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Origin of polar nanoregions in relaxor ferroelectrics: Nonlinearity, discrete breather formation,
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A central issue in the physics of relaxor ferroelectrics is the origin of the formation of polar nanoregions below
some characteristic temperature scale. While it is often attributed to chemical disorder, random bond–random field
appearance, or local symmetry lowering, it is shown here that the huge intrinsic nonlinearity of ferroelectrics gives
rise to spatially limited excitations of discrete breather (DB) type, which interact strongly and self-consistently
with the remaining lattice. This scenario corresponds to a two-component approach to relaxor physics with
distinctive signatures in the dielectric spectra and strong charge-transfer effects. The theoretical results are
compared to broadband dielectric spectroscopy on 0.2PSN-0.4PMN-0.4PZN ceramics, which provides clear
evidence for the two-component scenario and the emergence of DB-like dynamics with decreasing temperature.
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I. INTRODUCTION

Relaxor ferroelectricity is almost exclusively observed in
systems with chemical disorder. While this feature poses
challenges on the precise characterization of the samples,
disorder can be tuned, and thereby, the physical properties can
also be varied and enlarge considerably the application range.
Typically, ABO3-type ferroelectrics exhibit relaxor properties
when the A or B sites are substituted by a proper cation. This
observation was early claimed to be the origin of the observed
diffuse phase transitions since chemical disorder might give
rise to local phase transitions that do not mirror the bulk
properties.1 Later, it was suggested that polar nanoregions
(PNR) form in relaxors, which stem from fluctuating dipole
moments.2–4 Direct experimental evidence for these PNR’s
is still missing; however, a variety of indirect observa-
tions support the PNR scenario.5 These include particularly
infrared and broadband spectroscopy,6–8 enhanced diffuse
inelastic scattering, inelastic and pulsed inelastic neutron
scattering,9–12 Raman spectroscopy,13 x-ray scattering,14 and
NMR measurements.15 All experiments demonstrate that at
least two components coexist in relaxors that are characterized
by different time and length scales. While formerly it was
speculated that relaxor and displacive ferroelectric behavior
originates from different physics, it has been shown that a
crossover between both dynamics takes place upon properly
doping a displacive system to a relaxor and vice versa.16–20

Theoretically, no clear consensus has been achieved. It is,
however, agreed that the PNR’s have a lower symmetry than
the matrix in which they are embedded.21 As such, an analogy
between relaxors and dipolar glasses22 has been proposed,
leading to the random field Ising model23 and the spherical
random bond–random field model.24 While this approach is
rather phenomenological, extensions have been proposed to
include pairwise interactions between neighboring doped ions
in a random field.25–27

The coexistence of local and average structures constituting
the relaxor lattice leads to an apparent breakdown of the
translational invariance and requires new techniques beyond
conventional theories based on plane-wave states.

II. BACKGROUND

Ferroelectrics, independent of their structure and compo-
sition, are known to be dominated by strong anharmonicity
and nonlinearity, which gives rise to double-well potentials or
potentials of even more complicated form. While frequently
the resulting dynamical behavior is treated in a quasiharmonic
approximation, namely, plane-wave states, it has been shown
that intrinsic localized modes (ILM) and discrete breathers
(DB)20,28–30 are characteristic excitations of such systems
realized in various physical situations. The problem of DB
and ILM formation lies in the fact that their stability is only
guaranteed as long as their energy is confined to a regime in
the optic acoustic mode gap. However, when such a situation is
realized, these nonlinear objects extract spectral weight from
the normal lattice modes and appear as Einstein oscillators in
a confined momentum space region that defines their length
scales.

Within the polarizability model,31–33 DB’s have been
observed that either split off from the optic mode spectrum
or emerge from the acoustic modes.20,28–30 In both cases they
substantially modify the dynamical behavior of the matrix, lead
to anomalies in the acoustic modes, and particularly influence
the lattice dynamics temperature dependence.

