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Variable damping and coherence in a high-density magnon gas
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We report on the fast relaxation behavior of a high-density magnon gas created by a parametric amplification
process. The magnon gas is probed using the technique of spin-wave packet recovery by parallel parametric
pumping. Experimental results show a damping behavior that is in disagreement with both the standard model
of exponential decay and with earlier observations of nonlinear damping. In particular, the inherent magnon
damping is found to depend upon the presence of the parametric pumping field. A phenomenological model,
which accounts for the dephasing of the earlier injected magnons, is in good agreement with the experimental
data.
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I. INTRODUCTION

Several decades after the first phenomenological de-
scriptions, the nature of spin-wave dissipation is still a
subject of intense scientific research.1–6 An understanding
of spin-wave damping mechanisms is crucial both for the
furtherance of the field of fundamental spin dynamics7

and practical applications in novel magnetic memory, mi-
crowave, and spin-wave logic devices.8 Recent develop-
ments in the study of energy transfer in magnon systems,
including the discovery of Bose-Einstein condensation of
magnons,9 have attracted particular interest to the problem
of nonlinear damping and decoherence of densely popu-
lated magnon states, created by the effect of parametric
pumping.10,11 Up to now there has been no access to the in-
formation on relaxation of highly populated short-wavelength
magnon states as these spin waves are too short to be directly
detected by conventional microwave and optical methods.
Only measurements of thresholds of parametric instability
provide us with information about the decay characteristics
of these magnons at low population level. However, even
in this case the magnons are influenced by an external
microwave pump field. To overcome this obstacle and to
access the freely evolving highly populated magnon groups,
we used the recently developed technique of spin-wave signal
recovery.12

In this work we demonstrate that free evolution of a dense
group of parametrically injected magnons can be described
neither by its monotonic exponential relaxation nor by possible
nonlinear decay. The phase decoherence of the frequency
smeared magnon group should be taken into account in order
to understand the experimental data. We chose a single-crystal
yttrium-iron-garnet (YIG) ferrimagnetic film as a test object
in our experiments. Due to its extremely low natural magnetic
damping13 this material is widely used in works on magnon
gases and condensates.7 Furthermore, currently one observes
a clear revival of interest to YIG films due to the recent
discovery of the spin Hall14 and spin Seebeck15 effects in
platinum/YIG bilayers. Moreover, sub-μm-thick polycrys-
talline YIG films are now promising as candidates for novel
microwave devices,16 and conventional single-crystal μm-
thick films have been recently used to demonstate microwave
encoding.17

II. EXPERIMENT

A 100-ns-long traveling-spin-wave packet (τinput = 100 ns)
is excited at a frequency of 7 GHz by a microstrip input antenna
in a 1.5-mm-wide and 5-μm-thick YIG stripe. An external
magnetic field �H0 of 143.64 kA/m (1805 Oe) is applied in the
plane of the stripe, perpendicular to the spin-wave propagation
[Fig. 1(a)], i.e., in the Damon-Eshbach (DE) geometry.18 The
excited spin-wave packet traverses the magnetic sample, is
detected by the output antenna placed 12 mm apart from the
input one, amplified, and observed with an oscilloscope. After
450 ns since the passage by the wave packet of the central area
of the YIG stripe (τ0 = 450 ns), a pumping microwave field
�hp at 14 GHz produced by a dielectric resonator is applied
parallel to the bias magnetic field. As a result of the pump
action, an additional “recovered” pulse is observed at the
output antenna at a frequency of 7 GHz [see the output wave
form in Fig. 1(a) and the dashed line in Fig. 2]. Since the
DE packet has already left the area of parametric interaction,
this is not the result of the direct amplification of the singal
pulse.19,20 Rather, the parametric pumping acts on the standing
spin-wave (SSW) modes [see Fig. 1(b)], which are excited
across the film thickness by the traveling-wave packet through
a two-magnon scattering mechanism. These modes are then
amplified by parametric pumping and are scattered back to
form a new traveling DE wave, which is finally detected at an
output antenna in a form of the “recovered” pulse [Fig. 1(a)].

Unlike in previous studies,12,21,22 in the experiment reported
here, two consecutive parametric pump pulses are used, rather
than one. The response of the magnonic system to the second
pulse is utilized as a probing tool for extracting information
about the free relaxation behavior of parametrically excited
magnons during the pump-free pause. Therefore we cut off
the first recovered pulse by stopping the parametric pumping.
After a certain delay time τdelay, a second pumping pulse is
applied and a second recovered pulse is observed (see the
continuous line in Fig. 2). We register the peak amplitude
Amax and the arrival time tmax of the second recovered pulse.

