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Kosterlitz-Thouless transition of magnetic dipoles on the two-dimensional plane
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The universality class of a phase transition is often determined by factors like dimensionality and inherent
symmetry. We study the magnetic dipole system in which the ground-state symmetry and the underlying lattice
structure are coupled to each other in an intricate way. A two-dimensional (2D) square-lattice system of magnetic
dipoles undergoes an order-disorder phase transition belonging to the 2D Ising universality class. According to
Prakash and Henley [Phys. Rev. B 42, 6572 (1990)], this can be related to the fourfold-symmetric ground states,
which suggests a similarity to the four-state clock model. Provided that this type of symmetry connection holds
true, the magnetic dipoles on a honeycomb lattice, which possess sixfold-symmetric ground states, should exhibit
a Kosterlitz-Thouless transition in accordance with the six-state clock model. This is verified through numerical
simulations in the present investigation. However, it is pointed out that this symmetry argument does not always
apply, which suggests that factors other than symmetry can be decisive for the universality class of the magnetic
dipole system.
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Understanding the physics in thin films is of practical im-
portance, since thin-film construction is used in manufacturing
a variety of electronic and optical devices. One may note that
magnetic thin films, in particular, play a key role in massive
data storage applications and that magnetic interactions in such
films will become more prominent as magnetic moments are
more densely integrated on such devices. A typical behavior
of the magnetic property in thin films is switching between
perpendicular and in-plane magnetization as the temperature
T varies, which was first reported for Fe films.1 On the
other hand, for rare-earth compounds such as ErBa2Cu3O6+x ,
the ordering of magnetic spins at T < 1.0 K is essentially
two-dimensional (2D).2 For these materials, the exchange
interaction is known to be relatively weak,3 and the rare-earth
ionic moments have been described as Ising or XY spins de-
pending on anisotropy.4 These compounds have also attracted
attention as a suitable candidate to reveal the relation between
superconductivity and magnetism. A model of a magnetic thin
film is therefore a 2D lattice of magnets governed by the dipole
interaction and confined to rotate on the plane of the lattice.
Although it is straightforward to write down the corresponding
Hamiltonian, understanding its physics is more cumbersome,
for two reasons: the long-range character of the dipole interac-
tion and its anisotropy. For a lattice of N planar magnets with
the dipole interaction, the Hamiltonian is given as follows:

H = J
∑

i �=j

[
(si · sj )r2

ij − 3(si · r ij )(sj · r ij )
]
/r5

ij , (1)

where J (> 0) is a coupling constant and the summation
runs over all the distinct spin pairs si and sj , residing at r i

and rj , respectively. The distance between members of a
spin pair is denoted as rij = |r i − rj |. Since we employ the
periodic-boundary condition, the displacement r ij between r i

and rj is chosen as the one with the minimal distance among
every possible pair of their periodic images. If more than two
periodic images of a spin have the same minimal distance from
another spin, we neglect the interaction between members of

this spin pair to remove the ambiguity. As is clearly seen in Eq.
(1), the interaction energy between si and sj decays as r−3

ij , and
it does not depend solely on their angular difference but also on
their relative position r ij . In terms of numerical analysis, the
long-range character imposes an O(N2) complexity within the
simple metropolis algorithm, and the anisotropy is an obstacle
to developing an effective cluster algorithm. These problems
have left the properties of the phase transition in this system
largely inconclusive. On the one hand, this dipole lattice is
related to the ice model,5 which undergoes a phase transition,
keeping its structural arrangement disordered.6 The lack of a
long-range order has been reported in the neutron-scattering
experiments for some rare-earth compounds7 and also in
artificial spin ice.8 On the other hand, such disorder-preserving
behavior apparently disagrees with theoretical and numerical
predictions that the long-range order will be established in the
2D dipole lattice at low T .9–11 Even if we accept the existence
of an order-disorder transition at a critical temperature Tc

in the dipole system, numerical studies produce conflicting
results. For the case of a square lattice, there has been reported
a value of the critical exponent β = 0.19(4) for the staggered
magnetization, as well as γ = 1.37(7) for the staggered
susceptibility, with the correlation-length exponent ν = 1,11,12

where the numbers in parentheses are numerical errors in the
last digits. The staggered magnetization vector is defined as
m = N−1 ∑

i σ i , where we specify the components of the
vectors as r i = (xi,yi) and si = (cos θi, sin θi), respectively,
and define gauge-transformed spins as9

