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Linear independence of nearest-neighbor valence bond states in several two-dimensional lattices
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We show for several two-dimensional lattices that the nearest-neighbor valence bond states are linearly
independent. To do so, we utilize and generalize a method that was recently introduced and applied to the
kagome lattice by one of the authors. This method relies on the choice of an appropriate cell for the respective
lattice, for which a certain local linear independence property can be demonstrated. Whenever this is achieved,
linear independence follows for arbitrarily large lattices that can be covered by such cells, for both open and
periodic boundary conditions. We report that this method is applicable to the kagome, honeycomb, square,
squagome, two types of pentagonal, square-octagonal, star , two types of Archimedean, three types of “martini”,
and fullerene-type lattices, e.g., the well known ‘buckyball.” Applications of the linear independence property,
such as the derivation of effective quantum dimer models or the construction of new solvable spin-1/2 models,
are discussed.
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I. INTRODUCTION

Quantum Heisenberg models and their extensions are
prime examples of simple toy models that provide realistic
descriptions of complicated emergent phenomena in inter-
acting many-particle systems. Under most circumstances,
these models describe systems that order magnetically at low
temperatures, in general agreement with the experimental sit-
uation. There has been much interest, however, in mechanisms
leading to ground states that remain magnetically disordered
even at the lowest temperatures. Various scenarios exist for
such a possibility, where we focus on the important special
case of systems with spin-1/2 degrees of freedom on a lattice.
In a valence bond crystal, the ground state is adiabatically
connected to one where lattice spins are paired up into singlets,
or “valence bonds.” Depending on the lattice, this may be
possible with or without1 the breaking of a spatial symmetry.
Other variants of singlet “crystal” phases feature “singlet
plaquettes” instead of individual valence bonds. Even more
interesting, however, is the case where adiabatic continuity to
a trivial product state does not exist, and the zero-temperature
spin state is devoid of any crystalline character but forms a
“spin liquid” driven by fluctuations of valence bonds. This
possibility was first considered by Anderson in 1973,2 and
was called a “resonating valence bond” (RVB) spin liquid.

Interest in RVB spin liquid physics has been driven both
by its proposed connection3 to high-Tc superconductivity, and
by the innate exotic character of RVB states, which feature
fractionalized spin-1/2 excitations. Promising experimental
candidates have been identified only recently.4–9 Theoretical
challenges in establishing the existence of RVB spin liquids
have been profound, due to the strongly interacting nature
in particular of SU(2)-invariant quantum spin systems. To
render the problem tractable, Rokhsar and Kivelson invented
an ingenious scheme to explore the nonmagnetic part of the
phase diagram of quantum spin-1/2 systems through effective
“quantum dimer” models (QDMs).10 They focused on the
case where a gap in the system renders all correlations short
ranged. In this case, the RVB spin liquid ground state can
be thought of as a superposition of states where spins pair
up into short-range valence bonds. A quantum dimer model

is obtained by first truncating the Hilbert space to include
only states where each spin participates in a nearest-neighbor
valence bond (NNVB). The second simplification, perhaps
even bolder and more difficult to control, is to regard the
NNVB states that generate the Hilbert space as an orthogonal
basis. In reality, no two NNVB states on a finite lattice are
orthogonal. It is thus more appropriate to think of the degrees
of freedom of these new effective theories not as valence bonds,
but as hard-core bosons or “dimers” existing on the links of
the original lattice. As sets, however, both the hard-core dimer
states and the NNVB states are in one-to-one correspondence
with dimerizations of the lattice into nearest-neighbor pairs;
see Fig. 1.

