the differ-
ent components can show different behavior and characterize
different types of QLRO. In addition, in the presence of a
finite field, the operators entering C

long
S and CQ,0 are allowed

to mix by symmetry. These correlation functions are thus
expected to decay with the same power law and to test for the
same type of QLRO, namely magnetic QLRO along the field.
Similarly, C trans

S and CQ,1 can mix and test for magnetic QLRO
transverse to the field, or for magnon quasicondensation.
However, the pairing component CQ,2 has no magnetic partner
and probes possible QLRO of nonmagnetic type. In the
following we will refer to a phase at finite magnetizations in
which this component decays algebraically and dominates as
a quadrupolar or spin-nematic Luttinger liquid. In analogy to
the interpretation of Eq. (4), QLRO in CQ,2 can also be viewed
as the quasicondensation of S = 2 bound pairs of magnons.
If, in addition, the structure factor of this component of the
quadrupolar correlation function is peaked at a wave vector
q = 0, we call the phase a ferroquadrupolar Luttinger liquid,
which we sketch in Fig. 2: on a single site, a finite expectation
value 〈 �Qi〉 can be envisaged as fluctuations around an axis
called director.4 In a ferroquadrupolar phase, all directors align

x

y
z

FIG. 2. (Color online) Sketch of a ferroquadrupolar ordered state
in zero magnetic field. Note that the breaking of the spin-SU(2)
symmetry can be described by a director located on each lattice
site around which the spins fluctuate. The parallel alignement of
these directors perpendicular to the z axis is representative for the
ferroquadrupolar state.

parallel to each other. Note that the directors are perpendicular
to the field. In previous work, ferroquadrupolar long-range
order has been identified for the S = 1 bilinear-biquadratic
Heisenberg model on the square35 and triangular lattice4 at zero
magnetic field. In the one-dimensional (1D) case, at zero field
spin-nematic phases have been identified numerically.24,36

They are not of ferroquadrupolar type since the structure
factor is peaked at some finite momentum. However, in
Sec. III C 3 we demonstrate that such a phase is realized
in one dimension in the BLBQ chain in a magnetic field.
Note that beyond the quadrupolar order it is possible to
realize multipolar (quasi-)long-range order in spin systems
by considering bond products of spin operators as described
in Refs. 37–40. However, in the following we will restrict
ourselves to the investigation of possible quadrupolar order.

D. Vector-chiral correlation functions

In addition to possible QLRO associated to breaking the
SU(2) or U(1) symmetry, true LRO can be obtained by
breaking the parity of the system. This is tested by the first
of the following two vector-chiral correlation functions:

C long
κ (i,j ) = 〈

κz
i κ

z
j

〉
,

C trans
κ (i,j ) = 〈

κx
i κx

j

〉 = 〈
κ

y

i κ
y

j

〉
, (10)

where �κj = Sj × Sj+1.

Such vector-chiral order has been, e.g., identified using
the DMRG in frustrated S = 1/2 and S = 1 Heisenberg
chains.40,41 In this paper, we consider a proposal of Kolezhuk
and Vekua34 in which a vector-chiral phase at finite magneti-
zations for positive values of θ has been suggested. We address
this issue by directly computing the correlation functions (10).

E. Correlation exponents

Whenever one of the above correlation functions decays as
a power law at long distance, the decay will be described by a
positive exponent η according to

C(i,j ) ∝ |i − j |−η. (11)

The exponents will be distinguished by the same indices and
superscripts as the corresponding correlation functions: η

long
S ,

ηtrans
S , ηQ,0, ηQ,1, ηQ,2. If several Fourier components of the
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correlation functions decay algebraically, the exponents will
be distinguished by an additional index.

As pointed out above, in a magnetic field some spin
and quadrupolar correlation functions are coupled, so that
η

long
S = ηQ,0 and ηtrans

S = ηQ,1. So we end up with three
a priori independent exponents: η

long
S , ηtrans

S , and ηQ,2.

F. Central charge

The analysis of the phase diagram is complemented by
computing the central charge c. For systems amenable to a
description by conformal field theory this quantity character-
izes the phase and the universality class of phase transitions.42

Using the DMRG, it can be obtained easily by computing the
von Neumann entanglement entropy of blocks of consecutive
sites,

S� = −Tr�� ln ��, (12)

where �� is the reduced density matrix of a subsystem of size
�. In order to circumvent the oscillations that appear in the
case of open boundary conditions (see Refs. 36 and 43 for
the behavior at the TB and at the ULS points at zero field),
we obtain c from systems with periodic boundary conditions
(PBCs), for which Calabrese and Cardy44 have derived the
general expression

S� = c

3
ln

[
L

π
sin

(
π�

L

)]
+ gPBC. (13)

The numerical value of c is then obtained by computing S� for
finite systems and fitting Eq. (13) to the results.

III. PHASE DIAGRAM OF THE BLBQ CHAIN AT FINITE
MAGNETIC FIELDS

In this section, we map out the phase diagram by succes-
sively looking at the magnetization, the central charge, and the
correlation functions.

A. Magnetization

The magnetization is depicted in Fig. 1(a). Three separate
regions of magnetization can be identified. Starting from the
dimerized phase, the magnetization of the finite systems grows
regularly in steps of �M = 2/L, similar to the behavior in
certain polarized S = 1/2 magnetic systems.37–40,45–47 This is
rather natural. Indeed, in this parameter range (large negative
biquadratic interactions), the system dimerizes to form singlet
pairs, and the quintuplet crosses the triplet when the bilinear
interaction vanishes. In this region, the first excitation of a
pair of spins to cross the singlet upon applying a magnetic
field is a quintuplet with Sz = 2, leading to the step size of
2/L. In contrast to this, in an intermediate region around the
Heisenberg point θ = 0 the magnetization grows in steps of
�M = 1/L. In the region −π/4 � θ � −π/10 the results
for finite systems indicate a line of transitions at which the
magnetization steps change from �M = 2/L to �M = 1/L

upon increasing θ and keeping H = const, or upon increasing
H at constant θ , indicating the presence of a phase transition.
This phase transition will be discussed in detail in Sec. IV. By
further increasing θ , we identify a kink anomaly developing

0.5
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3

3.5

10 20 30 40 50

S
l

l

c = 2.07

c = 1.02

θ = π/6
M = 1/3
M = 2/3

FIG. 3. (Color online) Block entropy for a system with L = 60
lattice sites and PBC at θ = π/6 below the kink transition (M = 1/3,
�) and above (M = 2/3, ©). The solid lines indicate the fit with
Eq. (13); the labels denote the central charge obtained by this fit.

at θ � π/9 and persisting up to θ = π/2. Its position on the
magnetization curve grows quickly up to the ULS point and
then seems to saturate at M ≈ 0.6, in agreement with previous
findings concentrating on the Haldane phase (Refs. 29 and 30)
and the vicinity of the ULS point (Refs. 28 and 31).

B. Central charge

The central charge has been calculated throughout the phase
diagram. It is equal to 2 below the kink, and equal to 1
everywhere else (except along the transition line where the
magnetization steps change from �M = 2/L to �M = 1/L,
where it is equal to 3/2; see below). Typical results are plotted
in Fig. 3.

When the central charge is equal to 1, the system is a single
component Luttinger liquid, and all correlation exponents
are controlled by a single parameter, leading to specific
relationships between the exponents of algebraic correlations.
When the central charge is equal to 2, the system is a
two-component Luttinger liquid, and the exponents of the
algebraic correlations can be obtained from the dressed charge
matrix (see Appendix B).

