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Generalized inverse participation ratio as a possible measure of localization for interacting systems
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We test the usefulness of a generalized inverse participation ratio (GIPR) as a measure of Anderson localization.
The GIPR differs from the usual inverse participation ratio in that it is constructed from the local density
of states rather than the single-electron wave functions. This makes it suitable for application to many-body
systems. We benchmark the GIPR by performing a finite-size scaling analysis of a disordered, noninteracting,
three-dimensional tight-binding lattice. We find values for the critical disorder and critical exponents that are in
agreement with published values.
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I. INTRODUCTION

Anderson localization is a phenomenon in which quantum
particles may be localized due to a random potential, even
though the particles are classically unbound.1 The theory
for noninteracting particles is well developed: in one and
two dimensions, particles are localized by arbitrarily weak
disorder, and in three dimensions states may be localized or
extended depending on the strength of disorder.2

Most real particles are interacting, however, and there has
been an ongoing effort to understand how interactions modify
the noninteracting picture, either because of screening of the
disorder potential, or because of loss of quantum coherence
due to inelastic scattering.3 Until recently, neither of these
effects was believed sufficient to change the noninteracting
picture at zero temperature. However, experiments4 in two-
dimensional semiconductor films identified a zero-temperature
metal-insulator transition (MIT) that appears to result from
electron interactions.5 More recently, it has been suggested
that weakly interacting one- and two-dimensional systems will
exhibit a finite-T Anderson MIT.6,7

There is also interest in Anderson localization in strongly
interacting systems.8 Many of the most interesting strongly
correlated materials are insulators, but can have their electronic
properties tuned by chemical doping. Of particular interest
are materials, such as the high temperature superconductors,
whose parent compounds have an interaction-driven Mott
insulating phase. These materials become superconductors
when doped with a few percent of electron or hole donor
atoms, but pass through various intermediate phases in which
disorder seems to play an important role. There is an
abundance of questions about how the electronic properties
of these materials are modified by doping-related disorder.
Of particular relevance to this work, there have been recent
questions about how localization physics is altered near the
Mott MIT,9–14 and about the phase transition between the
Anderson and Mott insulating phases.15–17

Finally, trapped atomic gases in random optical lattices
have now been experimentally realized.18–22 These systems are
interesting because the strength of the atom-atom interactions
can be tuned by the application of an external magnetic field.
There is therefore the prospect of making a controlled study
of Anderson localization as a function of interaction strength.

Numerical calculations have played an important role
in understanding Anderson localization in noninteracting

systems. However, many of the techniques developed for
measuring localization in noninteracting systems cannot be
extended to interacting systems since they require knowledge
of the single-particle eigenstates of the system and, with
the exception of self-consistent field calculations, many-body
wave functions cannot generally be written as a simple product
of single-particle states. There is, therefore, an interest in
developing new numerical methods for studying the Anderson
MIT in interacting systems.

With this in mind, there have been several proposals that
the localization transition can be detected by studying the
statistical properties of the local density of states (LDOS)
ρ(r,ω). The geometric average of the LDOS, ρg(ω), is an
order parameter for the Anderson MIT in the limit of infinite
system size23,24 because it vanishes when the local spectrum
is discrete. In infinite systems, this occurs only at energies
at which the states are localized and not at which the states
are extended. A generalization of dynamical mean field theory
based on incorporating ρg(ω) into the self-consistency cycle
was developed to study interacting disordered systems.15,16,24

As a practical measure of localization in finite systems,
however, ρg(ω) is problematic because the spectrum is always
discrete, and this can obscure the Anderson MIT.25,26 More
recently, several groups have suggested that the Anderson
transition can be detected by studying the distribution of
ρ(r,ω) values,16,27–29 and it has been shown that this distri-
bution scales differently with system size for localized and
delocalized states.28

In this work, we consider a quantity, the generalized inverse
participation ratio (GIPR), that is related to the LDOS via

G2(ω) =
∑

i ρ(ri ,ω)2[∑
i ρ(ri ,ω)

]2 . (1)

Equation (1) is defined for a lattice, so that ρ(ri ,ω) is the
density of states projected onto the local Wannier orbital at
the ith site of the lattice. The GIPR was used previously in
finite-size scaling studies,13 but a careful examination of its
scaling properties has not been made. This is the purpose of
this paper.