σ i ≡ [(−1)yi cos θi,(−1)xi sin θi]. (2)

We take the magnitude m = |m| as a scalar magnetic-order
parameter of this system. Using the same observable, a
recent study reported β/ν = 0.13(2) and ν = 1.05(5) with
the metropolis algorithm.13 This result indicates the 2D Ising
universality class within errors, which is partially supported
by another study on the Heisenberg dipole system.14 However,
none of these match a renormalization-group calculation15
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FIG. 1. (Color online) (a) Binder’s cumulant of magnetic dipoles on L × L square lattices. (b) Cumulant ratio V
q=4

4 = 〈m4〉/〈m2〉2 obtained
for the 2D square-lattice four-state clock model at the critical temperature T q=4

c = 1/ log(1 + √
2).

yielding an exponentially diverging correlation length ξ

with log ξ ∼ 1/
√

T − Tc and magnetization ∼ ξ−1/2. To our
knowledge, no theoretical explanation of the observed results
has been satisfactorily provided.

In this Brief Report we begin with the critical behavior
of magnetic dipoles on the square lattice. The finite-size
scaling result from L × L square lattices supports an order-
disorder transition with the 2D Ising universality class,
confirming the recent observation.13 We then ask if this
is related to the fact that the system possesses fourfold-
symmetric ground states.9 To test this further, we use the
fact that the magnetic dipoles may have sixfold-symmetric
ground states if put on the honeycomb lattice.16 This
has been well established for the nearest-neighbor dipole
interaction,16 and we have numerically checked its validity
for the long-range-interaction case as well. We find that the
honeycomb-lattice case exhibits a Kosterlitz-Thouless (KT)
transition as implied by the analogy to the six-state clock
model.17,18

Our simulation strategy is as follows: we use the parallel
tempering (PT) method that was devised to equilibrate glassy
spin systems with very long relaxation times.19,20 Consider
simulating two samples of a spin system in parallel at different
inverse temperatures: β1 and β2, respectively. If β1 < β2, the
sample at β1 will explore a larger region in the phase space

than will the sample at β2. If the exploration happens to find
a state with sufficiently low energy, we exchange β1 and β2 of
the two samples so that the low-energy state can be pursued
more deeply while the other sample begins a new exploration.
Specifically, if energies of the two samples are denoted E1

and E2, respectively, the exchanging probability is given
as Pex = min{1, exp[−(β2 − β1)(E1 − E2)]} to satisfy the
detailed balance. One may easily extend this scheme to more
than two samples, ranging over a broad temperature region, and
run the samples simultaneously on parallel computing devices.
We simulate each sample by the metropolis algorithm, which
means that the overall complexity is still O(N2). Only its
proportionality coefficient will be reduced by application of the
PT method, but it is nevertheless a significant gain in practice,
especially when N is not too large. For L = 32 in Fig. 1(a),
for example, it usually takes 104∼105 Monte Carlo steps
for a simple metropolis algorithm to equilibrate the system
around Tc from a random configuration, while it is enough
to make a couple of exchange moves with running O(103)
steps in between. We determine the difference in inverse
temperature by observing overlaps of energy histograms. In the
same example (L = 32), we have simultaneously simulated 31
inverse temperatures over [1.03,1.63], each of which runs on
an Intel Xeon quad-core L5420 central processing unit (CPU)
of 2.5 GHz. The CPU time spent for this size is about 6 × 102 h
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FIG. 2. (Color online) Results on square lattices. (a) Staggered magnetization and its scaling collapse (b) according to the 2D Ising
universality class. (c) Staggered susceptibility and its scaling collapse (d) in the same way. The 2D Ising critical exponents β = 1/8, ν = 1,
and γ = 7/4 are used; and the critical temperature is estimated to be Tc = 0.71(1) and 0.72(1) for (b) and (d), respectively.
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FIG. 3. (a) Honeycomb lattice of size L = 6 with the periodic-boundary condition. Coordinates are presented as (u,w) for the gauge
transformation in Table I. (b) Distribution of staggered magnetization m = (mx,my), showing the sixfold symmetry, taken at T = 0.1 with
L = 12.

per temperature, meaning that the total CPU time to obtain the
result for L = 32 roughly amounts to 2 × 104 h.