So magnetization and central charge reveal the presence
of three main phases: two single-component Luttinger liquid
phases with magnetization steps �M = 2/L and �M = 1/L,
respectively, and a two-component Luttinger liquid phase. We
now turn to a careful investigation of correlations inside these
phases to identify the nature of the dominant correlations.

C. Correlation functions in the single-component Luttinger
liquid phases

In this and the following section we base the characteriza-
tion of the phases on the values of the exponents of CQ,2, C trans

S ,
and C

long
S . It is sufficient to consider only these correlation

functions since, as expected due to the mixing at finite field,
we find that transverse or longitudinal correlation functions
decay with the same exponent, respectively. An exception
to this is the longitudinal component of the vector-chiral
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correlation function, which we find to decay with an exponent
of approximately 2 for all values of M and θ .

The behavior of the exponents reveals important aspects of
the phase diagram: As seen in Figs. 4(b) and 4(c), the transverse
correlation functions decay algebraically with an exponent
whose absolute value is much smaller than ηQ,2, as soon as
the size of the magnetization steps changes to �M = 1/L,
revealing a fundamental change in the physics despite the fact
that the central charge on both sides of the transition is c = 1.
The critical value of θ at which this transition takes place
depends on the magnetization. This scenario is reminiscent of
the paired superfluid phase and pair-unbinding transition to a
superfluid of single bosons identified in Ref. 48 for systems of
hard-core bosons with correlated hopping on the square lattice.
At the present, it is unclear if in this system the transition is of
first or second order. In the case of the BLBQ chain, however,
we identify the transition to be a continuous one as we discuss
in detail in Sec. IV. In the following, we address the various
aspects concerning the correlation functions and the physics
they reveal in more detail.

1. Exponent of the transverse correlation functions

In the discussion of the phase diagram, we mainly consider
the exponents ηtrans

S and ηQ,2. This is possible since we
identify both, from the numerical data as well as from a
field-theory and Bethe ansatz approach (see Sec. V and
Appendix A), that the exponent η

long
S in the single-channel

LL phases is the inverse of the one of the corresponding
transverse correlation function, i.e., η

long
S = 1/ηQ,2 in the

magnetized dimer phase and η
long
S = 1/ηtrans

S in the magnetized
Haldane phase. Note, however, that the longitudinal correlation
functions possess an additional oscillating component, which
makes it more difficult to obtain the numerical value of the
exponent with a high precision. In order to obtain accurate
results, we fit the exponent η

long
S to the Friedel oscillations

in the local spin density 〈Sz
i 〉 using expressions obtained

by bosonization, as discussed in Sec. V below. We apply
Eq. (35) in the magnetized Haldane phase and Eq. (41) in
the magnetized dimer phase by performing the fit only in the
bulk region around the center of the system. We find that in
the magnetized Haldane phase close to the transition to the
ferroquadrupolar LL, finite-size effects become predominant
due to the vicinity of the critical point. However, in contrast
to the approach used in Ref. 49, using these expressions
it is possible to obtain accurate results without introducing
additional phenomenological fitting parameters. Note that in
the region where c = 2, there is no simple relation between the
exponents of the various correlation functions, as discussed in
more detail in Appendix B. However, we find this exponent
to be larger than ηtrans

S and ηQ,2, so we conclude that the
longitudinal correlations do not become dominant in the
two-channel LL region.

2. Oscillatory component of the longitudinal correlation functions

We find that in the magnetized Haldane phase the oscillatory
component of the longitudinal correlations decays faster at
larger magnetizations, and substantially faster than in the
ferroquadrupolar LL phase. The frequency of this oscillation

FIG. 4. (Color online) (a) Absolute value of the algebraically
decaying correlation functions in the ferroquadrupolar LL phase
at M = 2/3, θ = −0.2π . The symbols and colors indicate C

long
S

[Eq. (3), red line, �], CQ,0 [Eq. (7), green line, 	] and CQ,2 [Eq. (9),
blue line, ©], and C long

κ [Eq. (10), black line, 
]. In addition, C trans
S

[Eq. (4), magenta line, �] - expected to decay exponentially - is shown.
(b) Value of the exponents of C trans

S [Eq. (4)], of CQ,2 [Eq. (9)], and of
C

long
S [Eq. (3)] as a function of θ at M = 1/3. (c) The same as in (b)

but at M = 2/3. The vertical lines in (b) and (c) indicate the position
of the phase transitions and crossovers as depicted in Fig. 1. Note that
in the high field phase at θ = π/4 the number of down spins is zero,
leading to a vanishing CQ,2. In (b) and (c) the value of η

long
S close to

the phase transition at θ ≈ −0.2π is not shown since it is strongly
affected by finite size effects.

184433-5
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depends on the value of the magnetization, and changes upon
crossing the phase transition. It is remarkable that the wave
vector of these oscillations in the ferroquadrupolar LL phase is
π (1 − M), while at the Heisenberg point it is 2πM .50,51 This
can be understood in terms of the bound pairs of magnons
populating the lattice, leading to an effective filling, which
is only half the value of the magnetization. This aspect will
be discussed in more detail in Sec. V in the context of a
field-theoretical treatment.

3. Ferroquadrupolar Luttinger liquid phase

We now focus on the region of the phase diagram in
which the magnetization steps are of size �M = 2/L at high
magnetizations (the light green region in Fig. 1). In Fig. 4(a)
we present our DMRG results for the various correlation
functions as obtained for systems with L = 60 lattice sites
with open boundary conditions at M = 2/3 and θ = −0.2π ,
a case that is representative for this phase. The plot shows that
the pairing component of CQ decays slowest, consistent with
a spin-nematic phase. Since the structure factor associated to
this correlation function is peaked at a wave vector q = 0,
and the central charge is found to be c = 1, we conclude
that the system realizes a single-channel ferroquadrupolar
LL phase. At the same time, the transverse spin-correlation
function decays exponentially, showing that the single-spin
excitation spectrum possesses a finite gap and that there is no
quasicondensation of magnons. This interpretation is further
confirmed by the analysis of the one-magnon and two-magnon
spin gap, which is presented in more detail in Sec. IV below.
In addition, a Bethe ansatz analysis at the integrable TB point
confirms the numerical finding of a power-law decay in CQ,2

at finite field, while the one-magnon sector acquires a gap (see
Appendix A).

4. Crossover from a ferroquadrupolar Luttinger liquid to a
spin-density-wave Luttinger liquid

In Fig. 5 we show the exponents of the correlation functions
C

long
S and CQ,2 as a function of the magnetization as obtained

by Bethe ansatz at the TB point θTB = −π/4. We observe
that for magnetizations M � 0.4 the exponent of C

long
S is

smaller than 1, while for larger magnetizations CQ,2 becomes
dominant. This is in agreement with numerical results for these
exponents. Furthermore, we identify numerically for values
of θ away from the integrable TB point the existence of a
crossover line in the low-field region, which we show in Figs.
1(b) and 1(c). At this crossover, the dominant correlations
change from spin-nematic ones at large magnetizations to
spin-density-wave (SDW) correlations. This is similar to
a scenario realized by a frustrated ferromagnetic S = 1/2
Heisenberg chain in a magnetic field, in which a crossover
line divides spin-multipolar LL phases into a nematic and a
SDW type of LL, as discussed in Refs. 37,39 and 40.

