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Chaotic dynamics and spin correlation functions in a chain of nanomagnets
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We study a chain of coupled nanomagnets in a classical approximation. We show that the infinitely long
chain of coupled nanomagnets can be equivalently mapped onto an effective one-dimensional Hamiltonian with
a fictitious time-dependent perturbation. We establish a connection between the dynamical characteristics of the
classical system and spin correlation time. The decay rate for the spin correlation functions turns out to depend
logarithmically on the maximal Lyapunov exponent. Furthermore, we discuss the nontrivial role of the exchange
anisotropy within the chain.
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I. INTRODUCTION

Nanoscale magnetic structures have promising applications
as basic elements in future nanoelectronics devices and are
frequently discussed in the context of quantum information
processing. The principal challenge of quantum information
technology is finding an efficient procedure for the generation
and manipulation of the many-qubit entangled states. Those
can be realized on the basis of, e.g., Rydberg atoms located
in optical quantum cavities,1–3 Josephson junctions,4 or ion
traps.5 One very promising realization is based on single
molecular nanomagnets (SMMs).6–8 These are molecular
structures with a large effective spin. A prototypical rep-
resentative of this family of compounds is Mn12 acetate
in which S = 16. Molecular nanomagnets show a num-
ber of interesting phenomena that have been the focus of
theoretical and experimental research during the last two
decades.6–17 For instance, SMMs show a bistable behavior
as a result of the strong uniaxial anisotropy,6 as well as
a tunneling of the magnetization.7 An attractive feature for
information storage is the large relaxation time of molecular
nanomagnets.11

SMMs are usually modeled by spin-chain Hamiltonians
augmented by different kinds of interaction terms responsible
for different compounds. These interaction contributions are
highly nontrivial and, in most cases, are anisotropic. This
makes the analytical treatment very cumbersome, calling for
efficient theoretical approaches. In this paper we investigate
the properties of a classical spin chain coupled by anisotropic
exchange interactions. This case is relevant not only for
chains of exchange-coupled SMMs,18 but also for several
other realistic physical problems, including weakly coupled
antiferromagnetic rings19 and large spin multiples coupled
by the Dzyaloshinskii-Moriya (DM) exchange interaction.20

We will demonstrate that even for multidimensional complex
physical systems, it is still possible to obtain analytical results
using special mathematical techniques presented in Ref. 23.
Its applicability to the SMMs is shown in Refs. 21 and 22.
In the first step, one evaluates the Lyapunov exponents and
the spin correlation functions for the system. One can then
extract information on the properties of the system beyond
the classical limit. For example, there is a deep connection
between the classical Lyapunov exponents and the quantum

Loschmidt echo,24 which is a natural measure of the quantum
stability and of the fidelity of quantum teleportation.25 If
the Lyapunov regime is reached for a quantum system,
then the decay rate for the teleportation fidelity can be
identified via the Lyapunov exponent. Formal criteria for the
Lyapunov regime26 in the case of a chain of SMMs can
be estimated from the relation λ < J 2/�, where λ is the
Lyapunov exponent, � is the mean level spacing, and J is
the exchange-interaction constant between SMM spins (which
prohibits the integrability of the system leading thus to the
chaotic dynamics). Furthermore, it can be shown that the spin
correlation functions can be expressed through the Lyapunov
exponent.

This paper is organized as follows. In Sec. II we give a
brief exposition of our model and present the details of the
principal investigation technique. In Sec. III we discuss the
relation between the relevant spin correlation functions and
their classical analogs. Section IV contains the treatment of
the system in the chaotic domain. Finally, the conclusions
section summarizes our findings. All necessary mathematical
details are presented in the Appendices.

