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Critical scaling to infinite temperature
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Three-dimensional Ising model ferromagnets on different lattices with nearest-neighbor interactions, and
on simple-cubic lattices with equivalent interactions out to further neighbors, are studied numerically. The
susceptibility data for all these systems are analyzed using the critical renormalization-group theory formalism
over the entire temperature range above Tc with an appropriate choice of scaling variable and scaling expressions.
Representative experimental data on a metallic ferromagnet (Ni) and an elementary fluid (Xe) are interpreted in
the same manner so as to estimate effective coordination numbers.

DOI: 10.1103/PhysRevB.83.184408 PACS number(s): 05.50.+q, 64.60.Cn, 75.40.Cx, 75.50.Lk

I. INTRODUCTION

In the very extensive studies that have been devoted to
critical phenomena, attention has understandably been mainly
concentrated on the regime in the immediate neighborhood of
the critical temperature; data are analyzed using the leading
terms in the renormalization-group theory (RGT) formalism. It
is widely considered that as correction terms proliferate outside
this narrow “critical region,” they always lead ultimately
toward Gaussian fixed point mean-field-like behavior above
a temperature Tg determined by the Ginzburg criterion.1

This criterion expresses a crossover from a fluctuation-
dominated critical regime to a high-temperature Landau
regime. Sophisticated theoretical and numerical studies have
been done on this crossover,2–7 particularly in the context of
long-range interactions. Experimental data on fluids, where
effective interactions are expected to be long range, have been
interpreted on this basis.8–10

Here we discuss from a different perspective numerical data
on various three-dimensional (3D) Ising systems, in particular
models where the interactions extend beyond nearest neighbor.
We conclude that with appropriate observables and choice of
scaling variable, for this family of models at least there is no
need to invoke a crossover or the Ginzburg criterion. The data
can be convincingly interpreted using the rigorous critical RGT
formalism over the whole temperature range from Tc to infinity.
Applying Occam’s razor, this approach is more economical
conceptually as it requires only the extended critical analysis
but no separate analysis linked to a crossover.

We discuss representative experimental data on a ferromag-
net and on a fluid, showing that they too can be analyzed in
a transparent manner using the same approach and without
invoking crossovers. We obtain quantitative estimates of the
effective coordination number for the metallic ferromagnet Ni
and for the elementary fluid Xe.

II. SCALING

Before RGT, it was already established11–13 that in the
fundamental scaling law for ferromagnetics, the response
parameter is the “reduced” susceptibility (see Ref. 13 for
definitions),

χ (β) = 〈(m − 〈m〉)2〉 =
∑

i,j

〈Si · Sj 〉 = χT (β)/χ0(β), (1)

where the thermodynamic susceptibility

χT (β) ≡ [∂m/∂H ]H→0 (2)

is normalized by the free spin susceptibility χ0(β) ∝ β. (As
usual, we will set the interaction strength J to 1 and write
β ≡ 1/kT .) The critical behavior is written13–16

χ (β) ≡ T χT (β) ∝ ε−γ (1 + · · ·), (3)

where ε is an appropriately normalized scaling variable
depending linearly on (T − Tc) close to Tc.

The thermodynamic ideal lattice gas analog to χT is the
isothermal compressibility on the critical isochore KT =
−(∂V/∂p)/V , so by strict analogy to the ferromagnetic
case the parameter that should be scaled13 is the compress-
ibility normalized by the ideal gas compressibility 〈(N −
〈N〉)2〉/〈N〉, where N is the total number of particles, i.e.

T KT ∝ ε−γ (1 + · · ·). (4)

Because the gas-liquid order parameter is a scalar, the fluid
transition belongs to the Ising universality class.17 Careful
experimental measurements and analyses made over many
years (see Ref. 10) have shown that the asymptotic fluid critical
exponents are indeed those of the short-range Ising universality
class. The real situation is, however, more complicated than in
the magnetic case because of the departure from vapor-liquid
symmetry in real fluids10,18,19; the fluid “susceptibility” is
defined in Ref. 10.