5. Magnetized Haldane phase

We find that the magnetized Haldane phase extends all over
the region depicted in light blue in Fig. 1, i.e., up to values of
θ = π/2 in the high-field region above the kink transition. For
the transverse spin correlations, the exponent can be obtained

0 0.2 0.4 0.6 0.8 1
M

0.5

1

1.5

2

E
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en

t

Δ2
Δ1

FIG. 5. (Color online) Exponents �1,2 of the power law decay
of C

long
S and of CQ,2, respectively, at the TB point (θ = −π/4) as

functions of the magnetization per site as obtained by Bethe ansatz
(see Appendix A). For small magnetizations C

long
S characterized by

the exponent �1 dominates, while for large magnetization CQ,2

characterized by the exponent �2 becomes dominant.

with reliable accuracy and at the Heisenberg point the obtained
numerical value compares well with previously published
results.49,50,52,53 In the whole phase, the numerical data indicate
that η

long
S = 1/ηtrans

S . Interestingly, ηQ,2 ≈ 4ηtrans
S , as can be

seen in Figs. 4(b) and 4(c). Both findings are in agreement with
predictions from field theory presented in Sec. V. The exponent
of CQ at low magnetizations behaves rather smoothly at the
transition. However, at larger magnetizations its magnitude
increases quickly when crossing the phase transition, leading
CQ,2 to decay very fast in the high-field region of the
magnetized Haldane phase. This can be related to the small
number of down spins in that region. The same effect is
responsible for the complete suppression of these correlations
at the ULS point due to the absence of down spins at this point,
which is discussed in Ref. 31 and in Appendix A.

Note that ηtrans
S jumps at the transition from the magnetized

Haldane phase to the ferroquadrupolar LL phase. This is due
to the nature of the phase transition and can be explained in
terms of a field-theory treatment of the transition, presented in
Sec. V B 3.

With this we conclude the discussion of the single-
component LL phases and turn now to the behavior of the
correlation functions below the kink transition.

D. Correlation functions in the two-component
Luttinger liquid phases

In this section, we turn to the phases realized below the kink
transition and characterize them by identifying the dominant
correlation functions.

1. Absence of vector-chiral order

The search for a parity broken phase is motivated by find-
ings for frustrated S = 1/2 chains, in which a kink transition
separates two single-channel LLs, one of them exhibiting
vector-chiral order.41 By analogy, it has been suggested that the
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FIG. 6. (Color online) Vector-chiral correlation functions below
(M = 1/3, dashed lines) and above (M = 2/3, solid lines) the kink
transition at θ = π/6.

same scenario might occur in the present bilinear-biquadratic
S = 1 chain.34 However, as discussed in Sec. III B, in the
whole region below the kink the central charge is c = 2,
supporting a scenario in which two-component LL physics
without vector-chiral order is realized. This is confirmed by
our results for the vector-chiral correlation functions shown
in Fig. 6, which do not indicate the presence of parity
breaking. We therefore conclude that vector-chiral order is
not realized and that below the kink transition in the whole
region two-channel LLs are realized, which we will further
characterize in the next section.

2. Crossover from a SDW to a spin-nematic two-channel
Luttinger liquid

As shown in Fig. 4(b), in the region π/9 � θ � π/4
the transverse spin correlations are more dominant than the
quadrupolar ones, while in the region π/4 < θ < π/2 the
quadrupolar correlations tend to be dominant. The presence
of such a crossover line is confirmed by a Bethe ansatz
analysis at the ULS point θULS = π/4 presented in more detail
in Appendix B. Note that the presence of the two massless
modes leads to oscillating components at various momenta,
which makes it difficult to obtain the numerical values of the
exponents of the correlation functions. However, at the ULS
point we can compare to the Bethe ansatz results; see Table I.
The numerical values are obtained for M = 1/3, and a good
agreement between the DMRG and the Bethe ansatz results is
obtained.

As shown in Fig. 7, the Bethe ansatz results demonstrate that
for M � 0.258 the spin-nematic correlations are dominant,
while at larger fields the transverse spin correlations are
dominant. A further numerical analysis of the exponents
around θ = π/4 indicates that the crossover line is, indeed,
bent. It seems to exist at values θ < π/4 for M < 0.25, while
for M > 0.25 it seems to exist at θ > π/4, but bending back
toward π/4 upon further increasing M . However, since the
values of the exponents are so close, it is very difficult to
identify the exact position of this crossover line numerically
and therefore we leave this aspect for future investigations.

TABLE I. Comparison of the values for the exponents of the
various correlation functions at the ULS point θULS = π/4 at M =
1/3 as obtained by DMRG and Bethe ansatz. We display the
exponents of the nonoscillatory part, k = 0, and the two smallest
values at finite wave vectors k1 and k2.

k = 0 k1 k2

Longitudinal correlations:
CS

long 1.91 1.75 1.77
CQ,0 1.75 1.58 1.71
Bethe ansatz 2 1.60 1.63
Transverse correlations:
CS

trans 1.37 1.51
CQ,1 1.38 1.51
Bethe ansatz 1.18 1.28
Spin-nematic correlations:
CQ,2 1.61 1.38
Bethe ansatz 1.68 1.20

Due to this crossover line, the system seems to reflect to
some extent the behavior at zero field, where the system is
in the gapped Haldane phase for θ < π/4, but realizes an
antiferroquadrupolar c = 2 critical state for θ > π/4.24 Note
that this spin-nematic LL is not a ferroquadrupolar LL since the
structure factor of the quadrupolar correlations is not peaked
at a wave vector q = 0, but at wave vectors that depend both
on the value of θ and on the strength of the magnetic field H ,
as discussed in Ref. 31 and in Appendix B.

Summarizing all these findings, we obtain the magnetic-
phase diagram of the BLBQ S = 1 Heisenberg chain presented
in Figs. 1(b) and 1(c). In the next section, we will discuss in

0 0.1 0.2 0.3 0.4 0.5
M

1.1

1.2

1.3

 Δ

Δ1
Q,2

Δ2
trans

FIG. 7. (Color online) Bethe ansatz results for the exponents
of the dominant component of the correlations at the ULS point
θULS = π/4 in the 2 LL region below the kink. The results shown are
obtained by the Bethe ansatz calculation presented in Appendix B
and show the smallest values of the exponents of C trans

S and CQ,2

as a function of the magnetization per site. We observe a crossover
between a regime where transverse spin correlations and quadrupolar
correlations are dominant at M ≈ 0.258. Note that the exponents of
the other components of the correlations are larger and are discussed
in more detail in Appendix B.
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FIG. 8. (Color online) Line of phase transitions between the
ferroquadrupolar LL and the magnetized Haldane phase (a) as a
function of (H,θ ) and (b) as a function of (M,θ ). The data points
indicate the position at which the step size of the magnetization
changes from �M = 2/L to �M = 1/L for systems with L = 120
lattice sites.

detail the nature of the transition from the ferroquadrupolar
LL to the magnetized Haldane phase at finite magnetizations.