II. THEORETICAL FORMULATION

The prototype model Hamiltonian for the exchange-
coupled SMM is

H = J
∑

n

Sz
nS

z
n+1 + g

∑
n

(
Sx

nSx
n+1 + Sy

nS
y

n+1

)+ β
∑

n

(
Sz

n

)2
,

(1)

where J and g are exchange-interaction constants, and
β = −DS2 is the anisotropy barrier height of the system.
For the prototypical Mn12 acetates,6 D ∼ 0.7K sets the value
of the barrier parameter,22 and Sx,y,z are spin projection
operators of the SMM. Due to the large spin of the SMM (see
Sec. I), an analytical quantum mechanical treatment of the
model (1) is hardly accessible. To make progress, we choose
the semiclassical parametrization as follows:

Sz
n = cos θn, Sx

n = sin θn cos ϕn, S
y
n = sin θn sin ϕn. (2)
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Then the Hamiltonian (1) can be rewritten in the more
convenient form

H = J
∑

n

cos θn cos θn+1 + g
∑

n

sin θn sin θn+1

× cos(ϕn+1 − ϕn) + β
∑

n

cos2 θn. (3)

Our aim is the evaluation of the correlation functions and the
study of the spin dynamics governed by the Hamiltonian (3).
Since this is a highly nonlinear problem, it cannot be done in
a simple and direct way. However, one can rigorously show
that there is a direct map between the chain of SMMs and
a one-dimensional (1D) model Hamiltonian with a fictitious
time-dependent external perturbation.

The equilibrium state for the model (3) satisfies the
minimum condition of the infinite-dimensional functional
H [θ,ϕ],

∂H

∂θn

= 0,
∂H

∂ϕn

= 0, n = 1,2, . . . ,∞. (4)

Considering the Hamiltonian (3), we retain only the first-order
terms of the anisotropy parameter ε = (J − g)/2g � 1. Then,
after straightforward but laborious calculations, we deduce
from (4) that the following relations hold:

Sn+1 = (−1)m {Sn − β sin(2θn)[1 − ε cos(2θn)]} , (5)

θn+1 = (−1)mθn + πν + (−1)ν arcsin Sn+1,
(6)

ϕn+1 = ϕn + πm; m = 0,1; ν = 0,1;

where Sn+1 = sin(θn+1 − θn). The index ν refers to the two
possible solutions when inverting the trigonometric expression
for Sn+1. Depending on the sign of the rescaled barrier height
β → ∓ β/g, the index m = 0,1 defines the energy minimum
condition. For convenience, we will use positively defined
β > 0 and consequently m = 0 in our calculations. The above
result is just a recurrence relation in the form of the explicit
map (Sn+1,θn+1) = T̂ (Sn,θn). Our idea is to find a Hamiltonian
model that is equivalent to (5). Let us consider the following
perturbed 1D Hamiltonian system:

H = H0(s) + βV (θ )T
+∞∑

n=−∞
δ(t − nT ),

H0(S) = νπS + (−1)ν(S arcsin S +
√

1 − S2), (7)

V (θ ) = −
(

cos2 −ε

4
cos2 2θ

)
.

The respective Hamiltonian equations read

dS

dt
= −∂H

∂θ
= −βV ′(θ )T

+∞∑
n=−∞

δ(t − nT ),

dθ

dt
= ∂H

∂S
= ω(S), (8)

ων(S) = πν + (−1)ν arcsin s.

Their integration simplifies due to the presence of the δ

function in the perturbation term because the evolution

operator (S̄; θ̄ ) = T̂ (S; θ ) splits into pulse-induced T̂δ and
free-evolution T̂R terms:

T̂ = T̂R ⊗ T̂δ,

S̄ ≡ S(t0 + t − 0); θ̄ ≡ θ (t0 + T − 0), (9)

S ≡ S(t0 − 0); θ ≡ θ (t0 − 0).