The exploration of QDMs has given rise to profound
insights into possible realizations of short-range RVB spin
liquid physics, in particular on nonbipartite lattices.11,12 It
has remained challenging, however, to rigorously establish
the status of simple QDMs as viable effective theories for
quantum spin-1/2 systems within a certain parameter regime.
The lack of orthogonality of the NNVB states that QDMs seek
to describe makes it difficult to establish a direct mapping
between QDMs and the low-energy sector of quantum spin-
1/2 models. This difficulty can be dealt with by treating the
nonorthogonality as a “small parameter” and setting up a
systematic expansion in this parameter. This notion already
played a central role in the original literature,10,13 and was
recently explored in great detail in a series of insightful
papers.14,15 Within this scheme, one can thus get the issue of the
nonorthogonality of the NNVB states under control. However,
the validity of this perturbative scheme depends crucially on
the fact that the NNVB states, while not orthogonal, are at
least linearly independent, like their counterparts in QDMs.
In technical terms, the overlap matrix obtained from the
NNVB states must be invertible. The need for an invertible
overlap matrix was noticed early on,10 and from there on
linear independence of NNVB states was routinely quoted
as an assumption in the literature, e.g., in estimates of
the low-temperature entropy of highly frustrated quantum
magnets.16,17 Furthermore, exactly solvable, SU(2)-invariant
spin-1/2 models with RVBs and/or spin liquid ground states on
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FIG. 1. (Color online) A square lattice with dimer covering.
Dimers are indicated by ovals.

simple lattices have only been constructed quite recently,18–21

in addition to work on decorated lattices.22 In Ref. 19, rigorous
(albeit partial) statements on the uniqueness of the RVB-type
ground states of the model constructed there were intimately
tied to the linear independence of NNVB states on the kagome
lattice. We also note that from a purist point of view there
is a need to demonstrate that superpositions of NNVB wave
functions, which may be considered as variational13,16,17,23,24

or exact18–20 solutions to various problems, do not vanish
identically, whenever the overlaps between the NNVB states
forming these wave functions do not have a uniform sign.
The normalizability of such wave functions is an obvious
by-product of the linear independence of NNVB states (on
the respective lattice). The explicit or implicit assumption of
the linear independence of the NNVB states is thus a prevalent
theme in the literature on short-range RVB physics, and in
some cases has been studied extensively on finite clusters.25,26

Rigorous proofs of this linear independence have been
available since 1989, through a seminal work of Chayes,
Chayes, and Kivelson.27 The proof, however, has been limited
to three different types of planar lattice, the square, honey-
comb, and square-octagonal lattice, and only for the case of
open boundary conditions. Here we discuss a more general
method, that can, in principle, be applied to any lattice, in
the presence of both open and periodic boundary conditions.
While we usually have Born–von Karman periodic boundary
conditions in mind, which give a rectangular (or parallelogram)
lattice strip the topology of a torus, our method applies to other
lattice topologies as well. To demonstrate this, we also apply
our method to the C60 lattice and other fullerene-type lattices,
where the linear independence of NNVB (or “Kekulé”) states
has direct applications in chemistry.23

Although there is no guarantee that our proof strategy
works for every lattice where the linear independence holds,
we demonstrate its applicability to many additional two-
dimensional (2D) lattices, for which the linear independence
of NNVB states is established in this work. At the same time,
we generalize the aforementioned previous results on linear

independence of NNVB states to the case of periodic boundary
conditions. It is well known that the physics of short-range
RVB states becomes enriched in subtle ways when periodic
boundary conditions are imposed. On a toroidal square lattice,
e.g., NNVB states come in a large number of topological
sectors characterized by two integer winding numbers (nx,ny).
(For a review, see, e.g., Ref. 28.) When the same lattice is
viewed as a rectangle with open boundary conditions, the
remaining allowed NNVB states all belong to a subset of just
the (0,0) sectors. In the thermodynamic limit, the number of
NNVB states for open boundary conditions thus becomes a
vanishing fraction of the corresponding number for periodic
boundary conditions. It is thus clear that the statement of linear
independence becomes considerably stronger for periodic
boundary conditions, and is often desirable in applications.

We proceed by applying and refining a method that has
recently been developed for the kagome lattice,19 making it
amenable to more general lattice structures. In Sec. II A we
review this method. In Sec. II B we report that this method can
be applied without much alteration to the honeycomb lattice,
the star lattice, the square-octagonal lattice, the squagome
lattice, two types of pentagonal lattice (studied in a magnetic
context, e.g., in Refs. 29 and 22), three types of “martini”
lattice,30 and two types of Archimedean lattice. In Sec. II C,
we apply the same method to fullerene-type lattices. We find
that the case of the square lattice requires a generalization of
this method, which is introduced and applied in Sec. II D. In
Sec. III we summarize our results and discuss possible further
applications.

II. METHOD AND RESULTS

A. Derivation of the linear independence condition

In this section we review the method used in Ref. 19 to
prove the linear independence of the nearest-neighbor valence
bond states on the kagome lattice. We find that this method
can be extended straightforwardly to most other lattices to be
considered here. A refinement necessary to study the case of
the square lattice will be given further below.