As detailed in previous work, the nonlinear objects are
not in isolation but interact through a superposition with
the lattice plane-wave states.20,28–30 This interaction enables
charge transfer between the host matrix and the DB’s, which
shifts oscillator strength from the lattice to the DB. The
situation is comparable to polaron formation since the DB
moves with a considerable amount of charge through the
lattice.

III. MODEL APPROACH

The nonlinear potential that is used here differs from
conventional ones through the use of the polarizability co-
ordinate w = v − u, where v is the shell displacement and u

is that of the shell surrounding core: V (w) = g2w
2 + g4w

4,
with g2 < 0, g4 > 0. Effectively, w represents a local dipole
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moment.34,35 DB solutions are only obtained as long as the
spatial extent exceeds several lattice constants nc from the DB
center at site n. We identify here the DB extent with the size of
the PNR’s. A consequence of the finite spatial spread of the DB
is that the nonlinear potential becomes site dependent since the
nonlinearity varies as g̃

(n)
4 = g4/[2(n − nc)2]. At the DB center

the dipole moment is large for large nc and reduced for small
nc. Upon approaching the border nc of the PNR’s, the local
dipole is reduced to zero at n = nc. This means that, within
the spatial extent of the PNR’s, not a single dipole moment
is present but, rather, a spread of varying dipole moments
that fluctuate and lead to an ill-defined structure within the
PNR’s, making the lowest symmetry the most likely one.
Upon superposing matrix and DB displacements, a coupling
between both is provided from which the lattice is stabilized,
and the DB mode frequency adopts a temperature dependence.
The coupled frequencies have to be derived self-consistently
for each temperature T, which is complicated because the
DB frequency is calculated from a third-order equation in
the dipole moment that has to be iterated to convergence. In
addition, the lattice mode follows a self-consistent loop where
the DB dipoles enter. Note that the DB frequency depends not
only on the magnitude of the dipole moment and the lattice
mode frequency but also on the spatial extent of the DB through
its dependence on nc.

The complex dielectric function ε̃(ω) of the coupled system
is calculated within standard theory:

ε̃(ω) = ε∞ +
∑

i

SiRi(q,ωi), (1)

where ωi (i = 1, 2) refer to the momentum q dependent optic
lattice mode and the DB mode frequencies and Ri(q,ω) is the
response function for the corresponding mode. In anharmonic
crystals this is expressed as

Ri(q,ω) =
[
ω2

i (q) − ω2 + 2ωi(q)
∑

i

(q,ω)

]−1

, (2)

with
∑

i (q,ω) being the self-energy. In the above case this
energy relates directly to the integrated dipole moment, which
is proportional to the self-consistently derived thermal average
〈w2〉T = ∑

q,i h̄w2(q,i)/[mωi(q)] coth h̄ωi (q)
2kT

. Since the DB
mode frequency is dispersionless, the response function is
calculated in the limit q → 0. The calculated imaginary part
of the dielectric permittivity is shown for small DB spatial
extents and various temperatures in Fig. 1.

While at high temperatures the dielectric response is almost
completely dominated by the lattice mode pseudoharmonic
frequency, with decreasing temperature an additional peak
develops on the low-frequency side that gains intensity at
the expense of the lattice mode. Together with the intensity
redistribution, an anomalous broadening of the lattice response
sets in, whereas the DB mode sharpens. The appearance of the
DB in the low-frequency regime suggests a strong DB acoustic
mode coupling leading to enormous anomalies in the elastic
constants, as observed experimentally.36–42 Upon increasing
the DB spatial extent, all the above-described features become
much more pronounced (Fig. 2), and the DB mode dynamics
slow down substantially. This has the consequence that the
larger the PNR’s are, the more they approach an almost-static
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FIG. 1. (Color online) Temperature and frequency dependence
of the breather mode response for fixed breather size. The choice of
the size corresponds to the dilute doping limit.