As one sees from Fig. 3, the behavior of the second
recovered pulse strongly depends on the duration of the first
pumping pulse τpump1 for small τpump1 � 450 ns as well as on
the delay time τdelay between two consecutive pumping pulses.
It is remarkable that the latter dependence is nonmonotonic:

184407-11098-0121/2011/83(18)/184407(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.184407
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FIG. 1. (Color online) (a) Experimental setup, consisting of a
single-crystal YIG waveguide, input and output antennas, and a
dielectric resonator for the application of the pumping microwave
field. The wave forms are the shapes of the input, pumping,
and restored pulses as seen on the oscilloscope. (b) Section of
the spin-wave dispersion spectrum for a thin magnetic waveguide
schematically showing the hybridization of Damon-Eshbach (dashed
line) wave with standing spin-wave modes.

with an increase in τdelay the second recovered pulse first
grows, reaches a maximum, and then decreases in intensity
[Fig. 3(a)]. In particular, one observes a gain in the amplitude
of the second recovered pulse compared to the experiment in
which the pumping is uninterrupted [τdelay → 0 in Fig. 3(a)].

III. THEORETICAL MODEL

One easily finds that neither the initial increase in the
amplitude nor the subsequent nonexponential decrease (note
the logarithmic scale) in the peak amplitude can be explained
in the framework of the standard approach based on association
of a specific relaxation time with each decay process. For this
reason we make an attempt to employ a more detailed model.
The model we use is an extension of the theory in Ref. 22.
The latter succeeded in describing the single-pulse pumping.

FIG. 2. (Color online) Spin-wave power envelope as experimen-
tally observed at the oscilloscope. The light red areas schematically
show the time intervals when the pump is on. The continuous red line
represents the results of the two pump-pulse recovery. The first pump
pulse is switched off before the recovered signal saturates. After a
delay time τdelay the pumping is switched on a second time the second
recovered signal is observed. The dashed blue line represents the
experimental result for the pumping not being interrupted.

FIG. 3. (Color online) (a) The amplitudes of the second pulse
shown in Fig. 2(a) are extracted and plotted against τdelay for different
durations τpump1 of the first pumping pulse. The amplitudes are
normalized to the maximum observable amplitude using only one
long pumping pulse. (b) The time tmax at which the peak amplitude
of the second pulse in Fig. 2(a) is observed as a function of τdelay.

Treating a two-pulse pumping with a significant length of the
pause between the two pulses requires considering dephasing
within the parametrically excited wave packet during the
pause. Thus in contrast to Ref. 22, one cannot use ensemble-
averaged equations for magnon densities and has to consider
each magnon group as consisting of a number of pairs of waves
with different eigenfrequencies.

We start the description of the developed theory by noting
that the recovered pulse has a pulselike shape. This suggests
that competition of two magnon groups for energy provided
by the parametric pumping process23 takes place in the
magnon system, since a pulselike shape of the observed
signal is a typical result of this competition. This process
can be explained in the following way. The parametric
amplification is frequency selective: only magnon groups with
eigenfrequencies ωk , which lie inside the narrow frequency
band ωp/2 − ν < ω(k) < ωp/2 + ν, whose width is equal to
the parametric amplification gain ν = hpV are amplified (V is
the parametric coupling coefficient). They are driven at half the
frequency ωp/2 of the applied microwave field. Importantly,
there is no restriction on the magnitude and the direction of the
magnon wave vector: the process allows creation of magnons
with arbitrary wave vectors, provided their frequencies are
inside this frequency band. Thus given the large number of
frequency-degenerate magnon dispersion branches, magnon
groups over a large range of wave vectors are amplified. This
includes externally excited oscillations, hereafter called the
signal group, as well as thermally activated magnons with
wave vectors up to 105 cm−1. The latter magnons, which
are considerably decoupled from structural defects of the
YIG film because of their short wavelength, experience the
lowest two-magnon decay and consequently show the highest
parametric gain.24 Hence we refer to this dominantly amplified
magnon group as the dominant group.