IV. PAIR-UNBINDING TRANSITION

In this section, we focus on the nature of the phase transition
between the ferroquadrupolar LL and the magnetized Haldane
phase. By considering systems with up to L = 480 lattice sites,
we do not find any indication for the formation of a jump in the
magnetization curve, showing that a continuous rather than a
first-order transition (metamagnetic transition) is taking place.
Our findings for the magnetization curves indicate that an
infinitesimal magnetic field at the TB point leads immediately
to the binding of two magnons, while for θ > θTB closing of
the Haldane gap leads to the condensation of single magnons.
On the other hand, for the fully polarized state, decreasing
the field will lead to such bound states in the region θ �
arctan(−1/3),54 while for larger values of θ the excitations
of the fully polarized state are described by single magnons.
We therefore conclude that the line of transitions is located
between the TB point at zero field and −θAKLT at the saturation
field, as shown in more detail in Fig. 8. In the following we
provide further support that this transition is a continuous one.
We consider the gaps

�1 = 1
2 [E0(Sz + 1) + E0(Sz − 1) − 2E0(Sz)], (14)

�2 = 1
2 [E0(Sz + 2) + E0(Sz − 2) − 2E0(Sz)], (15)

 0
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 = -0.217
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FIG. 9. (Color online) (a) �1(θ ) at M = 0.3, M = 0.6, and M =
0.8 after extrapolation to the thermodynamic limit. The black lines
are linear fits in the vicinity of the critical points. (b) Example of the
finite-size scaling of the gap as a function of 1/L at M = 0.3. The
solid lines are fits with second-order polynomials and are shown as a
guide to the eye.

which have been applied in Ref. 37 for character-
izing frustrated ferromagnetic S = 1/2 chains at finite
magnetizations. �1 is a measure for the energy of single-spin
excitations, while �2 correspondingly characterizes two-spin
excitations. If �2 < �1, then the lowest-lying excitations are
characterized as pairs of spins. We find that, after extrapolating
to the thermodynamic limit, �2 is always zero for all values of
the magnetization in this parameter region. This is confirmed
by the observed algebraic decay of the quadrupolar correlation
functions all over the parameter range. However, �1 is finite
in the upper part of the magnetization curves, but becomes
zero at the point where the step size of the magnetization
curves changes, and remains zero in the magnetized Haldane
phase. In Fig. 9 we show results for �1(θ ) after extrapolating
to the thermodynamic limit at three different values of the
magnetization M = 0.3, M = 0.6 and M = 0.8. In all three
cases, to a good approximation the gap in the vicinity of the
transition point closes linearly and remains zero after the tran-
sition. This supports the scenario of a line of continuous phase
transitions.
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FIG. 10. (Color online) (a) Block entropy as obtained for systems
with L = 120 lattice sites with PBC at θ ≈ −0.17π < θc (�), θ ≈
−0.15π ≈ θc (�) and θ ≈ −0.14π > θc (�) at M = 0.6. The value
of the central charge as obtained by fitting with Eq. (13) is shown.
(b) Central charge as a function of θ for systems with L = 60 and
L = 120 sites with PBC. The data points are connected by a spline
interpolation as a guide to the eye. In the thermodynamic limit the
maximum will be a sharp peak located at the critical point.

Next we address the universality class of the transition
by computing the central charge c on the line of phase
transitions and in the adjacent phases. In Fig. 10 we show
our results for the block entropy for systems with PBC and
L = 60 or L = 120 lattice sites keeping up to m = 2000
density matrix eigenstates. The value of the central charge
is obtained by applying Eq. (13) for different values of θ at
fixed magnetization M = 0.6. At the critical point, we obtain
a value close to c = 3/2, which is reproduced everywhere on
the critical line, while we find the expected c = 1 in both
the ferroquadrupolar LL phase and the magnetized Haldane
phase.

It is remarkable that the measured effective central charge
at the transition in finite field is the same as the one at zero
field at the TB point. In this case the transition belongs to the
SU(2)k=2 Wess-Zumino-Witten-Novikov (WZWN) class,55

with a unique set of scaling dimensions (and therefore
exponents of the correlation functions).

The nature of the transition in a finite field is discussed in
some detail using field-theory methods in Sec. V. In particular

it is shown there that the value c = 3/2 for the central charge
arises from an Ising degree of freedom that becomes critical
on top of an already present critical Luttinger liquid, i.e.,
3/2 = 1 + 1/2. This is analogous to what has been found
in Ref. 56 for a transition between two superfluids in a
two-component bosonic Feshbach problem, and in Refs. 57–61
for the case of a fermionic S = 3/2 Hubbard model. In
the attractive S = 3/2 Hubbard model the Ising transition
separates a quasicondensate of pairs and a quasicondensate
of quartets of fermions. This is reminiscent of our findings for
the BLBQ chain in which the phase transition is connecting
a quasicondensate of magnons in the magnetized Haldane
phase with the quasicondensate of pairs of magnons in the
ferroquadrupolar LL phase, relating a single magnon in the
BLBQ chain to pairs of fermions in the S = 3/2 Hubbard
model.

It would be interesting to identify the Z2 symmetry of
the Hamiltonian which gets broken at such pair-unbinding
transitions. In higher dimensions, the U(1) symmetry of the
system can be broken down partially to Z2, and this remaining
discrete symmetry can further spontaneously break at the phase
transition (see, e.g., Ref. 62). However, in one dimension, the
continuous U(1) symmetry cannot be broken, and identifying
the Z2 symmetry is a more difficult task. This goes beyond the
scope of the present paper in which we focus on presenting
evidence in favor of such a scenario in the BLBQ chain at
finite fields, and we leave a further characterization of this
aspect open for future research.

The Ising transition encountered in the models mentioned
above can be characterized by considering particular ratios of
correlation functions.57 It is shown in Sec. V that

R(|i − j |) = 〈S−
i S+

j 〉4

CQ,2(i,j )
(16)

can be used as a diagnostic of the Ising transition. More
precisely, the ratio R(|i − j |) is related to a two-point function
of an Ising disorder field μ(x) by

R(|i − j |) ∝= 〈μ(x)μ(0)〉4. (17)

The magnetized Haldane phase corresponds to the disordered
phase of the Ising model, so that 〈μ(x)〉 �= 0 and hence R

is expected to tend to a finite value. On the other hand, the
ferroquadrupolar LL phase corresponds to the ordered Ising
phase and hence R will decay exponentially. At the transition
itself the field theory predicts R(|i − j |) ∼ 1/|i − j |.

In Fig. 11(a), we show our results for R at fixed value of the
magnetization when changing θ . In the ferroquadrupolar LL
phase, this quantity decays exponentially, while in the magne-
tized Haldane phase it indeed tends to a finite value. At critical-
ity, it decays ∼ 1/|i − j |. Note that in this case the value of one
or both exponents of the correlation functions needs to jump
at the transition. As we will see in Sec. V, it is the exponent of
C trans

S which behaves discontinuously, in agreement with the
results shown in Figs. 4(b) and 4(c). In Fig. 11(b), we show
the value of R(|i − j | = 30) and R(|i − j | = 50) as a function
of θ at various values of the magnetization. Even though we
are not considering the limit of infinite separation between i

and j , the behavior at the critical point is linear to a good
approximation.
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FIG. 11. (Color online) (a) Ratio R(|i − j |) [Eq. (16)] as a
function of θ at M = 0.6. (b) Value of R(30) (thick lines, filled
symbols) and R(50) (thin lines, empty symbols) as a function of θ at
M = 0.3, M = 0.6, and M = 0.8 obtained for systems with L = 120
lattice sites and PBC. The black lines are linear fits in the vicinity of
the critical points.