In work based on the high-temperature series expansion
(HTSE) theory, which was already firmly established in the
1950s, the critical scaling variable is taken to be either ε = τ =
[1 − β/βc] or ε = [1 − tanh(β)/ tanh(βc)].11,12,16 Appropriate
high-temperature series are written rigorously as sums of
terms where exact factors multiply successive powers of ε.
However, since the introduction of RGT, scaling expressions
are often written in terms of ε = t = [(T − Tc)/Tc]. This
is just the simplest linear convention, but other scaling
variables including τ are just as legitimate as t in the region
very close to Tc. (For instance, in the special case of the
square lattice Ising model, an extremely sophisticated analysis
uses [1/ sinh(2β) − sinh(2β)]/2 as the scaling variable.15) In
addition, τ has obvious practical advantages in the temperature
region well above Tc because its high-temperature limit is 1
(and not infinity, as is the case for t).
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Systematic analyses of high-temperature numerical data
of nearest-neighbor and long-range interaction models in
the Ising universality class3,7,8,20 have been carried out with
an effective temperature-dependent susceptibility exponent
defined as

γt (t) = −∂ log χT (β)/∂ log t (5)

following the phenomenological expression of Kouvel and
Fisher.21 In the high-temperature limit for any spin model,
χT → 1/T and t → T , so γt (t) will automatically tend to 1 at
high temperatures. There will necessarily be a crossover at an
intermediate temperature where γt (t) passes from the critical
γ to 1. However, far from criticality the appropriate choice of
variables is vital. Thus if the reduced susceptibility parameter
χ (β) rather than χT (β) had been used for the definition of
γt (t) in Ref. 3 and following work, the effective exponent
would have tended to 0 at high temperature, not to 1.

The full formal RGT Wegner scaling expression is for
χ (τ ) rather than χT (t); in the thermodynamic limit including
confluent and analytic plus background corrections, it is
written rigorously in terms of τ as14,16,22,23

χ (τ ) = T χT (τ ) = Cχτ−γ [1 + aχτ θFa(τ ) + bχτFb(τ )

+cχτ (1−α+γ )Fc(τ ) + dχτ γ Fd (τ )

+a2,χ τ θ2F2(τ ) + · · ·], (6)

where γ,α, the confluent correction exponents θi , and certain
amplitude ratios are universal but the amplitudes themselves
are not universal; the Fi are infinite analytic series in τ

normalized to 1 at τ = 0. Because τ → 1 as T → ∞,
these developments remain well behaved at all temperatures
above Tc, whereas because t diverges as T , it is obviously
very awkward to extend to high temperatures the analogous
expression written in terms of t .

The temperature-dependent effective susceptibility expo-
nent defined in terms of τ and χ (τ ) in Refs. 16 and 24–27
is

γeff(τ ) = −∂ log χ (τ )/∂ log(τ ) (7)

with the equivalence

γt = γeff(1 − τ ) + τ. (8)

Very close to Tc, the two effective γ parameters are indis-
tinguishable, but they have quite different properties as soon
as the temperature difference increases. [Historically, it is of
interest to note that the equation11

1/χT = (1/C)T [1 − (Tc/T )]γ f (Tc/T ) (9)

cited explicitly by Kouvel and Fisher21 to justify their analysis
in the vicinity of Tc is precisely of the form of Eq. (6), with τ

as the scaling variable.]
At first glance, the sets of infinite series of corrections in

Eq. (6) appear rather forbidding. However, from inspection
of S = 1/2 HTSE (see, for instance, Ref. 16), there are exact
closure rules at infinite temperature : Cχ (1 + aχ + · · ·) ≡ 1
and γeff(1) ≡ zβc,24 where z is the coordination number and
the (· · ·) represent the exact sum of all the higher-order terms
in Eq. (6) evaluated with τ set equal to 1. It turns out that for the
3D Ising models, which we will discuss explicitly, over a wide

temperature region above Tc the leading (confluent) Wegner
correction term dominates. As a convenient approximation,
all the remaining terms can be collected into a single weak
effective correction term kχτλχ , giving a compact approximate
expression that can be used to fit the data over the entire
temperature range above Tc:

χ (τ )τ γ = Cχ (1 + aχτ θ + kχτλχ ) (10)

so

γeff(τ ) = γ − (aχθτ θ + kχλχτλχ )/(1 + aχτ θ + kχτλχ ).