Figure 1(a) shows Binder’s cumulant U ≡
1 − 1

2 〈m4〉/〈m2〉2 from the staggered magnetization,
where 〈· · ·〉 means thermal average. Note that this cumulant
is scaled to approach zero at high T and 1/2 at low T , since
〈m4〉 = 2〈m2〉2 when the magnetization vector m has a 2D
Gaussian distribution centered at the origin. From Fig. 1(a),
the transition temperature is estimated as Tc = 0.70(2) in
units of J/kB , where kB is the Boltzmann constant. Since
this is not an extremely precise estimation, it is hard to
get critical exponents to a good precision. Instead, we may
check consistency by assuming the 2D Ising universality
class. Let us plot the staggered magnetization and try a
scaling collapse by the 2D Ising universality class, i.e.,
β = 1/8 and ν = 1 [Figs. 2(a)and 2(b)]. The best collapse
is observed at Tc = 0.71(1), which is in good agreement
with the value of Tc estimated above via Binder’s cumulant.
Another important observable is the staggered susceptibility
χ = NT −1[〈m2〉 − 〈m〉2] plotted in Fig. 2(c). Again the
2D Ising universality class with the corresponding critical
exponent γ = 7/4 is clearly consistent with the data provided
that Tc = 0.72(1) [Fig. 2(d)]. One also notes that the
susceptibility data imply a single transition point where the
critical fluctuation diverges in the thermodynamic limit and
that the susceptibility remains finite below this divergence.
This rules out the possibility of a KT transition. The consistent
descriptions strongly suggest that the critical behavior indeed
belongs to the 2D Ising universality class.

It is obviously nontrivial that a continuous-spin system,
complicated by the long-range character and anisotropy,
nevertheless displays an Ising transition. The most plausible

explanation is that the ground states of the dipole system on
the square lattice possess a fourfold symmetry,9 since the
same is true for the four-state clock model, which exhibits
the 2D Ising criticality.21 The value of the cumulant indeed
tells us more than this simple symmetry argument: Figure 1(a)
shows that V4 ≡ 〈m4〉/〈m2〉2 = 2(1 − U ) ≈ 1.04(1). For the
2D Ising model, on the other hand, the value of this quantity
is given as V

Ising
4 = 1 + ε, where ε = 0.167923(5).22 Since

the four-state clock model is equivalent to two independent
Ising systems A and B with the temperature rescaled,21 we
can denote it as A ⊗ B and consider its magnetic-order pa-
rameter m =

√
(m2

A + m2
B)/2, where mA and mB correspond

to magnetizations of the independent Ising systems. This
leads to the cumulant value of the four-state clock model
as follows:

V
q=4

4 =
〈(
m2

A + m2
B

)2〉
〈
m2

A + m2
B

〉2 =
〈
m4

A

〉 + 2
〈
m2

A

〉〈
m2

B

〉 + 〈
m4

B

〉
〈
m2

A

〉2 + 2
〈
m2

A

〉〈
m2

B

〉 + 〈
m2

B

〉2

= 2 + 2V
Ising

4

4
= 1 + ε

2
,

which agrees well with our Monte Carlo calculation V
q=4

4 =
1.0840(2) at T

q=4
c = 1/ log(1 + √

2) [Fig. 1(b)]. By the same
analogy, the cumulant value for the magnetic dipoles suggests
that V4 = 1 + ε/4 ≈ 1.042, which could be observed in a
combination of four independent Ising systems denoted as
A,B,C, and D, respectively, or two independent four-state
clock models A ⊗ B and C ⊗ D, where the total magnetiza-
tion is equivalent to m =

√
(m2

A + m2
B + m2

C + m2
D)/4.