For the operator of free evolution, we simply have

T̂R(S; θ ) = [S; θ + ων(S)T ]. (10)

The explicit form of the pulse-induced evolution operator T̂δ

can be derived after an integration of the system (6) on the
small time interval (t0 − 0,t0 + 0) around t0, where the pulse
is applied, as

S(t0 + 0) − S(t0 − 0) =
∫ t0+0

t0−0
Ṡdt

= −
∫ t0+0

t0−0
β

∂V (θ )

∂θ
T

+∞∑
k=−∞

δ(t − kT ) = −βT
∂V (θ )

∂θ
, (11)

θ (t0 + 0) − θ (t0 − 0) =
∫ t0+0

t0−0
θ̇dt = 0.

By taking into account Eq. (11), for the pulse-induced
evolution operator, we obtain

T̂δ =
[
−β

∂V (θ )

∂θ
,θ

]
. (12)

Combining Eqs. (10) and (12), the complete evolution picture
can be expressed through the following map:

(S̄,θ̄ ) = T̂ (S,θ ) = T̂RT̂δ(S,θ ) = T̂R

[
S − βT

∂V (S,θ )

∂θ
,θ

]

=
[
S − β

∂V (θ )

∂θ
; θ + ων(S̄)

]
, (13)

or in the explicit form

Sn+1 = Sn − β

(
sin 2θn − ε

2
sin 4θn

)
,

θn+1 = θn + ων(Sn+1), (14)

ων(Sn) = πν + (−1)ν arcsin Sn.

For the details of the derivation of Eq. (14), see Appendix A.
This result is obtained for the kicked Hamiltonian model

with T = 1 and it matches exactly the recurrence relations in
Eq. (5) obtained for the SMM chain. Such an analogy is quite
important since the infinite-dimensional nonlinear system (3)
is now equivalent to the 1D Hamiltonian model. We note that
the discrete time in the perturbation term (7) is fictitious and
corresponds to the number of the spins in the chain (1).

III. SPIN DYNAMICS AND CORRELATION FUNCTIONS

We will proceed with the equivalent 1D Hamiltonian model
with fictitious time-dependent perturbation (7), which is more
convenient than the multidimensional nonlinear model (3).
Due to the nonlinearity of the model (7), we should expect a
rich and complex dynamics. In particular, our purpose is to
establish a connection between the chaotic dynamics and the
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decay rates of the spin correlation functions. As a first step,
we construct the Jacobian matrix of the map (14),

M̂ =
(

∂S̄
∂S

∂S̄
∂θ

∂θ̄
∂S

∂θ̄
∂θ

)
=

(
1 −βV ′′(θ )

ω′(S̄) 1 − βω′(S̄)V ′′(θ )

)
. (15)

The Lyapunov exponents can be evaluated as eigenvalues of
this matrix, and are thus given by

λ1,2 = 1 + K

2
±

√(
1 + 1

2
K

)2

− 1 , (16)

where

K = −βω′
ν(S̄)V ′′(θ ) (17)

is the chaos parameter.27 From Eqs. (16) and (17) for the chaos
parameter K , we find the following simple relation:

K = −2β(cos 2θ − ε cos 4θ )√
1 − S2

. (18)

The dynamics is expected to be chaotic if K > 0, λ1 > 1 or
K < −4,λ2 < −1. Therefore, from Eq. (18), we obtain the
relevant intervals for the angle variable,

θ ∈
[
πm + 1

2
arccos

(
1

2ε
−

√
1

4ε2
+ 2

)
;

(m + 1)π − 1

2
arccos

(
1

2ε
−

√
1

4ε2
+ 2

)]
, (19)

where m = 0, ± 1, . . ..
In the isotropic case J ≈ g, ε → 0, this leads to

θ ∈
[
πm + π

4
; (m + 1)π − π

4

]
, (20)

where m = 0, ± 1, . . ..
Equation (19) defines the width of the chaotic domain

where the parameter of chaos (18) is larger than one, K > 1.
Obviously, the width of the chaotic domain depends on the
values of anisotropy, and it is easy to see that in the case

of small anisotropy, the area of chaos is narrower than in
the zero anisotropy case, �θ (ε = 0) > �θ (ε � 1). Therefore
we conclude that small anisotropy leads to the less chaotic
regime.