As the phase shift between the external pumping field �hp

and a microwave magnetic field induced by the parametri-
cally pumped magnons (“internal pumping”) increases with
increase in the total magnon density, the resulting effective
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pumping field inside the sample consecutively diminishes.22

At some point in time the total magnon density reaches a
critical threshold level Acr at which the effective pumping
becomes so small that it is able to further support just one
magnon group, the one that has the lowest decay rate and
the highest efficiency of parametric interaction: the dominant
group. This leads to the suppression of the signal group,
while the dominant group reaches saturation at Acr. From this
time on the system stays in a quasiequilibrium state wherein
the magnon density of the dominant group is saturated. The
signal group is exposed to an effective pumping below the
generation threshold10 and thus should decay with time to the
thermal level. As a result of this process, the signal group, and
consequently the measured signal, acquire a pulselike shape.

To obtain a quantitative description of the magnetic dy-
namics for the present case of two pump pulses, we perform
numerical simulations based on the nonlinear model of the
magnon group competition. We assume that the signal group
represents a set of spin-wave oscillations (standing-wave
modes) Cs

ω with resonance frequencies ω uniformly distributed
across the frequency band δω = ±1.5 MHz around the half-
pump frequency ωp/2. This frequency band corresponds to the
spectral width of the dipole-exchange gaps in the spin-wave
dispersion [Fig. 1(b)]. Since the recovered pulse is only
observed in these gaps, only magnons within this frequency
band should contribute to the recovery process.

The standing-wave modes are excited through two-magnon
scattering processes by the traveling-wave pulse on its way
across the film. For simplicity we assume that the initial phase
of magnetization precession for all the modes is the same.
The output traveling-wave pulse is formed due to two-magnon
backscattering and thus represents an exact time replica of
the dynamics of the signal group. Therefore it is sufficient to
consider only the evolution of two immobile magnon groups:
the signal and the dominant ones (the dominant group consists
of magnons with complex amplitudes Cd

ω).
The general dynamic equations are as follows:

[∂/∂t + �s + i(ω̃s − ωp/2)]Cs
ω − iP s

ωCs∗
ω = 0, (1)

[∂/∂t + �d + i(ω̃d − ωp/2)]Cd
ω − iP d

ωCd∗
ω = 0, (2)

where the stars denote complex conjugation, �s and �d are the
relaxation parameters for the signal and the dominant group,
respectively,

ω̃s = ω + �ωss + �ωsd, (3)

ω̃d = ω + �ωdd + �ωds (4)

are the eigenfrequencies of standing-wave oscillations with
an account of nonlinear frequency shift for both signal and
dominant groups, respectively, and

P s
ω = ν + P ss + P sd, (5)

P d
ω = ν + P ds + P dd (6)

is the effective pumping for the signal and the dominant groups,
respectively. In Eqs. (3)–(6) and below, the upper indices s

and d denote the signal and the dominant group, respectively.
Double indices of type αβ denote the action of the group β

on the group α. If both indices are the same the respective
coefficient or magnitude describes self-action.

In our calculations we make a number of important
simplifications which allow us to considerably decrease the
computation time. First we use a usual assumption22 that the
nonlinear frequency shift is not important for the dynamics
of the dominant group (�ωdd = 0). Second, we do not need
to take into account the contribution to the total nonlinear
frequency shift by the signal group (�ωss = �ωds = 0), since
its amplitude is considerably smaller than the amplitude of
the dominant group at the time, when the effective pumping
saturates. Thus the only term we have to account for is

�ωsd = T sd
∑

ω′,ω′′,ω′′′
Cd

ω′C
d∗
ω′′C

s
ω′′′ δ(ω′ − ω′′ + ω′′′ − ω), (7)

where δ denotes the Kronecker δ, and T sd is the respective
nonlinear coefficient. In the following we will use a shorthand
notation T sd = T .

Similar considerations apply to the contributions to the
total pumping, which consist of the external pumping (ν) and
the internal pumping given by the remainder of the terms in
Eqs. (5) and (6). We obtain P ss = P ds = 0,

P sd = Ssd
∑

ω′,ω′′,ω′′′
Cd

ω′C
d
ω′′C

s∗
ω′′′ δ(ω′ − ω′′ + ω′′′ − ω), (8)

P dd = Sdd
∑

ω′,ω′′,ω′′′
Cd

ω′C
d
ω′′C

d∗
ω′′′ δ(ω′ − ω′′ + ω′′′ − ω), (9)

where Sαβ are the respective nonlinear S coefficients.22,23

Test numerical calculations show that calculation results do
not qualitatively change with the variation in the difference
Sdd − Ssd in reasonable limits. Therefore to minimize the
number of degrees of freedom we set Sdd = Ssd ≡ S and, as
previously, we assume that S > 0.22