limit where two time and length scales appear. Also, a much
stronger piezoelectric coupling is present in the latter case,
which could be the source of the enhanced piezoresponse
reported for relaxor ferroelectrics.5,43

Since the DB stabilizes the lattice mode frequency, a
soft mode-induced transition is suppressed, but only a minor
(although still feasible) temperature dependence of the lattice
mode remains [Fig. 3(a)], which is independent of the DB
extent. Opposite to this finding, the DB mode frequency
depends strongly on the DB spatial extent. As expected, it

0.01 0.1 1 10
0.0

0.5

1.0

1.5

T=400K
380 K
360 K
340 K
320 K
300 K

In
te

ns
ity

 (
a.

u.
)

Frequency (THz)

FIG. 2. (Color online) Temperature and frequency dependence
of the breather mode response for fixed breather size. The choice of
the size corresponds to the dense doping limit.
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FIG. 3. (Color online) (a) Temperature dependence of the
squared lattice mode frequency ω2

L. (b) Temperature dependence of
the squared breather mode frequency for the case of dilute doping
(squares), intermediately dense doping (circles), and dense doping
(triangles).

softens when the extent is large and approaches the lattice
mode spectrum for the opposite limit [Fig. 3(b)].

Simultaneously, the DB amplitude, which can be identified
with its dipole moment, varies substantially with varying size
(Fig. 4), as anticipated from the fact that the spatial spread is
determined by the central DB dipole size.
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FIG. 4. (Color online) Temperature dependence of the breather
amplitude for the case of dilute doping (squares), intermediately dense
doping (circles), and dense doping (triangles).
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FIG. 5. Temperature dependence of the DB spatial extent for
temperature-independent DB frequency.

Also, its temperature dependence changes with the spread,
being almost constant for small amplitudes, while a linear
T dependence sets in with increasing amplitude. Note that
in the above the DB size has been set as constant and its
frequency been calculated self-consistently. On the other hand,
one could start from a T-independent frequency and calculate
the DB-related length scale self-consistently. In this case the
DB extent adopts a nonlinear T dependence with rapid growth
upon decreasing the temperature (Fig. 5). Such a scenario
has been suggested to be realized in some relaxors where
a T-dependent growth of PNR’s has been indirectly inferred
experimentally.8

IV. COMPARISON WITH EXPERIMENTAL DATA

The above findings can be related to various experiments.
Particularly, the emergence of an additional structure in the
dielectric response has been frequently reported and attributed,
as it is here, to PNR formation.6–8 The acoustic mode
anomalies that are present in this approach have been observed
by Brillouin scattering and in measurements of the elastic
constants.8,36–42 The two-component behavior, characteristic
for two time and length scales, has also been seen in NMR
experiments.15 Almost direct evidence for DB formation has
been obtained recently by pulsed neutron inelastic scattering,
where the emergence of a momentum-limited dispersionless
mode has been observed.12

The theoretical picture developed here can be directly
compared to recent extended data on the complex permittivity
obtained for 0.2PSN-0.4PMN-0.4PZN ceramics, which are
detailed below. These experiments have the advantage of
covering a large frequency regime, which allows to detect
coexisting regions of slow and fast dynamics.

In order to understand the dielectric relaxation in relaxors,
it is more convenient to use frequency plots of the complex
permittivity at various representative temperatures (see Fig. 6).
A huge change in the dielectric dispersion takes place with
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FIG. 6. (Color online) Frequency dependence of complex
dielectric permittivity ε′, ε′′of 0.2PSN-0.4PMN-0.4PZN ceramics
measured at different temperatures. The solid lines are the best fit
with the distribution of the relaxation times.

decreasing temperature. At temperatures T � 400 K, the
dielectric loss dispersion is clearly symmetric and observable
only at frequencies larger than 1 GHz. On cooling, the
relaxation slows down and broadens. At temperatures around
300 K the relaxation becomes strongly asymmetric and very
broad. On further cooling, the dielectric dispersion broadens
so tremendously that only part of it is visible in the available
frequency range.