The GIPR is analogous to the usual inverse participation
ratio (IPR) for noninteracting systems,

Iq,α =
∑

i |�α(ri)|2q[∑
i |�α(ri)|2

]q , (2)
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where �α(ri) is a single-particle wave function with quan-
tum number α in the basis of Wannier orbitals. The IPR
is conventionally defined with q = 2 and can be used to
distinguish Anderson localized and extended states: for a finite
d-dimensional system of linear size L, I2,α satisfies

lim
L→∞

I2,α =
{

1/Ld (extended states)

const. (localized states),
(3)

for states that are far from the Anderson MIT, and exhibits
multifractal scaling,23,30–32

lim
L→∞

I2,α = L−d2 F̃ [(W − Wc)L1/ν], (4)

near the transition. Here, d2 is the fractal dimension for q = 2,
ν is a critical exponent, and W and Wc are the disorder and
critical disorder strengths, respectively.

For noninteracting systems, G2(ω) reduces to the IPR when
ω is equal to one of the eigenenergies of the system. This
follows from substituting

ρ(ri ,ω) =
∑

α

|�α(ri)|2δ(ω − Eα), (5)

into Eq. (1), where Eα are the discrete eigenenergies of
the disordered lattice. However, for a general value of ω

not equal to one of the eigenenergies, G2(ω) is not well
defined if the δ functions in Eq. (5) are infinitely sharp, and
the relationship between the IPR and the GIPR is therefore
ambiguous. Moreover, we show below that if one broadens
the δ functions by an amount γ , there is no limiting value of γ

in which the GIPR reduces to the IPR. The goal of this paper is
to demonstrate that the GIPR can nonetheless be used to detect
the Anderson MIT and to determine the critical parameters Wc,
d2, and ν.

We benchmark the GIPR by performing finite-size scaling
for a disordered noninteracting model, where the critical
properties are well known. In Sec. II, we discuss how the
broadening of the δ functions in Eq. (5) is expected to affect the
finite-size scaling, and use this to select an optimal broadening.
In Sec. III, we show the results of numerical finite-size scaling,
from which we extract values for the critical disorder and
critical exponents at the Anderson MIT. We show that, with
an appropriate choice for γ , it is possible to extract critical
properties.

II. CALCULATIONS

The noninteracting Anderson model is

Ĥ = −t
∑
〈i,j〉

|i〉〈j | +
∑

i

|i〉εi〈i|, (6)

where |i〉 is the ket for a Wannier orbital at position i on
the lattice and 〈i,j 〉 indicates that the sum is over nearest-
neighbour sites. The hopping matrix element is taken to be
t = 1, and it therefore sets the energy scale, while the site
energies εi are taken from a uniform distribution of random
values ranging from −W/2 to W/2, where W is the strength of
disorder. Calculations are performed for a three-dimensional
(d = 3) cubic lattice of linear size L and with Ns = L3 lattice
points.

We use a recursion method33 to find the local Green’s
function G(ri ,ω + iγ ) at site i, where γ is a small but finite
shift off the real frequency axis. This method introduces an
error through truncation of the recursion algorithm, and we
have been careful to adjust the truncation criterion so that this
error is much smaller than the error due to disorder averaging.
The LDOS is given by the imaginary part of G(ri ,ω + iγ ).
Formally, this is equivalent to

ργ (ri ,ω) = 1

π

∑
α

|�α(ri)|2 γ

(ω − Eα)2 + γ 2
, (7)

where Eα are the eigenenergies for a particular disorder
realisation. Once ργ (ri ,ω) is known, the GIPR is calculated
from Eq. (1). In this work, we focus on the band center (ω =
0), where the Anderson transition is well characterized. In
particular, the Anderson MIT occurs at a critical disorder Wc =
16.5t for the uniform disorder distribution used here.34,35