From the parameter of the chaos (18) (also plotted
in Fig. 1), we conclude that the phase space of the
system consists of domains corresponding to a regular
and a chaotic motion. Later we will use the random-
phase approximation, which is valid precisely in the latter
domain.27

In order to obtain explicit expressions for the spin correla-
tion functions, we rewrite the recurrence relations in Eqs. (14)
in the following form:

θn+1 = θn + ω(sn+1) = θn + ων[Sn − βV ′(θ )]

= θn + ων(Sn) − βV ′(θ )ω′
ν(Sn)

= θn + ων(Sn) − β

(
sin 2θn − ε

2
sin 4θn

)
. (21)

For the angular variable, we infer the self-consistent recurrence
relation

θn+1 = θn + ων(Sn) − β

(
sin 2θn − ε

2
sin 4θn

)
. (22)

The correlation function is given by

〈Sn+1|Sj 〉

= 1

2π

∫ 2π

0
dθ0e

i(θn−θ0)

= 1

2π

∫ 2π

0
dθ0e

i[θn−1+ων (Sn−1)− K0 sin 2θn−1+ K0ε

2 sin 4θn−1−θ0],

(23)

and can be calculated using the above iterative procedure as
well as the expression for the Bessel function, exp(iz sin ϕ) =∑+∞

m=−∞ Jm(z)eimϕ . By taking into account that ων(Sn) =
ω ≈ const, and K0 = βω′(Sn) ≈ const, from Eq. (23), we
deduce

〈Sj+n|Sj 〉 = 1

2π

∫ 2π

0
dθ0e

i(θn−θ0) = 1

2π

∫ 2π

0
dθ0e

i(θn−1−θ0)e−iK0 sin 2θn−1e
iK0ε

2 sin 4θn−1

= 1

2π

∫ 2π

0
dθ0e

i(θn−1−θ0)
+∞∑

m1=−∞
Jm1 (K0)e−2im1θn−1

+∞∑
l1=−∞

Jl1

(
K0ε

2

)
e4il1θn−1

= einω

+∞∑
m1=−∞

+∞∑
m2=−∞

· · ·
+∞∑

mn=−∞

+∞∑
l1=−∞

+∞∑
l2=−∞

· · ·
+∞∑

ln=−∞
(−1)l1+l2+···+ln

× e−2iωm1e−2iω(m1+m2) · · · e−2iω(m1+m2+···+mn−1)e−2iωl1e−2iω(l1+l2) · · · e−2iω(l1+l2+···+ln−1)

× Jm1 [K0]Jm2 [(1 − 2m1 + 4l1)K0] · · · Jmn
{[1 − 2(m1 + m2 + · · · + mn−1)

+ 4(l1 + l2 + · · · + ln−1)]K0}
× Jl1

[
K0ε

2

]
· · · Jln

[
1 − 2(m1 + m2 + · · · + mn−1) + 4(l1 + l2 + · · · + ln−1)K0ε

2

]
× δ1−2(m1+m2+···+mn) + 4(l1+l2+···+ln);1. (24)

For the details of the derivation of Eq. (24), see Appendix C.
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FIG. 1. (Color online) The parameter K(θ,S) signifying chaotic
behavior, plotted according to Eq. (18) for the values of the parameters
β = 3, ε = 0.5.

In the case of a large Lyapunov exponent Jm(K0) ∼
(K0)−1/2, where K0 � 1, we infer from (24)

〈Sj+n|Sj 〉 ∼ einω(
K2

0 ε/2
)n/2 = exp

(
− n

τc

)
einω, (25)

where τc = 2/ ln(K2
0 ε

2 ) is the correlation length. Since K0 ∼ β,
we have the following estimation:

τc ∼ 2

ln
(

β2ε

2

) . (26)

In the isotropic case ε = 0, one can perform the same
calculations [insertion of ε = 0 into Eq. (26) gives a wrong
result] and show that

τ ′
c ∼ 2

ln β
(27)

holds. Taking into account Eqs. (26) and (27), and expressions
for the rescaled interaction constants ε → J−g

2g
,β → β

g
, we

conclude that the role of the anisotropy is not trivial. Namely,
the strong anisotropy

J − g >
4g2

β
(28)

suppresses the spin correlations, because then τ ′
c > τc.