Finally, we may consider the scaling of the Ising order
parameter 〈μ(0)〉 as a function of the deviation θ − θc from
the critical point. As is shown in the next section, this is related
to R by

lim
|i−j |→∞

R(|i − j |,θ ) ∝ 〈μ(0)〉8 ∝ |θ − θc|. (18)

Hence the linear behavior shown in Fig. 11(b) is also in
agreement with an Ising transition. Additional support for this
scenario is given by comparing the values of the critical points
obtained by a linear extrapolation of R(30) and by a linear
fit to �1(θ ). From both sets of data, at M = 0.3 we obtain
θc ≈ −0.2, at M = 0.6 we obtain θc ≈ −0.15, and at M = 0.8
we find θc ≈ −0.125. Hence we conclude that starting from the
TB point at zero field, on the emerging line of phase transitions
the value of c = 3/2 is kept, but the universality class changes
from SU(2)k=2 WZWN to Luttinger liquid plus Ising. This
agrees with the picture emerging from the field-theoretical
treatment of this transition, which we present in the next
section.

V. FIELD THEORY IN THE VICINITY OF THE
ISING TRANSITION

Following Tsvelik63 we can construct a field-theory de-
scription of the model in the vicinity of the Takhtajan-Babujian
point θT B = −π

4 , H = 0. This results in a Hamiltonian of the
form

H = iv

2

3∑
a=1

La∂xLa − Ra∂xRa − im

3∑
a=1

RaLa

+ iH [L1L2 + R1R2] + g

3∑
a=1

J aJ a , (19)

where La and Ra are left- and right-moving Majorana fermions
and

J a = − i

2
εabc[LbLc + RbRc]. (20)

The mass m in Eq. (19) is proportional to the deviation θ − θT B

from the Takhtajan-Babujian point. The lattice spin operators
are expressed in terms of continuum fields as

Sa
j ∼ Ma(x) + (−1)j na(x), (21)

where x = ja0 (a0 is the lattice spacing). Here Ma are related
to the currents Ma(x) ∝ J a(x), while na(x) are expressed in
terms of the Ising order and disorder operators as

nx(x) ∝ σ 1(x)μ2(x)μ3(x),

ny(x) ∝ μ1(x)σ 2(x)μ3(x), (22)

nz(x) ∝ μ1(x)μ2(x)σ 3(x).

We may bosonize the Majoranas 1 and 2 using

i[R1L1 + R2L2] ∼ 1

πα
cos

√
4π (ϕR + ϕL),

i[L1L2 + R1R2] ∼ 1√
π

∂x(ϕR + ϕL),

(23)

L1 + iL2 ∼ 1√
πα

e−i
√

4πϕL,

R1 + iR2 ∼ 1√
πα

ei
√

4πϕR .

Here α is a short-distance cutoff. Rewriting the Hamiltonian
(19) in terms of the canonical Bose field � = ϕL + ϕR and the
dual field � = ϕL − ϕR results in

H = H3 + HB + Hint,

H3 = iv

2
[L3∂xL3 − R3∂xR3] − im R3L3,

(24)

HB = v′

2

[
1

K
(∂x�)2 + K(∂x�)2

]
− m

πα
cos

√
4π�

+ H√
π

∂x�,

Hint = 2ig

πα
cos

√
4π� L3R3.

Here K is a function of the applied magnetic field H as
well as the parameter θ . In order to deduce the structure of
the ground-state phase diagram of Eq. (24) we may neglect
the marginal term Hint. This leaves us with a decoupled theory
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of an off-critical Ising model H3 and a sine-Gordon model
with a chemical potential equal to the applied magnetic field
H . The latter is exactly solvable64,65 and exhibits two distict
phases. If H is less than the critical value Hc,1 the model
remains gapped, while it becomes critical for H > Hc,1. On the
basis of these observations we expect altogether four different
phases. The interaction termHint affects the value of the critical
field Hc,1 and renormalizes the parameters in H3 and HB . In
addition to the terms written in Eq. (24) further (marginal
or irrelevant) interactions will be generated by integrating
out high-energy degrees of freedom in the underlying lattice
model. In particular, the marginal interaction Hmarginal =
∂x�R3L3 appears to be compatible with all symmetries and
therefore ought to be generated. While this term is unimportant
as long as the Ising model described byH3 remains off-critical,
it could modify the Ising transition itself. The effects of this
interaction term have recently been analyzed in the context
of a band-filling transition in a two-subband quantum wire
by Sitte et al.66 Based on a one-loop renormalization-group
calculation it was suggested that Hmarginal alters the nature of
the quantum phase transition and leads to a scaling behavior
that differs from that of H3 + HB for very large length scales.
Due to the nonscalar nature of Hmarginal these length scales
are expected to be much larger than the system sizes used in
our DMRG computations. In the following we therefore will
neglect Hmarginal.

A. Weak magnetic fields H < Hc,1(θ )

For weak magnetic fields H < Hc,1(θ ) the model (24) is
fully gapped. The system remains unmagnetized. There are
two phases, which are distinguished by the sign of the mass
term in H3.63,67 For θ − θT B > 0 we have m > 0 and the
Ising model described by H3 is in its disordered phase. This
corresponds to the Haldane phase. For θ − θT B < 0 we have
m < 0 and the Ising model described by H3 is in its ordered
phase. This corresponds to the dimerized phase.

B. High fields H > Hc,1(θ )

When the magnetic field exceeds the critical value Hc,1(θ )
the bosonic degrees of freedom described by HB enter a
gapless Luttinger liquid phase. For H > Hc,1(θ ) we end up
with an effective Hamiltonian of the form

H = iṽ

2
[L3∂xL3 − R3∂xR3] − im̃ R3L3

+ ṽ′

2
[(∂x�̃)2 + (∂x�̃)2], (25)

where the parameters ṽ, ṽ′, and m̃ depend on the magnetic
field H and θ . This can be seen as follows. We may remove
the magnetic field term in Eq. (24) by the field redefinitions
�′ = � + K

v′√π
Hx, �′ = �. In terms of the new fields the

cosine term in HB is oscillating in x and for sufficiently large
H (compared to m) drops out of the Hamiltonian

∫
dx H at

low energies. Carrying out a unitary rescaling of �′ and �′
then leads to Eq. (25) (where we have also taken into account
the renormalization of the various parameters in a strong field).

The lattice spin operators are expressed in terms of the new
fields as

S±
j ∼ (−1)j exp

(
±i

π

β
�̃

)
μ3 + · · · ,

Sz ∼ cos(β�̃ + π (1 − M)x) σ 3 + · · · , (26)

(S±
j )2 ∼ exp

(
±i

2π

β
�̃

)
+ · · · ,

where β > β(Hc,1) = √
π depends on the applied magnetic

field H (Refs. 26 and 50) in a way that cannot be easily
calculated from within the field-theory framework. In Eq. (26)
we have only written the contributions with the smallest scaling
dimensions at the TB point.

The form of Eq. (25) shows that there are two phases
separated by an Ising phase transition, which occurs when
m̃ is tuned to zero. We are now in a position to describe the
behavior of correlation functions in these phases.