One of the main issues we face is how to choose γ . In the
remainder of this section, we discuss how this choice affects
both the LDOS and the scaling behavior of the GIPR. The
relevant energy scale for comparison is the level spacing at
the band center � = 1/ρ0Ns , where ρ0 is the system-averaged
density of states at ω = 0. For strongly disordered systems,
� ≈ W/Ns , while for weakly disordered systems, � ≈ D/Ns ,
where D is the bandwidth of the disorder-free lattice. For the
cubic lattice considered here, the Anderson transition occurs
at an intermediate disorder strength, so that � lies between
these two limits.

Figure 1 shows the dependence of the LDOS on γ .
When γ � �, the LDOS at ω is an average over states with
|ω − Eα| � γ , with the consequence that the LDOS is more
spatially uniform than the individual eigenstates making up the
LDOS. Thus in Fig. 1, the sites A and B are spatially separated,
and both have broad peaks at ω = 1. It is not possible to
tell, based on the LDOS for γ = W/Ns , whether these peaks

0

10

20

ρ γ(r
,ω

)

Site A:

0

0.5

ρ γ(r
,ω

)

-10 -5 0 5 10
ω

0

0.5

ρ γ(r
,ω

)

Site B:

-10 -5 0 5 10
ω

0.5 1 1.5
0

10

0.5 1 1.5
0

5(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. (Color online) Local density of states for two well-
separated lattice sites “A” and “B” in a disordered lattice. Panels
show the LDOS at (a–c) A and (d–f) B. All spectra are for the same
configuration of disorder, but have different values of γ . Results are
for (a, d) γ = 0.01W/Ns ; (b, e) γ = W/Ns ; (c, f) γ = 2W/Ns , where
the lattice has Ns = 43 sites and W = 13. Insets show expanded views
of the LDOS near ω = 1.
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indicate a single eigenstate or a cluster of eigenstates that
happen to be close in energy. It is only when γ � � that we
see that the local spectrum is quite different at the two sites
[Figs. 1(a) and 1(d)]. This suggests that the finite-size scaling
of the LDOS, and by extension the GIPR, should do a better
job of distinguishing localized and extended states as γ is
reduced.

However, the fact that the spectrum develops discrete peaks
when γ � � does not mean that the LDOS samples only
individual eigenstates in this limit. This is because most
energies do not coincide with a peak. When γ � �, the energy
ω = 0 lies in the tails of the surrounding peaks and Eq. (7)
becomes

ργ (ri ,0) = γ

π

∑
α

|�α(ri)|2
E2

α

. (8)

This means that even in the limit γ → 0, ρ(ri ,0) is averaged
over a nonzero number of states. The LDOS at ω = 0, and by
extension the GIPR, does not change qualitatively when γ is
reduced much below �.

We can learn more about the GIPR scaling by substituting
Eq. (7) into Eq. (1), from which we obtain

G2(0) =
∑

i

(∑
α

wα|�α(ri)|2
)2

, (9)

where

wα =
(
E2

α + γ 2
)−1

∑
β

(
E2

β + γ 2
)−1 , (10)

is a weighting factor satisfying
∑

α wα = 1. In the limit of
vanishing disorder, the wave functions are plane waves with
|�α(ri)|2 = N−1

s , and Eq. (9) gives G2(0) = N−1
s ; this result

is independent of γ and is identical to the scaling result for the
IPR.

In the limit of large disorder W � Wc it is useful to
rearrange Eq. (9) to obtain,

G2(0) =
∑

α

w2
αI2,α +

∑
α 	=β

wαwβ

∑
i

|�α(ri)|2|�β(ri)|2.