The last simplification we make is removing the frequency-
mixing terms from Eqs. (7)–(9). This simplification does not
lead to a qualitative change in the results of our numerical
calculations, but enormously decreases the computation time.
It reduces Eq. (4) to a simple formula for the effective pumping:

P s
ω = P d

ω ≡ Pω = ν + S
∑

ω′

(
Cd

ω′
)2

. (10)

For the pump-free period the same equations (1)–(10) are valid;
one just assumes ν = 0, so that only the internal pumping is
on during the pause.

The structure of obtained equations allows us to renormalize
the spin-wave amplitudes Cω such that S = 1 and only the ratio
|S/T | matters (T < 0). Initial conditions for the dominant
group are random distribution of amplitudes for its frequency
components. Initial conditions for the signal group follow from
the expression for the frequency spectrum of a rectangular
pulse:

Cw(t1) = C0 exp(iωt1)F (δω)
sin(ωτinput/2)

ωτinput/2
, (11)

where Ttw is the length of the initial traveling-wave pulse which
generates the standing wave oscillations through the 2-magnon
scattering process, and τ0 is the time interval between the the
passage of the traveling-wave pulse through the pump area
and the beginning of the first pump pulse, C0 is some constant,
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and F (δω) is equal to 1 within the dipole gap in the dipole
exchange spectrum of traveling spin waves (Fig. 1), where the
parametric signal recovery is usually observed [F (δω) = 1, for
−δω/2 < ω < δω/2] and vanishes outside the gap [F (δω) =
0, for |ω| > δω/2].

The system of equations (1) and (2) was solved numerically.
We used 200 discrete values of eigenfrequency detuning ω

from the half-pump frequency in the range from −2ν to 2ν.
This formed a system of 200 coupled nonlinear equations
which was resolved by using the fourth-order Runge-Kutta
method.

We do numerical calculations for τpump1 = 400 ns and for
a number of ratios |S/T |, a number of values of rates of
parametric gain, and a number of decay rates for both magnon
groups. Each time all these parameters, including C0, are
chosen such that the restored pulse peaks at the same time
as in the experiment when the parametric pumping is not
interrupted (τdelay = 0). A natural constraint we impose on
the validity of simulation results is a single-peaked shape for
the restored pulse for all experimental lengths of the pump-free
pause τdelay.

IV. DISCUSSION

A number of simulation runs allows us to locate the area
in the parameter space where the simulated behavior is close
to the experimental one displayed in Fig. 3. Figure 4(a) shows
the best fit we obtain. One sees a fair agreement with the
experiment of the simulated peak amplitudes of the restored
pulse and of the times for the peak arrival tmax as a function
of the pause length τdelay. This calculation shows that the
terms involving S and T coefficients do not contribute to
the dynamics during the pump-free pause, as the parametric
amplification is quite far from saturation during this time
interval. Note that analytical solutions exist for S = T = 0
and they are in full agreement with our simulations for the first
two stages of the considered process [t < 0 in Figs. 4(b)–4(d).

Figures 4(b)–4(d) show the behavior of the macroscopic
amplitude of the signal group As = 10 log(|∑ω Cs

ω|2) and of
the strength of the internal pumping Ad = 10 log(|∑ω′ C

d
ω′ |2).

One sees that during the pump pause both magnitudes do
not vary linearly on the logarithmic scale. The signal-group
behavior is close to parabolic on this scale. Note the increase
in the amplitude for the signal group during the first 200 ns after
switching off the first pump in Fig. 4(d). A careful analysis of
this stage shows that the increase is due to phase reversal in
a parametric-echo-like process.25,26 Recall that the coherence
of the originally deterministic signal is lost due to dephasing
during the time interval τ0 between the passage of the traveling-
wave pulse and the application of the first pump pulse. In the
phase reversal process the coherence is restored. The full phase
restoration occurs for τdelay = τ0.