1. Haldane phase in a field

The case m̃ > 0 corresponds to the Haldane phase in a
(strong) magnetic field. We note that the closely related case
θ = 0, i.e., the spin-1 Heisenberg model in a field, has been
discussed previously by several authors; see, e.g., Refs. 50,
51,63 and 68. The Ising model described by L3, R3 is in its
disordered phase so that

〈σ 3〉 = 0, 〈μ3〉 �= 0. (27)

More precisely, the expectation value of the Ising disorder
operator scales as

〈μ3〉 ∝ |m̃|1/8. (28)

If we consider the Ising mass as a function of the parameter θ

for fixed magnetic field H , we have very close to the critical
point θc(H )

m̃ ∝ |θ − θc|. (29)

Using the expression given in Eq. (26) gives an exponentially
decaying contribution to the zz spin correlations. The leading
long-distance behavior is therefore due to the terms ∂x�̃ and
sin(2β�̃ + 2πMx),50,51 which gives

C
long
S (i,j ) ∼ A

(i − j )2
+ B cos [2πM(i − j )]

(i − j )2β2/π
. (30)

Here the oscillatory contribution is always subleading as
β >

√
π . The dominant correlations are the transverse spin

correlations

C trans
S (i,j ) ∼ (−1)i−j

〈
exp

(
i
π

β
�̃(x)

)
exp

(
−i

π

β
�̃(0)

)〉

∼ (−1)i−j (i − j )−π/(2β2). (31)

Hence we expect a correlation exponent for transverse spin
correlations,

π

2β2
<

1

2
. (32)

The high-field phase is an attractive Luttinger liquid with
dominant transverse spin correlations, in agreement with
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Ref. 50. The long-distance asymptotics of the quadrupolar
correlations is

CQ,2(i,j ) ∼
〈

exp

(
i
2π

β
�̃(x)

)
exp

(
−i

2π

β
�̃(0)

) 〉

∼ (i − j )−2π/β2
. (33)

Hence we have

lim
|i−j |→∞

∣∣C trans
S (i,j )

∣∣4

CQ,2(i,j )
= const ∝ |θ − θc|, (34)

in agreement with the numerical results shown in Fig. 11(a).
In order to make contact with DMRG calculations it is

useful to consider Friedel oscillations in Sz
j for a system with

boundaries. At the Heisenberg point θ = 0 we may derive the
Luttinger liquid description of the magnetized phase of the
open chain using a strong-coupling analysis as in Refs. 50
and 51. This results in an effective spin-1/2 Heisenberg XXZ

chain with equal boundary magnetic fields on both ends.
Standard bosonization methods then give

〈
Sz

j

〉 ∼ M + A
sin(2πM̃j + πϕ)∣∣N+1

π
sin

(
πj

N+1

)∣∣β2/π
, (35)

where N is the length of the chain and

M̃ = M +
1
2 − M − ϕ

N + 1
. (36)

We expect the form of Eq. (35) to hold also away from θ = 0.

2. Dimerized phase in a field

Here we have m̃ < 0 and the Ising model described by L3,
R3 is in its ordered phase. Hence we have

〈σ 3〉 �= 0, 〈μ3〉 = 0. (37)

As a result the contribution to the transverse spin correlations
due to the “leading” operator identified in Eq. (26) decay
exponentially, as do other contributions we have considered.
The asymptotics of the zz spin correlator is

C
long
S (i,j ) ∼ (i − j )−β2/(2π) cos [π (1 − M)(i − j )]

≡ (i − j )−�1 cos [π (1 − M)(i − j )] . (38)

On the other hand, the quadrupolar correlations behave as

CQ,2(i,j ) ∼ (i − j )−2π/β2 ≡ (i − j )−�2 . (39)

Just above Hc,1 we have β ≈ √
π , which implies that

�2 ≈ 2, �1 ≈ 1
2 . (40)

These agree with the weak-field limit of the Bethe-ansatz
analysis above. We furthermore know from the Bethe-ansatz
analysis that with increasing field the parameter β grows,
which implies that �2 decreases and �1 increases. For
sufficiently strong fields the quadrupolar correlations become
dominant.

For an open chain we expect Friedel oscillations of the form

〈
Sz

j

〉 ∼ M + C
sin[π (1 − M̃)j + πϕ′]∣∣N+1

π
sin

(
πj

N+1

)∣∣β2/4π
, (41)

where for M = m/N with even m,N we find

M̃ = M + 2ϕ′ − M

N + 1
. (42)

3. Ising transition

At the transition we have m̃ = 0 and the Ising model is
critical. As a result the spin correlators acquire additional
power-law factors and become

C trans
s (i,j ) ∼ (−1)i−j (i − j )−1/4−π/(2β2),

C long
s (i,j ) ∼ (i − j )−1/4−β2/(2π) cos [π (1 − M)(i − j )] ,

CQ,2(i,j ) ∼ (i − j )−2π/β2
. (43)

Note that this implies that R(x) [Eq. (16)] decays ∼1/x,
while comparing expressions (31) and (43) shows that the
exponent of the transverse spin correlations jumps upon
entering the magnetized Haldane phase by a value of 1/4
independent of the value of the magnetization. In contrast, the
exponent of CQ,2 changes continuously across the transition.
These findings are all in agreement with the numerical results
presented in Figs. 4(b), 4(c), and 11.

In conclusion, our combined numerical and field-theoretical
analysis supports the picture that the Ising transition identified
in the fermionic S = 3/2 attractive Hubbard model finds a
corresponding counterpart in the pair-unbinding transition of
the S = 1 BLBQ chain at finite magnetic fields.

VI. SUMMARY AND CONCLUSION

To summarize, by combining extensive DMRG calcula-
tions, Bethe ansatz, and field-theoretical arguments we have
determined the complete phase diagram of the S = 1 BLBQ
Heisenberg chain in a magnetic field. At finite magnetizations,
it consists of five phases: three single-component LL phases
and two two-component LL phases. Two of the single-
component LL phases appear when polarizing the system
starting from the dimerized phase at negative biquadratic
interactions. At large enough fields, the LL realized in this
parameter region is a ferroquadrupolar LL, which is connected
to a SDW-type of LL at lower fields via a crossover line. In the
whole region, the gap to single magnon excitations is finite,
and both LL phases are characterized by a quasicondensate
of bound pairs of magnons. These two single-channel LLs
of pairs of magnons are connected by a continuous transition
to the more standard single-component LL phase of single
magnons that appears when polarizing the Haldane phase. We
determined the transition to belong to the Ising universality
class with a central charge of 3/2 due to the contribution of
the adjacent LL phases. This transition emerges at the TB
point at zero field, showing that the magnetic field moves
the universality class from SU(2)2 WZWN at zero field to
Luttinger liquid plus Ising at finite fields. The two-component
LL phases show up for large positive biquadratic interaction
(and positive bilinear interaction). They are separated by a
magnetization kink from the magnetized Haldane phase and
are characterized by dominant incommensurate correlations
of transverse magnetic, respectively quadrupolar, type. It is
remarkable that they reflect to a certain extent the behavior
at zero field. In particular, the spin-nematic character of the
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LL phase identified at zero field in the region π/4 � θ � π/2
survives when applying a magnetic field. It is our hope that
this rich phase diagram will further motivate the search for
experimental realizations of this model, both in quantum
magnetic materials as well as in systems of ultracold atomic
gases on optical lattices.
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APPENDIX A: BETHE ANSATZ ANALYSIS AT THE
TAKHTAJAN-BABUJIAN POINT WITH A MAGNETIC

FIELD

In this Appendix we describe in more detail the Bethe ansatz
analysis of the S = 1 BLBQ Heisenberg chain in a magnetic
field at the TB point θT B = −π

4 . At this point the Hamiltonian
takes the form

H = J√
2

L∑
j=1

Sj · Sj+1 − (Sj · Sj+1)2 − HSz, (A1)

and is known to be solvable by Bethe ansatz14,69,70 for arbitrary
values of the magnetic field H . The ground state is described
in terms of the integral equation

ρ2(λ) = a1(λ) + a3(λ)

−
∫ A

−A

dμ [2a2(λ − μ) + a4(λ − μ)] ρ2(μ), (A2)

where

an(λ) = 1

2π

2n

n2 + λ2
. (A3)

The integration boundary A is fixed by the condition

ε2(A) = 0, (A4)

where the dressed energy ε2(λ) is a solution of the integral
equation

ε2(λ) = ε
(0)
2 (λ) −

∫ A

−A

dμ [2a2(λ − μ) + a4(λ − μ)] ε2(μ).