However, the weak anisotropy

J − g <
4g2

β
(29)

enhances the correlations τ ′
c < τc.

It should be stressed that the reliability of the analytical
estimates is limited. This is particularly apparent for the case
where the numerical and the analytical predictions deviate
from each other, due to the limited range of applicability of
the analytical expressions derived after rough approximations.

The role of the anisotropy ε = (J − g)/2g can be clarified
numerically as well. In order to better understand the physical
features of the model (1), we will study the phase portrait
of the system. The results of the numerical evaluation of the

FIG. 2. (Color online) Results of the numerical calculations of the
recurrence relations (14) on the phase plane (Sn,θn) for the following
parameters: β = 0.05, ε = 0.005. About a hundred trajectories are
generated for the set of different initial conditions (S0,θ0).

recurrence relations (14) are presented in Figs. 2–5. As we
see from Fig. 2, the phase space of the system consists of two
topologically different domains separated from each other by
a separatrix. Most of the phase space belongs to the domain of
the regular motion and open-phase trajectories. The domain of
closed-phase trajectories mainly corresponds to the irregular
motion, and a small island of a regular motion is observed only
in the center of the portrait. From this formal mathematical
statement, one can extract interesting physical information.
Closed trajectories belong to the oscillatory regime and open
trajectories belong to the rotational one. Therefore, we expect
that two types of motion can be realized for the model (1).
The domain of the regular spin rotational motion is defined
by the relation 0.2 < |Sn| < 1. Therefore, if |Sn| < 0.2, then
the spin oscillation is chaotic and, only for very small
amplitude, an island of regular oscillations is observed in
the center. If the anisotropy parameter is zero, ε = 0, then
the island of the regular oscillatory motion disappears (see
Fig. 3). This means that without the small anisotropy, the
spin system is less correlated [see Eqs. (28) and (29)]. Such
a geometrical interpretation can be extrapolated from the pair
of the canonical variables (Sn,θn) to the real spin variables
Sz

n = cos θn using the parametrization (2) and a simple relation
Sn = sin(θn − θn−1).

IV. SPIN DIFFUSION AND KINETIC APPROACH

The dynamical picture does not apply in the chaotic regime
for K > 0 or K < −4. An adequate language in this case is the
statistical approach. Instead of the dynamical variables, the key
role is played by the probability distribution function, which
is a solution of the Fokker-Planck equation. Its derivation is
rather straightforward for chaotic dynamical models and is
based on the Kolmogorov, Arnold, Moser (KAM) theory.23

Interested readers can find all the technical details of the
derivation for the spin-chain model in the recent work of
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FIG. 3. (Color online) Results of the numerical calculations of
the recurrence relations (14) on the phase plane (Sn,θn) for the
following parameters: β = 0.05, ε = 0. About a hundred trajectories
are generated for the set of different initial conditions (S0,θ0).

Ref. 24. Here we are using the final result adapted to the
SMM system. The probability distribution of the spin variable,
Sn = sin(θn − θn−1), is described by the following diffusion
equation:

∂f

∂t
= D

∂2f

∂S2
, (30)

where D(S) = β2

4 (1 + ε2

4 ) is the diffusion coefficient. For the
details of the derivation of Eq. (30), see Appendix B. The
fundamental solution of this equation is

f (S,t) = 1

2
√

πDt
exp

(
− S2

4Dt

)
, (31)

FIG. 4. (Color online) Results of the numerical calculations of the
recurrence relations (14) on the phase plane (Sn,θn) for the following
parameters: β = 0.3, ε = 0.15. About a hundred trajectories are
generated for the set of different initial conditions (S0,θ0).