(11)

The closure rules then become

Cχ (1 + aχ + kχ ) = 1 (12)

and

γ − (aχθ + kχλχ )Cχ = zβc. (13)

Once the strictly defined critical amplitudes Cχ and aχ are
estimated for any particular model from data at temperatures
close to criticality, kχ and λχ are fixed also from the closure
conditions, so the entire temperature dependencies of χ (τ ) and
γeff(τ ) are determined. [An expansion of Eq. (10) to include
further explicit Wegner terms is possible when HTSE data and
higher-order correction exponent values are available.]

While not rigorous except in the limits τ → 0 and τ → 1,
this ansatz as it stands already gives a representation of the true
behavior of χ (τ ), which turns out to be accurate to the 10−3

level over the whole temperature range above Tc for all the
models we have studied. If γeff(τ ) is transposed to γt through
Eq. (8), a crossover behavior results (see Fig. 4); similar
data have been analyzed using an approximant containing an
implicit crossover function.6,9

III. ISING MODEL ANALYSIS

The temperature-dependent susceptibility χ (β,L) was eval-
uated on diamond, sc, bcc, and fcc lattices with nearest-
neighbor interactions, see Refs. 27–29, where the numerical
techniques are described, and on sc lattices with equivalent
interactions up to second, third, fourth, or fifth neighbor
following Refs. 30, 3, and 25. The coordination numbers are
z = 4, 6, 8, 12, 18, 26, 32, and 56, respectively. As all these
models are in the 3D short-range interaction Ising universality
class, in the analysis below the numerical values for the univer-
sal 3D Ising exponents were fixed at γ = 1.2371, θ = 0.50,
and ν = 0.630.31,32 The critical inverse temperatures βc for the
various models were evaluated from the present data using the
Binder cumulant g(β,L) and the parameter W (β,L) introduced
in Ref. 33. The βc values obtained from the finite-size scaling
analysis are in full agreement with previous estimates, in
particular those of Ref. 5 for the equivalent interaction models.
The raw normalized reduced susceptibilities χ (τ,L)τ γ as a
function of τ θ for the z26 (nearest, second nearest, and third
nearest equivalent neighbors) sc Ising model at different sizes
L are shown as an example in Fig. 1. The envelope curve, which
can be seen by inspection, corresponds to the thermodynamic
limit (effectively infinite size) behavior. Data for each of the
other models have a qualitatively similar appearance (see
Ref. 27 for the nearest-neighbor sc model). The susceptibility

184408-2



CRITICAL SCALING TO INFINITE TEMPERATURE PHYSICAL REVIEW B 83, 184408 (2011)

FIG. 1. (Color online) The raw normalized reduced susceptibility
χ (τ )τ γ as a function of τ θ for the sc z26 (nearest, second nearest,
and third nearest equivalent neighbors) Ising model. Lattice sizes
L = 32, 24, 16, 12, and 8 top to bottom (olive, pink, black, green, and
blue). The L > ξ (L,β) size-independent envelope behavior region
can be seen for each curve by inspection. The envelope fit curve, with
extrapolation, is in red.

results for infinite L (extrapolated for τ close to zero) for the
various coordination numbers z are exhibited in Fig. 2 in the
form of plots of χ (τ )τ γ against τ θ . The effective exponents
γeff(τ ) derived from these data are shown in Fig. 3.

The critical parameter estimates βc(z), Cχ (z), and aχ (z) and
the approximate effective parameters kχ (z) and λχ (z) are given
in Table I. [The second correction term is always weak, so the
values of λχ (z) are not precise as they depend very sensitively
on the fit parameters chosen for the other variables.] All the
models, including those with longer-range interactions, follow

FIG. 2. (Color online) The normalized reduced susceptibility
χ (τ )τ γ as a function of τ θ derived from data sets such as those
shown in Fig. 1 for the diamond, sc, bcc, fcc, z18, z26, z32, and z56
sc Ising models, top to bottom (black, red, green, blue, cyan, pink,
yellow, and olive). The critical exponents are taken to be γ = 1.2371
and θ = 0.50.

FIG. 3. (Color online) The effective exponent γeff (τ ) as a function
of τ θ derived from the data shown in Fig. 2 using Eq. (7) for the
diamond, sc, bcc, fcc, z18, z26, z32, and z56 sc Ising models, top to
bottom (black, red, green, blue, cyan, pink, yellow, and olive).

the critical scaling rules up to infinite temperature, with a
gradual evolution of the critical amplitudes as z increases but
without a trace of a crossover to mean-field behavior at high
T . It is important to note that it is the coordination number
z rather than the interaction range measured in terms of the
nearest-neighbor distance that is the key parameter (with weak
lattice structure effects); the diamond, sc, bcc, and fcc are all
nearest-neighbor lattices, but they have significantly different
values for Cχ and aχ .