The general starting point of this method is the identification
of a suitable (ideally, smallest) cell for which a rather strong
local linear independence property holds true. This local
linear independence property can conveniently be verified
numerically, although in many cases an analytic proof seems
feasible as well. As shown in Ref. 19, this local property
then implies the linear independence of nearest-neighbor
valence bond states on arbitrarily large lattices that can, in
a certain sense, be covered by such cells.31 To make this paper
self-contained, we will repeat the proof in the following. For
the kagome lattice, the smallest possible cell that satisfies these
requirements is the 19-site “double star” shown in Fig. 2.

For any given cell of a lattice, we define as interior or inner
sites of the cell those sites for which all nearest neighbors are
also contained within the cell. Here, the nearest neighbors of a
site are all sites connected to it through a link of the lattice. Sites
that are not interior are called the boundary sites of the cell. For
the kagome cell depicted in Fig. 2, all sites belonging to one
of the internal hexagons are interior, while the remaining ones
are boundary sites, unless the cell happens to be at a boundary
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FIG. 2. (Color online) The kagome lattice. (a) shows the
structure of the kagome lattice, while (b) shows the minimal (smallest)
cell for which the local independence property defined in the text was
proven (Ref. 19). Different shades (colors) are used to label the sites
which are defined as inner and outer sites, respectively.

of the lattice itself. In this work we will, however, mostly
consider lattices without boundary. Statements about lattices
with boundary can then be obtained as simple corollaries.
Therefore, the distinction between interior and boundary sites
within a cell such as shown in Fig. 2 will not depend on the
position of the cell within the lattice.

To proceed, we will now define a certain class of states
living on the local cells. We will refer to these states as “local
valence bond states.” This, however, does not imply that these
states completely dimerize the cell, i.e., that every site of the
cell must participate in a valence bond within the cell. Rather,
we think of these states as local “snapshots” of a lattice that is
in a (globally defined) nearest-neighbor valence bond state. In
such a snapshot, every internal site of the cell must certainly
form a valence bond with one of its nearest neighbors within
the cell. A boundary site of the cell, however, may or may not
participate in a valence bond with a site within the cell under
consideration. In particular, it may participate in a valence
bond with a site outside that cell. In the latter case, the local
density matrix describing the state of the cell contains no
information about the state of the spin of such a boundary site.
This motivates the following definition of local valence bond
“snapshot” states on the cell C. Let us consider states of the
form

|D〉 × |ψf 〉. (1)

Here, D represents a dimer covering of the cell C. By this we
mean a pairing of the sites of the cell C into nearest-neighbor
pairs, where each internal site is a member of a pair, but not
necessarily each boundary site. An example for such a pairing
is given for the cell of the star lattice shown in Fig. 3(d), and
that of the square lattice shown in Fig. 10(c). By |D〉 we denote
a state where each pair of D forms a singlet, with an arbitrary
phase convention. In Eq. (1), the state |ψf 〉 then denotes any
state of the “free” sites that are left untouched by the dimer
covering D. This can again be seen in Figs. 3(d) and 10(c). In
Fig. 10(c), every dimer covering D leaves behind at least one
free site, because of the odd number of sites in this cell. For
cells of even size, we leave it understood that the factor |ψf 〉
in Eq. (1) is absent if D covers all sites of the cell.

We find it convenient to denote by H(D,C) the linear space
formed by all local states of the form (1), for a fixed dimer
covering D, and will also write H(D) instead of H(D,C)
whenever it is clear what cell is being referred to. The space

FIG. 3. (Color online) The star lattice (a), and its minimal cell
(c) for which the local independence property could be established.
(b) shows the martini-A lattice, with the same minimal cell (c).
Different shades (colors) of dots identify internal and boundary sites.
(d) shows a possible dimer covering: the internal sites must be touched
by a dimer; boundary sites may or may not form a dimer (valence
bond) with an internal site. In a local valence bond state, boundary
sites not participating in valence bonds may be in an arbitrary spin
configuration.

spanned by all states of this form, without fixing D, is called
the local valence bond space of the cell C, V B(C):

V B(C) =
∑

D

H(D,C). (2)

Here, the sum denotes the linear span. For a given cell C, we
will now ask whether the sum in Eq. (2) is direct. This means
that the expansion of any state in V B(C) into members of the
various spaces H(D) is possible in one and only one unique
way. Whenever this property holds for some cell C, we will
say that the NNVB states are “locally independent” on the cell
C, or satisfy the “local independence property” on the cell C.