(A5)
Here the “bare energy” is given by

ε
(0)
2 (λ) = −8πJ√

2
[a1(λ) + a3(λ)] + 2H. (A6)

Ground-state energy and magnetization per site are

M = 1 − 2
∫ A

−A

dλ ρ2(λ),

(A7)

e =
∫ A

−A

dλ ε
(0)
2 (λ) ρ2(λ).
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FIG. 12. (Color online) Dressed charge Z as a function of
the magnetization per site M as obtained by Bethe ansatz. Inset:
magnetization per site M as a function of the applied magnetic field
(in units of the saturation field Hc) as obtained by Bethe ansatz (blue
straight line) and the DMRG (red steps).

For zero field the determination of the finite-size spectrum of
low-lying excitations is difficult because the ground state is
made from complex solutions of the Bethe ansatz equations
(“2-strings”).71–74 In a finite field matters are simpler and
following the standard analysis75 we can establish that the
finite-size spectrum of low-lying excited states is given by

�E = 2πv

L

[
(�N )2

4Z2
+ (Zd)2 + N+ + N−

]
, (A8)

�P = 2kF d + 2π

L
[N+ − N− + d�N ]. (A9)

Here �N and d are integers and the dressed charge Z = ξ (A)
is calculated from the integral equation

ξ (λ) = 1 −
∫ A

−A

dμ [2a2(λ − μ) + a4(λ − μ)] ξ (μ). (A10)

The result is shown in Fig. 12, which depicts the dressed
charge Z as a function of the magnetization M . The integer
�N is related to the z component of the spin by

δSz = −2�N. (A11)

The “Fermi momentum” kF is related to the magnetization per
site by

kF = π (1 − M)

2
. (A12)

The spectrum (A9) describes a Gaussian model, which implies
that the asymptotic behavior of correlation functions takes the
form75

〈O(t,x)O†(0,0)〉 =
∑

d,�N,N±
C(d,�N,N±) e−2ixkF d

×(x − ivt)−2�+
(x + ivt)−2�−

,

(A13)
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where

2�± = 2N± +
(

�N

2Z
± Zd

)2

. (A14)

Which of the amplitudes C(d,�N,N±) are nonzero depends
on the operator under consideration. The smallest correlation
exponents for scalar operators are obtained by the choices

�N = 0, d = 1 −→ �1 = 2Z2,
(A15)

d = 0, �N = 1 −→ �2 = 1

2Z2
.

The z component of the spin Sz
j is sensitive only to states with

�N = 0, while (S−
j )2 changes the total spin by 2 and hence

couples to states with �N = 1. This analysis then suggests that
the leading long-distance behavior of correlation functions is
of the form

C
long
S (i,j ) ∼ (i − j )−�1 cos[π (1 − M)(i − j )],

(A16)
CQ,2(i,j ) ∼ (i − j )−�2 ,

The exponents �1,2 are shown as functions of the ap-
plied magnetic field in Fig. 5. We see that for weak
fields the longitudinal spin correlations dominate, while
for strong fields the quadrupolar correlations decay more
slowly. The crossover occurs at a magnetization per site of
Mc ≈ 0.37.

APPENDIX B: BETHE ANSATZ SOLUTION FOR
θ = θU LS = π

4

Here we describe in more detail the Bethe ansatz analysis
of the SU(3) Uimin-Lai-Sutherland model11–13 in a magnetic
field, which corresponds to the point θULS = π

4 . For this value
of θ the Hamiltonian takes the form

H = J√
2

L∑
j=1

Sj · Sj+1 + (Sj · Sj+1)2 − hSz, (B1)

and is known to be solvable by Bethe ansatz for arbitrary values
of the magnetic field H . The critical properties of the model
have been previously analyzed in Ref. 31 and we begin by
summarizing the results obtained there.

1. Ground-state properties

The ground state is described in terms of the coupled
integral equations

ρa(λ) = ρ(0)
a (λ) +

2∑
b=1

∫ Ab

−Ab

dμKab(λ − μ)ρb(μ), (B2)

where

K12(λ) = K21(λ) = a1(λ), (B3)

K11(λ) = K22(λ) = −a2(λ), (B4)

ρ(0)
a (λ) = −2πδa1a1(λ), (B5)

with an(λ) defined in Eq. (A3). By virtue of the enhanced
SU(3) symmetry of the model (B1) in zero field the numbers
Mσ of σ spins (σ = 1,0, − 1) are good quantum numbers.

The z component of total spin is one of the Cartan generators
of SU(3) and hence Mσ remain good quantum numbers even
in the presence of a magnetic field. By definition we have
L = M1 + M0 + M−1 and in the ground state we have

n1 = N1

L
= M0 + M−1

L
=

∫ A1

−A1

dλρ1(λ), (B6)

n2 = N2

L
= M−1

L
=

∫ A2

−A2

dλρ2(λ). (B7)

The conditions (B7) fix the integration boundaries A1,2 as
functions of the densities n1,2. The magnetization per site is

M = M1 − M−1

L
= 1 −

2∑
b=1

∫ Ab

−Ab

dλ ρb(λ)

= 1 − n1 − n2. (B8)

The integration boundaries A1,2 are determined by the applied
magnetic field through the conditions

εb(Ab) = 0, (B9)

where the dressed energies εb(λ) are solutions of the coupled
integral equations

εa(λ) = ε(0)
a (λ) +

2∑
b=1

∫ Ab

−Ab

dμKab(λ − μ)εb(μ). (B10)

Here the “bare energies” are given by

ε
(0)
1 (λ) = −2πa1(λ) + h, (B11)

ε
(0)
2 (λ) = h. (B12)

As a function of magnetic field there are four distinct regimes:
(1) h = 0: as a result of the enhanced symmetry the low-

energy physics is described by the SU1(3) WZNW model. The
central charge is c = 2.

(2) 0 < h < hc,1: the model remains in a quantum critical
phase. Universal properties are described by a two-component
Luttinger liquid. The central charge is c = 2, but the symmetry
is reduced as compared to h = 0. When h approaches hc,1 the
cutoff of one of the Luttinger liquids goes to zero.

(3) hc,1 < h < hc,2: the low-energy physics is described by
a c = 1 one-component Luttinger liquid.

(4) hc,2 < h: the ground state is fully polarized and all
excitations have a gap.

In the following we concentrate on the two-component
Luttinger liquid regime 0 < h < hc,1. In Fig. 13 we plot the
magnetization per site as a function of the applied magnetic
field and the densities n1,2 as functions of the magnetization.
We see that at hc,1 the density of Sz = −1 spins becomes zero.