FIG. 5. (Color online) Results of the numerical calculations of
the recurrence relations (14) on the phase plane (Sn,θn) for the
following parameters: β = 0.3, ε = 0. About a hundred trajectories
are generated for the set of different initial conditions (S0,θ0). With
the increase of the value of parameter β, the domain of the chaotic
motion covers almost the whole phase space (see Figs. 4 and 5),
because the chaos parameter K given by Eq. (18) is proportional to
the constant β.

and can be found in many classical textbooks (see, e.g.,
Ref. 30). This solution (31) is defined on the interval −∞ <

S < ∞, whereas we need one for the interval −1 � S � 1.
In order to find a solution relevant to our problem, we will
consider the following boundary and initial conditions for the
diffusion equation (30):

f = W0 for t = 0, f = g1(t) for S = −1,
(32)

f = g2(t) for S = 1,

and we will look for the solution in the form

f (S,t) = 2
∞∑

m=1

sin(mπS) exp(−Dm2π2t)Mm(t), (33)

where

Mm(t) =
∫ 1

0
f0(ξ ) sin(nπξ ) dξ + Dmπ

∫ 1

0
exp(Dm2π2τ )

× [g1(τ ) − (−1)mg2(τ )]dτ. (34)

In the simple case g1(t) = g2(t) = 0, we obtain from
Eqs. (30)–(34)

f (S,t) = 4W0

π

∞∑
m=0

1

(2m + 1)
sin[(2m + 1)πS]

× exp[−D(2m + 1)π2t], (35)

where the coefficient W0 can be defined from the normaliza-
tion condition

∫ +1
−1

∫ +∞
0 f (S,t)dSdt = 1, W0 = Dπ4

7ς(3) . Here,

ς (s) = ∑∞
k=1 k−s is the Riemann zeta function.28 We note the

direct correspondence between the fictitious time and the spin
index t → nT , T = 1 given by Eq. (7). For the averages of the
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FIG. 6. Results of the numerical integration for the statistically
averaged random alignment factor 〈〈sin2(θn − θn−1)〉〉 in the diffusive
approximation (37) for β = 0.3 and ε = 0.15.

discrete random variable S ≡ Sn = sin(θn − θn−1), we follow
the standard procedure [see Ref. 21, Eqs. (18)–(20)] and utilize
the distribution function given by Eq. (35). The integration is
performed over the interval −1 � Sn � 1. As a result, we
obtain〈〈

S2
n

〉〉 = 〈〈S2〉〉 = 〈〈sin2(θn − θn−1)〉〉 =
∫ +1

−1
S2f (S,t) dS

= 4W0

π

∞∑
m=0

1

(2m + 1)

∫ +1

−1
S2 sin[(2m + 1)π |S|]dS

× exp[−D(2m + 1)π2t]. (36)

After an integration, we get

〈〈S2〉〉 = 〈〈sin2(θn − θn−1)〉〉
= 4W0

π2
e−Dπ2nF

({
1

2
,
1

2
,1

}
,

{
3

2
,
3

2

}
,e−2Dπ2n

)

− W0

π4
e−Dπ2n�

(
e−2Dπ2n,4,

1

2

)
, (37)

where F ({a1, . . . ,ap}; {b1, . . . ,bq}; z) = ∑∞
k=0

(a1)k ,...,(ap)k
(b1)k ,...,(bq )k

zk

k!

is the generalized hypergeometric function and �(z,s,a) =∑∞
k=0

zk

(k+a)s is the generalized Riemann zeta function.28 From
Eq. (37), we immediately see that the statistically averaged
random alignment factor 〈〈sin2(θn − θn−1)〉〉 is not uniform
along the spin chain (see Fig. 6), but rather decays expo-
nentially with n. This result is reasonable since the solution
for the distribution function (35) is obtained via deterministic
initial and boundary conditions (32). Therefore, a maximum
correlation is expected for n = 0. Since t = nT , t = 0 and
n = 0 correspond to the boundary where the distribution
function is defined precisely. This means that far away from the
boundary for n � 1, randomness occurs and the correlation
decays.