The local independence property, whenever it can be
established for some cell C, extends to arbitrarily large lattices
that can be covered by cells of this topology. Said more
precisely, we require that every link of the lattice belongs to a
cell that has the topology of C.32 The linear independence of
NNVB states defined on the entire lattice can then be seen as
follows.19 The key observation underlying our approach is that
if the sum in Eq. (2) is direct, then linear projection operators
PD acting on the cell C are well defined, and project onto the
subspaces H(D). Said differently, the defining properties of
these operators are

PD |D′〉 ⊗ |ψf 〉 = δD,D′ |D′〉 ⊗ |ψf 〉;
(3)

hence PDPD′ = δD,D′PD.

We note that since the spaces H(D) are not orthogonal, the
linear projection operators thus defined are not Hermitian.
Needless to say, nonorthogonality does not imply any notion
of “overcompleteness.” Generally, the local VB states defined
above are not complete within the local Hilbert space, just as
the global NNVB state are not complete within the subspace
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of global singlets, as counting26 will show. Hence, strictly
speaking, to define the operators PD within the full 2|C|-
dimensional Hilbert space of the cell C, we need to specify
their action on a suitably chosen complement of the local
valence bond space V B(C), which can be done in an arbitrary
way. In the following, we will only need to know the action of
these operators within the subspace V B(C).

The operators PD can now be defined for any cell C of
some lattice L, for which the nearest-neighbor valence bond
states are locally independent in the sense defined above. We
may write P C

D to explicitly refer to the cell C on which these
operators act, but will continue to write PD instead whenever
no confusion is possible. Armed with these operators, we may
consider a general linear relation of the form

∑

D′
λD′ |D′〉 = 0. (4)

Here, D′ now represents a full dimerization of the entire lattice,
and for simplicity, we assume that the lattice has no boundary,
and can be covered by a single type of cell, as defined above.
We will comment on the (simpler) case where the lattice has
a boundary below. The states |D′〉 are thus NNVB states
of the lattice L. For definiteness, we may think of, e.g., a
honeycomb lattice with periodic boundary conditions. The
honeycomb lattice and its smallest cell for which the local
independence property holds are shown in Fig. 4. We want
to show that Eq. (4) implies that all coefficients λD′ are zero.
For this we first focus on a single cell C of the lattice that has
the topology shown in Fig. 4(b), and a fixed dimer covering
D of the entire lattice. The dimer covering D determines a
dimer covering DC of the cell C, consisting of those dimers
of D that are fully contained in C. Consider the action of
the operator PDC defined for the cell C on any of the states
|D′〉 in Eq. (4). Clearly, the dimer covering D′ determines
a local dimer covering of C, D′

C , defined analogously to

FIG. 4. (Color online) Honeycomb and related structures.
(a) The honeycomb lattice. (b) Its minimal cell with internal and
boundary sites identified. (c) The minimal cell of the buckyball lattice
(Fig. 9). (d) A similar heptagonal cell that also satisfied the local
independence property.

DC . From the definition of the projection operators, Eq. (3),
we see that

PDC |D′〉 = δDC ,D′
C
|D′〉. (5)

This is so since the state |D′〉 is contained in the tensor product
H(D′

C,C) ⊗ H(L \ C), where the second factor denotes the
Hilbert space associated with all lattice sites not contained in
C. PDC only acts on the first factor, and does so according to
Eq. (3). Some further (but trivial) details are explicitly written
in Ref. 19. Hence, when PDC acts on Eq. (4), one obtains
a similar linear combination on the left-hand side, but with
all dimer coverings D′ omitted for which the cell C does not
contain exactly the same dimers as for D. We can proceed
by successively acting on this new linear relation with the
operators PDC′ , where D is the same as before, but C ′ now
runs over all cells of the lattice with the same topology as
C. Since by assumption, these cells cover the lattice in the
sense defined above, only those states |D′〉 in Eq. (4) survive
this procedure whose underlying dimer covering D′ looks
the same as D everywhere, i.e., only the term with D′ = D

survives. The resulting equation is thus λD|D〉 = 0, which
implies λD = 0. Hence λD′ = 0 for each dimer covering D′,
since D was arbitrary. This then proves the linear independence
of the nearest neighbor valence bond states on the lattice L.