2. Low-lying excitations for 0 < h < hc,1

As we are dealing with a quantum critical theory there
are gapless excitations. In a finite volume L the spectrum of
low-lying excited states scales as L−1 and is related to the
operator content of the underlying conformal field theory.76

The finite-size energies and momenta of low-lying excitations
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FIG. 13. (Color online) Densities n1,2 as functions of the magne-
tization per site as obtained by Bethe ansatz and magnetization per
site as a function of the applied magnetic field as obtained by Bethe
ansatz (black straight line) and DMRG (red steps).

can be determined by standard methods77–79 from the Bethe
ansatz solution with the result31

E(�N,d) − E0 = 2π

L

2∑
a=1

va(�+
a + �−

a ) + o

(
1

L

)
,

P (�N,d) − P0 = 2π

L

2∑
a=1

�+
a − �−

a (B13)

+2π (n1d1 + n2d2) + π�N1,

where the conformal dimensions �±
1,2 are expressed as

�±
1 (�N,d,N±

1 )

= 1

2

(
Z11d1 + Z21d2 ± Z22�N1 − Z12�N2

2 det Z

)2

+ N±
1 ,

(B14)

�±
2 (�N,d,N±

2 )

= 1

2

(
Z12d1 + Z22d2 ± Z11�N2 − Z21�N1

2 det Z

)2

+ N±
2 .

Here N±
a and �N1,2 are integer numbers,

d1 = �N2

2
mod 1, d2 = �N1

2
mod 1, (B15)

and v1,2 are Fermi velocities of the two types of elementary
excitations. They are given in terms of the integral equations
(B10), (B2) by

va = ε′
a(Aa)

2πρa(Aa)
, (B16)

where ε′
a(λ) are the derivatives of the dressed energies. Finally,

Zab are the elements of the dressed charge matrix

Z =
(

ξ1c(A1) ξ12(A2)
ξ21(A1) ξ22(A2)

)
, (B17)

where ξab fulfill the set of coupled integral equations

ξab(λ) = δab +
2∑

c=1

∫ Ac

−Ac

dμ ξac(μ) Kcb(μ − λ). (B18)
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FIG. 14. (Color online) Elements of the dressed charge matrix Z

as functions of the magnetization per site M as obtained by Bethe
ansatz.

In Fig. 14 we plot the elements of the dressed charge matrix
Z as functions of the magnetization.

3. Long-distance asymptotics of correlation functions

As the critical behavior is described by a two-component
Luttinger liquid the asymptotic behavior of correlation func-
tions can be extracted from the finite-size spectrum following
the analysis of Frahm and Korepin for the Hubbard model.79,80

The asymptotic behavior of the two-point function of a local
operator O is given by

〈O(x)O†(0)〉 =
∑

d,�N,N±
C(d,�N,N±) x−�

× e−2πi(n1d1+n2d2+(1/2)�N1), (B19)

where the exponents � are related to the finite-size energies
by

�(d,�N,N+,N−) = 2�+
1 + 2�−

1 + 2�+
2 + 2�−

2 . (B20)

For a given operator O certain amplitudes C(d,�N,N±) will
be zero due to continuous or discrete symmetries, which
sometimes are not entirely obvious.81 For later use we define
a number of momenta characterizing the oscillatory behavior
of correlation functions

P1 = 2π (n1 − n2),

P2 = π (1 − n2), (B21)

P3 = π (1 + n1 − n2).

4. Longitudinal spin correlations

As Sz
j does not change the total z component of spin

only intermediate states for which Sz = L − N1 − N2 is the
same as in the ground state will contribute to the correlation
function. Hence the longitudinal correlations are characterized
by quantum numbers subject to the selection rule

�N1 + �N2 = 0. (B22)
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FIG. 15. (Color online) Exponents characterizing the power-law
decays of the various correlators as functions of the magnetization
per site.

The smallest exponents are then obtained by the following
choices:

(1) �N1,2 = 0, d1 = ±1, d2 = 0, N± = 0,
(2) �N1,2 = 0, d1 = 0, d2 = ±1, N± = 0,
(3) �N1,2 = 0, d1 = −d2 = ±1, N± = 0,
(4) �N1,2 = 0, d1 = d2 = 0, N− = 0, N+ = 1,
(5) �N1,2 = 0, d1 = d2 = 0, N− = 1, N+ = 0.
This leads to the following form for C

long
S (i,j ):

C
long
S (i,j ) ∼ C1(i − j )−�

long
1 cos [2πn1(i − j )]

+C2(i − j )−�
long
2 cos [2πn2(i − j )]

+C3(i − j )−�
long
3 cos [P1(i − j )]

+C4(i − j )−2 + · · · , (B23)

where

�
long
1 = 2

(
Z2

11 + Z2
12

)
,

�
long
2 = 2

(
Z2

21 + Z2
22

)
, (B24)

�
long
3 = 2(Z11 − Z21)2 + 2(Z12 − Z22)2.

The magnetization dependence of �
long
1,2,3 is shown in

Fig. 15.

5. Transverse spin correlations

In the transverse spin correlator only intermediate states
with

�N1 + �N2 = ±1 (B25)

contribute. The smallest exponents are then obtained by the
following choices:

(1) �N1 = ±1, d2 = ± 1
2 , �N2 = d1 = N± = 0,

(2) �N2 = ±1, d1 = ± 1
2 , �N1 = d2 = N± = 0.

This leads to the following form for C trans
S (i,j ):

C trans
S (i,j ) ∼ D1(i − j )−�trans

1 cos [P2(i − j )]

+D2(i − j )−�trans
2 cos [πn1(i − j )]

+ · · · , (B26)

where the exponents are given by

�trans
1 = [

Z2
21 + Z2

22

]1 + det2 Z

2 det2 Z
,

(B27)

�trans
2 = [

Z2
12 + Z2

11

]1 + det2 Z

2 det2 Z
.

The magnetization dependence of �trans
1,2 is shown in Fig. 15.

We see that the two exponents are comparable in magnitude
but �trans

2 < �trans
1 .

6. Quadrupolar correlations

Here the operator O in Eq. (B19) changes the z component
of total spin by ±2, so that we need to consider intermediate
states with �N1 + �N2 = ±2. The smallest exponents are
then obtained by the following choices:

(1) �N1 = �N2 = ±1, d1 = −d2 = ± 1
2 , N± = 0,

(2) �N2 = 2, �N1 = d1,2 = N± = 0.
This leads to the following form for CQ(i,j ):

CQ,2(i,j ) ∼ E1(i − j )−�
(1)
Q,2 cos [P3(i − j )]

+E2(i − j )−�
(2)
Q,2

+ · · · , (B28)

where the exponents are given by

�
Q,2
1 = [(Z11 − Z21)2 + (Z12 − Z22)2]

1 + det2 Z

2 det2 Z
,

(B29)

�
Q,2
2 = 2

Z2
11 + Z2

21

det2 Z
.

The magnetization dependence of �
Q,2
1,2 is shown in Fig. 15.

a. Dominant power-law correlations

We are now in a position to identify the dominant power-law
correlations. In Fig. 7 we plot the magnetization dependence
of the smallest exponents. We see that at low magnetizations
the quadrupolar correlation dominates, while for larger mag-
netizations the transverse spin correlations are seen to decay
slowest. The crossover between these two regimes occurs at
M ≈ 0.258.
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