In order to test the symmetry argument further, we in-
vestigate the honeycomb lattice, since the nearest-neighbor

TABLE I. Gauge transformation for the honeycomb lattice, where (u,w) represents the coordinates as shown in Fig. 3(a).

u mod 4 w mod 3 θ ′ u mod 4 w mod 3 θ ′ u mod 4 w mod 3 θ ′

0 0 θ 0 1 θ + 2π/3 0 2 θ − 2π/3
1 0 −θ 1 1 −θ + 2π/3 1 2 −θ − 2π/3
2 0 θ − 2π/3 2 1 θ 2 2 θ + 2π/3
3 0 −θ − 2π/3 3 1 −θ 3 2 −θ + 2π/3
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FIG. 4. (Color online) Results on honeycomb lattices. (a) Magnitude of the staggered magnetization and (b) Binder’s cumulant, with a
closer view of the low-T part (inset). (c) Staggered susceptibility χ and the scaling collapse of χ ∼ L2−ηf (U ) with η = 1/4. (d) Specific heat
does not show any clear double-peak structure.

dipole interaction in this case leads to sixfold ground states.16

In addition, since it is known that the q-state clock model
with the cosine interaction undergoes a KT transition when
q � 6,17,18 the symmetry argument suggests that the transition
for a honeycomb lattice should be of a KT type.

The honeycomb lattice that we use in this work is shown in
Fig. 3(a), where the system size is N = 2L2 for a given length
scale L. We choose L as multiples of 6 by taking the ground-
state configurations16 into consideration. An appropriate gauge
transformation of the spin angle θ at site (u,w) in the
same spirit of Eq. (2) is tabulated in Table I. The staggered
magnetization is defined as m = N−1 ∑

(cos θ ′, sin θ ′) with
magnitude m ≡ |m|. As in the square-lattice case, each chosen
spin interacts with a set of other spins that have well-defined
minimal distances to the chosen spin. We furthermore require
this interacting set to have the inherent symmetry of the
honeycomb lattice; i.e., the interacting set should be left
invariant under the rotation by ±2π/3 around the chosen spin
so that the six ground states are equally probable in the system
[Fig. 3(b)]. The numerical results are again obtained by the
PT method and plotted in Figs. 4(a)–4(d), where Binder’s
cumulant U and the staggered susceptibility χ are given
in the same way as above. In order to examine the low-T
phase, we have the inverse temperature range over O(1) to
O(10) while keeping the overlaps in the energy histograms.
For L = 24, for example, we ran 127 inverse temperatures
over [1.5,10.3] in parallel, spending about 102 CPU hours
per each. Around T ≈ 0.5, one finds a size merging of U ,
together with a divergence in χ , which are characteristic
signatures of the KT transition. These observations imply the
existence of a quasicritical phase below T ≈ 0.5, where the
correlation length diverges. The KT picture also predicts a
scaling collapse of χ vs U , such that χ ∼ L2−ηf (U ), where
f is a certain scaling function and η = 1/4.23 This method
provides a piece of information about the universality class
even without precise knowledge of the transition temperature.
In spite of the small system sizes, the KT scaling exponent
η = 1/4 nevertheless gives a scaling collapse consistent with

a KT transition, as shown in the inset of Fig. 4(c). We also
note an additional tiny yet systematic size dependence of U

below T = 0.2, shown in the inset of Fig. 4(b), which possibly
indicates that the staggered magnetization freezes into the
sixfold symmetry [compare Fig. 3(b)]. Unlike in the six-state
clock model, however, this freezing is not accompanied by
any peak in specific heat [Fig. 4(d)], which implies that the
quasicritical phase is not isotropic either but should reflect
the sixfold symmetry at least in part. It is currently under
investigation whether the U (1) symmetry in the disordered
phase gets broken exactly at the same temperature where the
KT transition occurs.

In summary, we have confirmed that the XY -type magnetic
dipoles on the square lattice exhibit the 2D Ising criticality
and that this can be related to a symmetry similarity in the
four-state clock model. This symmetry connection is further
supported by the study of the honeycomb lattice, where
the ground states have sixfold symmetry and the system
behaves similarly to the six-state clock model exhibiting a KT
transition. However, the symmetry argument is not always the
decisive factor: the transition is KT-like for the square lattice
with nearest-neighbor interaction in spite of the fact that the
symmetry remains the same.24 One may also note that the
long-range order at low T is also absent in experiments with
squarelike structures.7 However, the factors that supersede the
symmetry argument in deciding the critical universality class
remain to be elucidated.
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