So far we have considered lattices with periodic boundary
conditions. The above result, however, immediately carries
over to lattices with a boundary. Let us consider any lattice L′
with an edge that can be obtained from a latticeLwith periodic
boundary conditions, for which the linear independence of
NNVB states has been proven, by means of the removal of
certain boundary links. Then the set of full dimerizations D of
L′ is just a subset of those ofL, and likewise the corresponding
set of NNVB states. Hence, if the linear independence of
NNVB states holds for L, it must also hold for L′. More
generally, it is easy to see that our result applies to any
sublattice L′ of L, such that L = L′ ∪ L′′ is a disjoint union,
and both L′ and L′′ are fully dimerizable.

B. Twelve different 2D lattices

We now discuss the applicability of this method to various
two-dimensional lattices. As discussed in Sec. II A, this merely
requires the identification of a cell of the lattice, for which the
local independence property holds, and which can cover the
entire lattice in the sense defined there. Such cells have also
been dubbed “bricks of linear independence” in Ref. 19. For
brevity, we will refer to the cells identified by us as “minimal
cells,” since there are presumably (in some cases obviously)
no smaller cells with this property on the respective lattices.
We have, however, not carefully ruled out the existence of
smaller cells in all cases, since this is of limited interest once
sufficiently small “bricks of linear independence” have been
identified. For the cell C in question, we pick an appropriate
basis |D〉 ⊗ |ψi〉 for each space H(D), where i = 1, . . . ,2nD ,
and nD is the number of sites of the cell C that do not participate
in the local dimer recovering D. The local independence
property introduced in the preceding section is then equivalent
to the statement that the overlap matrix

MD′,j ;D,i = (〈D′| ⊗ 〈ψj |) (|D〉 ⊗ |ψi〉) (6)

184430-4



LINEAR INDEPENDENCE OF NEAREST-NEIGHBOR . . . PHYSICAL REVIEW B 83, 184430 (2011)

FIG. 5. (Color online) The square-octagonal lattice (a) and the
squagome lattice (b). (c) and (d) show the respective minimal cells.

has full rank. It is clear that for a suitable choice of the
factors |ψi〉, e.g., “Ising”-type basis states with well-defined
local Sz, and suitable overall normalization factors, the matrix
elements MD′,j ;D,i are integer. The question of the rank of this
matrix can then be addressed using integer arithmetic free of
numerical errors. We did this by using the LINBOX package.33

By choosing the ψi from an Ising-Sz basis, the matrix in Eq. (6)
is also block diagonal with blocks of definite total Sz. This led
to manageable matrix sizes in all the cases discussed in this
section.

We present 12 different 2D lattices which we successfully
studied using the method described above, and their respective
minimal cells C, for which the local independence has been
found to hold, Figs. 2–8. These are, in order, the kagome lattice
(treated in Ref. 19), the star lattice, the martini-A lattice, the
honeycomb lattice, the square-octagonal lattice, the squagome
lattice, the pentagonal and the “Cairo” pentagonal lattice, two
more types of the martini lattice (martini-B and martini-C),
and two types of so-called Archimedean lattices, denoted
Archimedean-A and Archimedian-B. As proven above, for
all these lattices, the identification proper “bricks of linear
independence” implies the linear independence of NNVB
states for arbitrarily large lattices of this type (which must also
be large enough to contain the minimal cell), for both open
and periodic boundary conditions. For the square-octagonal
and honeycomb lattices, the case of open boundary conditions
has already been treated in Ref. 27 by a different method.

It is interesting to note that the size of the matrix in Eq. (6)
differs quite significantly for the 2D lattices discussed here:
for the star and the martini-A lattices, which share the same
minimal cell (Fig. 3), the total matrix dimension (over all Sz

blocks) is only 13. For others, the matrix dimension is on the
order of a few thousand, and for the square lattice cell treated
separately in Sec. II D, the set of “local valence bond” states
|D〉 ⊗ |ψi〉 defining the matrix has more than half a million
elements.