V. CONCLUSIONS

In this paper we considered an anisotropic nonlinear spin
chain, which serves as a model for a chain of coupled
nanomagnets. We have shown that there is a direct map
between an infinite-dimensional spin-chain model and an
equivalent effective 1D classical Hamiltonian with a discrete
fictitious time-dependent perturbation. We have established

a direct connection between the dynamical characteristics
of the classical system and the spin correlation time of the
original quantum chain. The decay rate for the spin correlation
functions turns out to depend logarithmically on the maximal
Lyapunov exponent. In addition, for anisotropic couplings,
we found an interesting counterintuitive feature: the small
anisotropy leads to the formation of small islands of the regular
motion in a chaotic sea of the system’s phase space. As a result,
the spin correlations become stronger within the islands of
regular motion. We argue that these results obtained within the
classical approximation are interesting in other regimes. If the
Lyapunov regime is reached for a quantum system, which takes
place for the Lyapunov exponent λ < J 2/�, where � is the
mean level spacing and J is the exchange-interaction constant
between spins, then the decay rate for the teleportation fidelity
in a device based on such spin chains is directly related to λ.
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APPENDIX A: DERIVATION OF THE RECURRENCE
RELATIONS

Let us consider the equilibrium state for the model (3):

∂H

∂ϕn

= [cos(θn − θn+1) − cos(θn + θn+1)] sin(ϕn+1 − ϕn)

− [cos(θn−1 − θn) − cos(θn−1 + θn)] sin(ϕn+1 − ϕn),

(A1)

∂H

∂θn

= −J

2
[sin(θn + θn+1) + sin(θn−1 + θn) + sin(θn − θn+1)

− sin(θn−1 + θn)]− g

2
[sin(θn − θn+1)−sin(θn−1 − θn)

− sin(θn + θn+1) − sin(θn−1 + θn)] cos(ϕn+1 − ϕn)

+β sin 2θn = 0. (A2)

After the introduction of the notation Sn = sin(θn − θn−1),
from (A1) and (A2) we find(

J

2
+ g

2

)
Sn+1−

(
J

2
+ g

2

)
Sn−

(
J

2
− g

2

)
sin(θn + θn+1)

−
(

J

2
− g

2

)
sin(θn−1 + θn) + β sin(2θn) = 0, (A3)

ϕn+1 = ϕn + πm; m = 0,1.

Let the asymmetry parameter be defined by ε = |J − g|, ε <

J,g. Next we perform a rescaling of the interaction constants
ε

2g
→ ε, β → ∓ β

g
. From (A3) we deduce

(Sn+1 − Sn) − ε sin(θn + θn+1)ε − sin(θn−1 + θn)

+β sin(2θn) = 0, (A4)

θn+1 = θn + πν + (−1)ν arcsin[Sn+1]; ν = 0,1.
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Depending on the sign of the rescaled barrier height β → ∓ β

g
,

the value of the index m = 0,1 defines the energy minimum
condition. For convenience, we will use positively defined
β > 0 and consequently m = 0. In the simplest case, ν = 0,
so that from (A4) we obtain

(Sn+1 − Sn) − ε[sin[2θn]
√

1 − S2
n+1 + cos(2θn)Sn+1

+ sin(2θn)
√

1 − S2
n − cos(2θn)Sn+1] + β sin(2θn) = 0.

(A5)

By retaining only the first-order terms with respect to the
small parameter ε = |J−g|

2g
, from (A5) we obtain the following

recurrence relations (14):

Sn+1 = Sn − β

(
sin 2θn − ε

2
sin 4θn

)
,

θn+1 = θn + ων(Sn+1), (A6)

ων(Sn) = πν + (−1)ν arcsin Sn.