There seems no obvious reason to expect a breakdown in
these rules however large the range of interactions as long as
there is a cutoff so that the range remains finite; the correc-
tion amplitudes should continue to increase with increasing
range. (If interactions fall off algebraically and sufficiently
slowly, the models will leave the finite-range universality
class.34,35)

For comparison, the data of Fig. 3 translated appropriately
are shown (Fig. 4) in the form of a γt against t/tx where the
normalization parameter is defined by tx = (aχ,z)−1/θ as used
in Ref. 9. It can be observed that there is no universality either
in the position or the form of the individual curves.

TABLE I. Values of the fitting parameters for χ (τ ) in each of the
models, as defined in Eq. (10)

z βc Cχ aχ kχ λχ

4 0.3697 1.245 −0.1382 −0.059 2
6 0.221655 1.116 −0.0914 −0.0125 3
8 0.15737 1.038 −0.073 0.036 1.6
12 0.102067 1.022 −0.062 0.04 1.5
18 0.06442 0.871 0.111 0.038 0.9
26 0.0430385 0.765 0.302 0.009 1
32 0.0343267 0.703 0.428 −0.006 3
56 0.0189291 0.575 0.800 −0.06 1.5
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FIG. 4. (Color online) The effective exponent γt as a function
of t/tx derived from the same susceptibility data, Fig. 2, using the
definition Eq. (5), for the diamond, sc, bcc, fcc, z18, z26, z32, and
z56 sc Ising models (black, red, green, blue, cyan, pink, yellow, and
olive). tx is defined following Ref. 9.

IV. EXPERIMENTAL DATA ANALYSIS

The present approach can be readily used to interpret
experimental results. The venerable experimental data for the
susceptibility of the ferromagnet Ni tabulated by Weiss and
Forrer36 and by Fallot37 are exhibited in Fig. 5 in the same
form as that used for the numerical data in Fig. 2. Here we
consider Ni as an S = 1/2 Heisenberg local moment system
and so use the Heisenberg exponent values γ = 1.396 and
θ = 0.55.38 Following Fallot himself37 and Ref. 39, we have
subtracted out a small temperature-independent susceptibility
term, which could well come from an orbital contribution

FIG. 5. (Color online) The normalized reduced susceptibility
T χT (τ )τ γ of Ni as a function of τ θ with the Heisenberg exponents
γ = 1.349 and θ = 0.55. The experimental data and units are taken
from Refs. 36 (red circles) and 37 (black squares). Following Refs. 37
and 39, a small temperature-independent term has been subtracted
from the raw χT data.

(see Ref. 40 for the case of Co). As in the Ising models with
higher coordination numbers shown in Fig. 2, the normalized
reduced susceptibility increases almost linearly with τ θ over
the wide range of temperatures covered, which extends to 3Tc,
i.e. τ θ ∼ 0.8. The ratio between the asymptotic critical value
of χ (τ )τ γ and the estimated extrapolated infinite temperature
value (equal to 1 for spin 1/2 in the appropriate units) can be
taken as a measure of the effective Cχ . For Ni, the observed
ratio is about 0.60, or alternatively the correction amplitude
aχ ∼ 0.65.

As an example of a gas-liquid transition, we consider the
susceptibility χT [defined as the derivative of the density by
the chemical potential χT ≡ (∂ρ/∂μ)T ] of Xe on the critical
isochore for the liquid-gas transition, for which results from
careful experiments based on light-scattering techniques are
tabulated in Ref. 41. In Fig. 6, these data are plotted in the
form T χT τγ against τ θ , with the 3D Ising exponents. (It can be
noted that the susceptibility χNN defined by Orkoulas et al.19