FIG. 6. (Color online) Two types of pentagonal lattice. (a) shows
the pentagonal lattice and (b) shows the “Cairo” pentagonal lattice
structure, (c) and (d) the respective minimal cells.

C. Fullerene-type lattices

We now consider fullerene-type lattices, where each site has
three nearest neighbors, and belongs to at least one hexagonal
plaquette, where no two members of the same hexagonal
plaquette share a nearest neighbor outside that plaquette. Such
lattices can be covered, in the sense defined in Sec. II A, by the
minimal cell of the honeycomb lattice, Fig. 4(b). A famous
example is the buckyball lattice, Fig. 9. By the results of
the preceding sections, the NNVB states on these types of
lattices are linearly independent. This also demonstrates that
our method, being essentially local, can be applied to general
lattice topologies.34

The Heisenberg model on fullerene-type lattices has been
extensively studied within the NNVB subspace in Ref. 23
(there called the Kekulé subspace). Good agreement with exact
diagonalization results within the full Hilbert space was found.

FIG. 7. (Color online) Two more types of martini lattice. (a) and
(b) show the lattice structures of the martini-B and the martini-C
lattice, respectively, (c) and (d) the respective minimal cells.
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FIG. 8. (Color online) Two types of Archimedean lattice.
(a) shows the Archimedean-A lattice and (b) the Archimedean-B
lattice structures, (c) and (d) the respective minimal cells. Note that
the minimal cell in (d) is the same as that of the honeycomb lattice,
Fig. 4(b).

The authors also point out the central importance of the linear
independence of the NNVB states to their approach. Since the
fullerene lattices are finite in size, conventional brute-force
numerics may in principle be used to establish this, although
the feasibility of this depends, of course, on the actual lattice
size. In contrast, the result derived here holds for arbitrarily
large systems, and, given the small size of the minimal cells
involved, could be obtained purely analytically. In this regard,

FIG. 9. The lattice of the C60 molecule, or buckyball. The lattice
can be covered by the minimal cell of the honeycomb lattice, Fig. 4(b).
The actual minimal cell of this lattice is the pentagonal cell shown in
Fig. 4(c).

it is worth noting that the actual minimal cell of the C60

molecule is not that of the honeycomb lattice, Fig. 4(b), but
the smaller pentagonal cell of Fig. 4(c). We have verified that
it likewise satisfies the local independence property, and each
link of the buckyball lattice belongs to such a cell. For this
rather small cell, an analytic proof of the local independence
property seems feasible using the Rumer-Pauling method35–38

referred to in the next section.
Based on the observations made thus far, we conjecture

that all cells where the n inner sites form a single polygon,
and each inner site is linked to exactly one of n boundary
sites, have the local independence property. Examples of such
cells, for which we have verified this, are given in Figs. 3(c),
5(c), and 4(b)–4(d), corresponding to n = 3,4,5,6,7. For all
lattices that can be covered by any combination of such cells
(see Ref. 31), we thus have the linear independence of NNVB
states.

D. The square lattice

We find that the method presented in Sec. II A cannot
immediately be applied to the square lattice. The problem
can be traced back to the fact that any local cell on this lattice
necessarily has 90◦ corners. It turns out that by using the
degrees of freedom near these corners, one can always form
nontrivial relations between the states in different subspaces
H(D). The projection operators in Eq. (3) are then ill defined.
We thus have to modify our method in order to deal with this
case. Luckily, the local independence property introduced in
Sec. II A, while it is found to hold for many lattice types, is
overly restrictive. In fact, whenever this property holds, it can
be literally extended to arbitrarily large lattices with an edge.19

That is, for an arbitrarily large lattice L, not only are states
|D〉 corresponding to full dimerizations of L then linearly
independent, but in fact all states of the form |D〉 ⊗ |ψi〉,
where D does not necessarily cover all boundary sites of L,
and the factors |ψi〉 form a basis of the space associated with
“free” boundary sites. Clearly, this is a stronger statement than
just the linear independence of NNVB states corresponding to
full dimerizations of the lattice. However, for the square lattice
this stronger property simply does not hold. On the other hand,
this “strong” linear independence property is not of primary
interest. We are still interested in the linear independence of
NNVB states associated with full dimerizations of the lattice,
for which the stronger property is not necessary.