APPENDIX B: DERIVATION OF THE KINETIC EQUATION

The starting point for the derivation of the kinetic equation
is the equivalent effective Hamiltonian (7),

dS

dt
= −∂H

∂θ
= −βV ′(θ )T

+∞∑
n=−∞

δ(t − nT ),

(B1)
dθ

dt
= ∂H

∂S
= ω(S), ων(S) = πν + (−1)ν arcsin s.

Here the variable S plays the role of the adiabatic (slowly
varying) action variable, while the angular variable θ is the
fast variable. Due to the presence of the two different time
scales in the system,

H = H0(S) + εV (S,θ,t), (B2)

for the derivation of the kinetic equation, we will follow the
standard procedure.29 The distribution function of the random
variable f (S,t) obeys the Liouvillian equation of motion:

i
∂f0

∂t
= (L̂0 + εL̂1)f0, L̂0 = iω(S)

∂

∂θ
,

(B3)

L̂1 = −i

(
∂V

∂S

∂

∂θ
− ∂V

∂S

∂

∂θ

)
.

The formal solution of the Liouville equation with the
accuracy of second-order terms in the small parameter
ε reads

f0(S,t)

= f (S,0) − iε

×
∑
m

∫ t

0
dt1 exp

[
im

∫ t1

0
ω(t ′)dt ′

]
〈n|L̂1|m〉f0(S,0)

+ (−iε)2
∑
m

∫ t

0
dt1

∫ t1

0
dt2 exp

[
−im

∫ t2

t1

ω(t ′)dt ′
]

×〈0|L̂1(t1)|m〉〈m|L̂1(t2)|0〉f0(S,0). (B4)

Here, 〈n|L̂1|m〉 1
2π

∫ 2π

0 dθe−inθ L̂1e
imθ is the matrix element

of the Liouville operator. After averaging over the initial
phases f (I,t) = 〈〈f0(I,t)〉〉 and applying the random-phase
approximation with respect to the fast chaotic variable
�(t2,t1) = ∫ t2

t1
ω(t ′)dt ′ = θ (t1) − θ (t2), we get

〈〈exp im�(t2,t1)〉〉 ≈ exp[−(t1 − t2)/τc] exp[−imω(t1 − t2)].

(B5)

From (B4), we obtain

∂f

∂t
= −2ε2

∑
m>0

∑
p>0

(1/τc)〈0|L̂1p|m〉〈m|L̂1−p|0〉f
(1/τc)2 + (mω − p�)2

, (B6)

where

〈0|L̂1p|m〉〈m|L̂1−p|0〉

=
(

�

2π

)2 1

(2π )2

∫ T/2

−T/2
dt1

∫ T/2

−T/2
dt2

∫ 2π

0
dθ ′

∫
dθ ′′L̂1

× (t1)eim(θ ′−θ ′′)L̂1(t2)e−ip�(t1−t2), (B7)

and the following notation is used: τc = 2T/ ln K , T =
2π
�

. After calculating the integrals in (B7), in the limit
1

τc�
→ 0, T = 1 form (B6), we simply recover the diffusion

equation (30)

∂f (S,t)

∂t
= ∂

∂S
D(S)

∂f (S,t)

∂S
, (B8)

D(S) = β2

4

(
1 + ε2

4

)
. (B9)

More details of the derivations can be found in Ref. 29.

APPENDIX C: CORRELATION FUNCTIONS

For the evaluation of the multiple series in Eq. (24), one
should sum up the contributions from the main nonoscillatory
terms. Due to the δ function δ1−2(m1+m2+···+mn)+4(l1+l2+···+ln),1

in Eq. (24), and the fast exponential factors
ei4ω(l1+l2+···+ln), e−2iω(m1+m2+···+mn), the relevant terms
in Eq. (24) are those with

m1 + m2 + · · · + mn = 0, l1 + l2 + · · · + ln = 0. (C1)

Using the asymptotic expressions for Bessel functions,

Jm(K0) ∼ K
−1/2
0 for K0 � 1, (C2)

and condition (C1), one can easily obtain (26) from (24).
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