In order to determine the real and continuous distribution
function of relaxation times f (τ ) the Fredholm44 integral
equation is used:

ε′(ω) = ε∞ + �ε

∫ ∞

−∞

f (τ )d(ln τ )

1 + ω2τ 2
, (3a)

ε′′(ω) = �ε

∫ ∞

−∞

ωτf (τ )d(ln τ )

1 + ω2τ 2
, (3b)

where the Tikhonov regularization method has been
employed.45–47 This method and calculation technique is
described in detail elsewhere.48

The calculated distributions of the relaxation times f (τ )are
presented in Fig. 7. Symmetric and narrow distributions of
relaxation times are observed at temperatures T > 350 K.
On cooling, f (τ ) adopts an asymmetric shape, and a second
maximum appears at lower frequencies. The shortest and
longest limits of f (τ ) were calculated (level 0.1 of the
maximumf (τ )was chosen for the definition of the limits) at
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FIG. 7. (Color online) Distribution of relaxation times f (τ ) of
0.2PSN-0.4PMN-0.4PZN ceramics calculated at different tempera-
tures.

various temperatures (Fig. 8). The maximum relaxation time
τmax diverges according to the Vogel-Fulcher law:

τ = τ0e
Ef

kB (T −T0) , (4)
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FIG. 8. (Color online) Temperature dependences of the longest
τmax (squares), most probable τmp (crosses), and the shortest τmin

(circles) relaxation times in 0.2PSN-0.4PMN-0.4PZN ceramics.
Solid lines for τmax are results of a Vogel-Fulcher fit and a linear
interpolation for τmp.
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where τ0 = 10−12 s, T0 = 285 K, and Ef /kB = 715 K. All
the shortest relaxation times have the same values, namely,
10−12–10−13 s, and are almost temperature independent within
the accuracy of this analysis. The most probable relaxation
time τmp obtained from the peak of distributions follows the
Arrhenius law (Fig. 7):

τmp = τ0e
− EA

kB T , (5)

with parameters τ0 = 1.06 × 10−15 s and EA/kB = 3825 K.
The distribution function f (τ ) was determined only at

rather high temperatures, when the relaxation time lies within
the experimental frequency range, whereas when τmax is below
this range, neither the static permittivity nor τmax can be
determined unambiguously. It can, however, be expected that
τmax does not diverge below T0 since some dispersion also
remains below the freezing temperature. On the other hand,
the Arrhenius law describes the temperature dependence of
τmp sufficiently well in the considered temperature range of
300–400 K. At higher temperatures (T > 400) this law breaks
down since τmax is smaller than 10−13 s and stays almost
constant for this temperature regime.

Even though the origin of the two-component dielectric
relaxation is still under debate, it is interpreted here as arising
from the DB formation and its interaction with the embedding

matrix. The emergence of the low-frequency broad peak is
identified with the DB mode frequency, which gains strength
at the expense of the high-frequency response with decreasing
temperature, in close analogy to our modeling (see Figs. 1
and 2). It has to be emphasized, however, that, experimentally,
this peak appears in the very low frequency regime to shift
to higher frequencies with increasing temperature, whereas,
theoretically, the almost-static regime is not observed. Note
that the high-frequency peak is not completely temperature
independent but that a slight softening with decreasing
temperature sets in, as predicted theoretically [Fig. 3(a)]. The
overall qualitative agreement between experiment and theory
thus confirms the picture developed in the introduction.

V. CONCLUSIONS

In conclusion, relaxor ferroelectrics have been modeled in
terms of two components, which stem, however, from the same
lattice dynamics. While one component exists on a short length
scale, corresponding to PNR’s, the second reflects the matrix
in which the PNR’s are embedded. The coupling between
these stabilizes the lattice but adds a temperature dependence
to the PNR’s. The theoretical approach is supported by
broadband dielectric spectroscopy, which agrees with the
predicted behavior.
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