It turns out that a weaker version of the local independence
property is sufficient to construct suitable projection operators
for our purpose. To see this, note that the operators PD defined
in Eq. (3) are sensitive to the entire configuration of valence
bonds fully contained within the cell on which they act. To
prove the linear independence of NNVB states, it is sufficient to
work with operators that are sensitive, say, to the bonding state
of any given site, as determined by which nearest neighbor this
central site is bonding with. To accomplish this, we consider a
square latticeL satisfying periodic boundary conditions, which
is large enough to contain the cell C depicted in Fig. 10(b). For
this cell, we consider four subspaces of V B(C), according to
the bonding state of the central site. We define local dimer
coverings D of C as before, where boundary sites of C need
not be covered. By σ (D) we denote the bonding state of the
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FIG. 10. (Color online) The square lattice. The general lattice
structure is shown in Fig. 1. (a) The minimal cell for which the
refined local independence property of Sec. II D holds. (b) A local
valence bond state with the central site forming a bond with its upper
neighbor, corresponding to σ = ↑ as defined in the text.

central site, i.e., σ (D) =↑, ↓, ← , →, depending on whether
this site is paired with its upper, lower, left, or right neighbor in
the covering D, respectively. As mentioned initially, the sum
Eq. (2) defining the space of local valence bond states, V B(C),
is not direct for the present cell. However, we may also write
the space V B(C) as a “courser” sum of fewer spaces, each of
which is formed by all valence bond states that have the central
site in a certain bonding state:

V B(C) =
∑

σ ′
V Bσ ′(C), (7)

V Bσ ′(C) =
∑

D

σ (D) = σ ′

H(D,C), (8)

and σ ′ runs over all possible values ↑ , ↓ , ← , →.
The key observation that renders the square lattice amenable

to our method is that the sum in Eq. (7) is still direct. To show
this, one must show that the dimensions of the spaces on the
right-hand side add up to the dimension of the space V B(C).
For this it is sufficient to consider the matrix M defined in
Eq. (6), together with the matrices Mσ ′ that are the submatrices
of M corresponding to the subspaces V Bσ ′(C), and show that
the ranks of the Mσ ′’s add up to that of M . Intuitively speaking,
this means that while the states |D〉 ⊗ |ψi〉, as defined below
Eq. (6), satisfy nontrivial linear relations, all these linear
relations can be restricted to involve members of the same
subspace V Bσ ′(C); there are then no further linear relation
between members of different subspaces. If the sum in Eq. (7)
is indeed direct, we may introduce projection operators Pσ ′

onto the components on the right-hand side. The defining
property of these operators is

Pσ ′ |D〉 ⊗ |ψi〉 = δσ ′,σ (D) |D〉 ⊗ |ψi〉. (9)

When acting on local valence bond states |D〉 ⊗ |ψi〉 existing
on the cell C, the operator Pσ will thus annihilate the state if
the bonding state of the central site in the dimer covering D

is different from σ , and otherwise leave the state invariant. It
is clear that any site i of the periodic (and sufficiently large)
lattice L can be made the central site of a cell that has the
topology of C, Fig. 10(b). The operators Pσ defined above
can then be extended to the full Hilbert space of the large
lattice, and there is an operator P i

σ for any cell of the type C

with central site i. The defining property (9) then extends to
valence bond states |D〉 corresponding to full dimerizations D

of the lattice: |D〉 survives the action of P i
σ unchanged if the

bonding state of site i in the dimer covering D is σ , otherwise
it is annihilated. Detailed arguments for this are identical to
those referred to in Sec. II A. It is then clear that by successive
action with the operators P i

σ , one can single out any dimer
covering D in the linear combination Eq. (4), just as carried
out in Sec. II A, and thus prove that the states |D〉 are linearly
independent.

We have verified that for the cell in Fig. 10(b) the sum in
Eq. (7) is indeed direct. The numerics were somewhat more
challenging, due to size of the 25-site cell under consideration.
To wit, this cell admits a total of 5376 different dimer
coverings. Each of the dimer coverings has seven “free” outer
sites not touched by a dimer; thus the total dimension of the
M matrix is a staggering 5376 × 27 = 688 128. To reduce the
problem to blocks of manageable size, we use the full rotational
invariance of the spaces appearing in Eq. (7). That is, we chose
the basis |ψi〉 for the seven free sites to have a well-defined
total spin S, in addition to a well-defined Sz. A suitable choice
for a basis is obtained by choosing states corresponding to
Rumer-Pauling diagrams.35–38 The advantage of this is that for
appropriate normalization, the matrix elements of the M matrix
then remain integer, and we may again make use of exact
integer arithmetic.33 We further used the mirror symmetry
of the cell C along one of its diagonals. The largest blocks
occurring then had dimensions on the order of 30 000.