in their analysis of the hard-core square-well fluid is T χT ;
Orkoulas et al. also use τ as the scaling variable.) Again the
figure shows an essentially linear increase of T χT τγ with
τ θ just as in the numerical plots for the Ising models with
large coordination numbers. The ratio of the critical limit
to the extrapolated high-temperature limit is Cχ ∼ 0.55, or
alternatively the correction amplitude aχ ∼ 0.75. This value is
broadly consistent with the values aχ = 1.3(2) (Ref. 41) and
aχ = 1.08 (Ref. 8) estimated from previous analyses based
on the same data set but using different scaling rules. The
complications associated with the asymmetry in the fluid phase
diagram should be kept in mind, but this plot suggests that
as in the magnetic case, even if fluid data were available to
much higher τ within the present approach, there would be
no need to invoke a crossover to mean-field-like behavior. In
Fig. 7, the values of aχ for the numerical models are plotted
against z, and the effective values for Ni and for Xe are
indicated by arrows. From this figure we can estimate the
effective coordination number z for Ni and for Xe. To obtain
a more quantitative estimate, the Ni experimental data should
be compared to numerical results for Heisenberg spins on an

FIG. 6. (Color online) The normalized reduced compressibility
T KT τγ of Xe as a function of τ θ . Experimental data and units taken
from Ref. 41.
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FIG. 7. (Color online) The effective critical correction amplitudes
aχ (z) for the Ising models as a function of coordination number z,
Table I, plus points for Ni and Xe obtained from the plots of the
experimental data in Figs. 5 and 6 (arrows).

fcc lattice for different z rather than for Ising spins on an sc
lattice. From data comparing γ (τ ) on Heisenberg spins on sc,
bcc and fcc lattices,24 it appears that the numerical aχ (z) plot
will be of similar form for Heisenberg spins as for Ising spins.
One can then estimate that approximately z ∼ 45, or in other
words the effective interactions extend to between two and
three lattice spacings. Obviously for real physical systems the
model of equivalent interactions with cutoff is only a rough
approximation to the true situation, but the effective z is a
useful indicative phenomenological parameter.

For Xe, the observed effective aχ corresponds to an
effective sc Ising coordination number z ∼ 55. When data for
some other fluids are expressed graphically in terms of γeff(τ ),8

γeff initially increases slightly with increasing temperature,
meaning that aχ is negative. [The experimental fluid data sets
generally extend only over a narrow temperature range above
Tc; for small τ , γt (t) is practically indistinguishable from γτ (τ )
and values estimated for aχ are not sensitive to which scaling
expression is used.] Negative aχ values have been observed in
all aqueous electrolyte solutions and also in many nonaqueous

ionic solutions.42 It has been suggested8 that as a general rule,
simple fluids have positive aχ and complex fluids negative
aχ . A comparison with Table I and Fig. 3 indicates that for
the negative aχ “complex” systems, the effective coordination
number z is 12 or less, so interactions can be considered
“short range,” while the positive aχ systems have much higher
effective z values and can be classed as having “long-range”
interactions.

The effective coordination number is a fundamental pa-
rameter for understanding the magnetism of metallic ferro-
magnets, which can often be considered either from a band
or from a local moment perspective. In the case of liquids,
it should be possible to make a systematic classification of
effective coordination numbers and to link these z values
to the interatomic potentials used for calculating structure
functions.

V. CONCLUSION

In conclusion, the analysis given above leads to a simple
overall physical scenario in which for a family of 3D
Ising models, the temperature dependence of the reduced
susceptibility over the entire temperature range from Tc right
up to infinite temperature is explained using the critical RGT
formalism with appropriate Wegner corrections, and without
the need to invoke a restricted “critical region” or any form
of high-temperature crossover. The approach is conceptually
economical and leads to a transparent interpretation of the
differences in behavior from model to model and from
system to system within a universality class; there is a strong
correlation between the coordination number (or, in other
words, the “range” of the interactions) and the strength of the
nonuniversal amplitude aχ of the leading confluent Wegner
term, which dominates the corrections in all the models we
have studied.

ACKNOWLEDGMENTS

We gratefully acknowledge an interesting discussion of the
experimental high-temperature effective exponents with Ralph
Chamberlin, and helpful explanations on the thermodynamics
of fluids from Jan Sengers. This research was conducted using
the resources of High Performance Computing Center North
(HPC2N).

1V. L. Ginzburg, Fiz. Tverd. Tela 2, 2031 (1960) [Sov. Phys. Solid
State 2, 1824 (1961)].

2E. Riedel and F. J. Wegner, Z. Phys. 225, 195 (1969).
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