The behavior of Ad is more complicated: for the first 150 ns
after the first pumping has been switched off, the internal
pump decreases parabolically on the logarithmic scale, then
its behavior switches to more or less linear on the same
scale. This nonmonotonic behavior of the internal pump also
originates from dephasing. During the first pump pulse the
frequency width of the dominant group reduces significantly
due to the frequency selective amplification of the initially

FIG. 4. (Color online) (a) Left axis: measured (circles connected
by a dashed line) and simulated (dashed line) time tmax at which
the peak amplitude of the recovered pulse is observed as a function
of τdelay for τpump1 = 400 ns. Right axis: measured (dots connected
by a solid line) and simulated (solid line) peak amplitudes of the
recovered pulse for τpump1 = 400 ns. (b)–(d) Simulated time profiles
of the signal (thin solid lines) and of the internal pumping (bold
dashed lines). The light red areas indicate the time intervals when the
pump is on. The gray area in panel (b) indicates the input spin-wave
pulse. (b) Uninterrupted pumping (τdelay = 0). (c) τdelay = 300 ns.
(d) τdelay = 700 ns. t = 0 corresponds to switching on the second
pump. Duration of the first pump pulse τpump1 = 400 ns.

thermal signal. The phases of the waves that belong to this
group are locked to the external pumping and the behavior of
the internal pumping follows the linear behavior of the number
of magnons, which is in full agreement with L’vov’s S theory.
However, once the first pumping has been switched off, the
phase coherence within the group is lost and the magnitude of
Ad starts to decrease. As a result, at large times (t > 300 ns) the
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magnitude of Ad essentially follows the exponential decrease
in the number of magnons, but deviates significantly from this
law because of the dephasing for t < 300 ns.

Both echolike behavior of the signal group and dephasing in
the dominant group contribute to the nonmonotonic behavior
of the peak amplitude of the restored signal. From Fig. 4 one
clearly sees that for τdelay = 300 ns [Fig. 4(c)] the amplitude
of the signal at the end of the pause (t = 0 in this graph)
is quite close to the amplitude of this group at t = 0 for
the uninterrupted pump. However, the internal pump by the
dominant group at t = 0 for τdelay = 300 ns is smaller than
for τdelay = 0 by 25 dB. This allows the recovered signal
developing a larger peak amplitude for τdelay = 300 ns than for
τdelay = 0. Obviously, a larger τdelay requires a larger time for
the restored signal to peak, which results in a linear dependence
of tmax on τdelay in Fig. 3(a).

In agreement with experiment, the model shows a variation
of Amax and tmax with τpump1. However, in the model the effect
is not so pronounced as in the experiment. We also checked
if nonlinear damping in the form of four-magnon scattering
processes involving all spin waves existing at the half-pump
frequency can contribute to the nonmonotonic response. Our
calculations for τpump1 = 400 ns have shown that the nonlinear
damping is negligible during the pump pause for reasonable
values of the nonlinear damping coefficient.27 The amplitudes
of both signal and dominant groups are just too small during
the pause to develop the nonlinear damping. Accounting for
the nonlinear damping during the second pump pulse does not
lead to qualitative changes in the behavior either, unless one
assumes that the coefficient of nonlinear damping is larger
than T by several orders of magnitude, which is unreasonable.

As a final note of this section we want to comment on
applicability of the two-pulse method for other materials.
YIG is a unique material: the linear relaxation time for YIG
is 100 ns+. This allows dephasing of the wave packet in

our experiment well before amplitudes of its constituents
drop to the thermal level (see Fig. 3, where the typical time
scale is hundreds of nanoseconds, which is given by the rate
of dephasing). For comparison, the best metallic magnetic
material—Permalloy—has magnetic relaxation time <5 ns.
This material is operational in the same frequency range
as YIG thus the dephasing rate would be the same, were
this experiment conducted with Permalloy. Obviously, for
the reason of the much stronger decay rate we would not be able
to register any signal recovered by the second pump pulse, as
on the time scale of hundred nanoseconds no coherent signal
would survive in a Permalloy film to the time of its arrival.
However, the new materials, like Heusler alloys and other half
metals, theoretically may have magnetic losses of the same
order as YIG.28–30 If quality of these materials is improved in
the very near future, it will be possible to use the two-pulse
approach for these materials as well.

V. CONCLUSION

In this work we have investigated the relaxation of a free
evolving gas of previously parametrically pumped magnons.
The experimental results show a clear deviation from the
standard exponential spin-wave decay model. In particular,
the inherent magnon damping is found to depend upon the
presence of the parametric pumping field. The results are in
agreement with the model, which accounts for variation of
phase coherence for parametrically injected magnon groups
during the pump-free pause.
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S. SCHÄFER et al. PHYSICAL REVIEW B 83, 184407 (2011)
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