The above then establishes that for any sufficiently large
square lattice with periodic boundary conditions, the set of
all NNVB states is linearly independent. The same statement
then follows for lattices with an edge as discussed at the end
of Sec. II A. The case of general open boundary conditions has
also been treated previously with different methods in Ref. 27.

III. SUMMARY AND DISCUSSION

In the preceding sections, we have described a method
for proving linear independence of nearest-neighbor valence
bond states on certain 2D lattices with and without periodic
boundary conditions. This method, originally designed for
the kagome lattice,19 was successfully extended here to the
following lattice types: honeycomb, squagome, pentagonal
and Cairo pentagonal, square-octagonal, martini-A, -B, and
-C, Archimedian-A and -B, and star, and furthermore to
fullerene-type lattices. Subsequently, a refined method has
been developed, which is applicable even in some cases where
the original method is inadequate. Specifically, this was found
to be the case for the square lattice.

Our method is based on the identification of a certain local
independence property for finite clusters, which, when estab-
lished, implies the linear independence of NNVB states for
arbitrarily large lattices. Though here we prefer to validate the
local independence property using exact numerical schemes,
in those cases where smaller clusters are sufficient, a fully
analytic approach is certainly feasible. Further remarks on this
for the kagome case, where the cluster size is fairly large, can
be found in Ref. 19.

We note again that the linear independence of the NNVB
states for the square, the honeycomb, and the square-octagonal
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lattice was already established in a paper by Chayes, Chayes,
and Kivelson27 in 1989. Their result, however, applies only to
the case of open boundary conditions. For these lattices, our
result extends the one by Chayes et al. to the case of periodic
boundary conditions, using a different approach. We have also
discussed various applications of these results in RVB-inspired
approaches to quantum spin-1/2 systems.

A case of much interest, which we have not studied here, is
that of the triangular lattice. We remark that since the square
lattice can be thought of as a triangular lattice endowed with
a coarser topology, obtained by removing certain nearest-
neighbor links, a candidate cell for the triangular lattice would
have to be at least as large as our square lattice cell, Fig. 10(b),
with many more links included. This renders the M matrix
so large that we did not find this problem tractable at present.
The fact that linear independence of NNVB states is generally
expected to hold26 for the triangular lattice does not rigorously
imply that we can use the methods discussed here to prove
this. The existence of a local independence property for some
cell is a sufficient, but—to our present knowledge—not a
necessary condition for global linear independence. That said,
we currently see no fundamental reason why the refined
method of the preceding section should not be applicable
to triangular lattice as well. In all cases thus far studied,
we have found that local cells large enough to have more
internal sites than boundary sites generally have a sufficiently
strong local independence property, which then implies the
desired linear independence of globally defined NNVB states.
The only exception to this rule seem to be lattices where

this “global” linear independence does not hold, for obvious,
“local” reasons: These include the checkerboard and the
pyrochlore lattice, or any lattice featuring tetrahedral units.
By looking at the three dimerizations of a single tetrahedron,
it is easy to see that for such lattices, linear independence of
NNVB states does not hold. (That is, as long as there is any
dimer covering of the lattice with two dimers on the same
tetrahedron.) These are examples of the converse statement
of the sufficient criterion established in this work, which may
also be worth noting: Whenever the NNVB states are linearly
dependent for some lattice, local independence properties of
the kind discussed here must be violated for any cell of this
lattice.

Thus far, we are not aware of rigorous results on the problem
studied here for any three-dimensional lattices (except for
finite clusters). We are optimistic, however, that our method is
at least applicable to the hyperkagome case, which has recently
enjoyed much attention in the study of frustrated quantum
magnets.39–44 A brute force study of the relevant local cell has
so far been barred by its size. However, a formal analogy with
the kagome case suggests that a partially analytic treatment of
the local cell is possible.19 We leave this and other unexplored
cases of interest for future studies.
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