(11)

The first term on the right-hand side is a weighted sum of
IPR values for eigenstates with |Eα| � γ , while the second
term consists of cross terms between pairs of eigenstates. The
second term can be neglected when the distances between
these localized states are large compared to the localization
length ξ . We can estimate the typical distance between centers
of localization of the states in Eq. (11) for the case γ � �. In
this case, there are of order 2γ /� states with |Eα| < γ , and
the mean separation of these is

� ∼ L(�/2γ )1/d . (12)

The product |�α(ri)|2|�β(ri)|2 for two states separated by �

has a maximal value of order exp[−2L(�/2γ )1/d/ξ ], at the
midpoint between the centers of localization. It follows that
the second term in Eq. (11) vanishes for L/ξ → ∞, in which
limit the GIPR is expected to scale like the IPR.

For finite L, however, the second term in Eq. (11) introduces
finite-size corrections to the GIPR that make it scale differently

from the conventional IPR. To minimize these corrections, we
want to make � as large as possible, which is achieved by
taking γ as small as possible. We emphasize, however, that
Eq. (12) only holds for γ � �, and that wα is independent of
γ when γ � �, namely

lim
γ→0

wα = E−2
α∑

β E−2
β

. (13)

In other words, � ceases to increase when γ is much less than
�. Our analysis therefore suggests that one cannot do much
better at minimizing finite-size effects than by taking γ ∼ �.

Finally, having established that G2(0) is determined by
the first term in Eq. (11) when L/ξ � 1, we show that the
weighting terms do not affect the GIPR scaling in this limit. We
write I2,α ≈ I2(Eα), where I2(E) is a slowly varying function
of E near E = 0, so that

G2(0) ≈ I2(0)
∑

α

w2
α. (14)

For γ � �, we may estimate the sum over eigenstates by

∑
α

w2
α ≈ �−1

∫
dE(E2 + γ 2)−2[

�−1
∫

dE(E2 + γ 2)−1
]2 ∝ �

γ
. (15)

Taking γ ∝ N−1
s eliminates the L dependence of the weighting

factors in Eq. (11).
In summary, we have shown that the GIPR will reproduce

the scaling of the IPR in the limits of vanishingly weak and
strong disorder. Moreover, we have shown that using smaller
γ values to calculate the GIPR is preferable, down to γ ∼ �.
Many numerical methods converge faster for larger γ and,
for these, γ ∼ � will be optimal. In the next section, we
examine whether the finite-size effects near Wc limit our ability
to extract the critical behavior.

III. RESULTS

We plot, in Fig. 2, the probability distribution of the
logarithm of the LDOS at ω = 0 for different values of γ

and for different system sizes. Figures 2(a) and (b) show that
γ affects both the peak position and shape of the distribution.
In particular, the peak position of the distribution Pρ(ln ργ )
is proportional to γ for γ � W/Ns , in accordance with
Eq. (8). For γ � W/Ns , the peak position and width are weak
functions of γ .

In Figs. 2(c) and (d), we show the L dependence of the
distribution of the normalized LDOS, ρ̃γ ≡ ργ /〈ργ 〉 with
〈ργ 〉 the sample-averaged density of states. Schubert et al.28

showed that the scaling of the distribution Pρ(ln ρ̃γ ) can be
used to distinguish localized and extended states: Pρ(ln ρ̃γ )
shifts to the left with increasing L for localized states and is
independent of L for extended states. Here, we find that there is
indeed a pronounced shift for the localized case (W = 20), and
that the distribution is almost independent of L for the extended
case (W = 13). The small leftward shift seen in the extended
case is presumably due to finite-size effects, which are more
pronounced here than in Ref. 28. Despite its smallness, this
leftward shift is problematic because it obscures the signature
of the Anderson transition in Pρ(ln ργ ). This is a potentially
important issue for many-body calculations where accessible
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FIG. 2. (Color online) Probability distribution of the logarithm of
the local density of states at ω = 0. The effect of γ on Pρ(ln ργ ) is
shown for (a) extended and (b) localized states for a fixed system size.
The effect of system size on Pρ(ln ρ̃γ ) is shown for (c) extended and
(d) localized states for γ = W/Ns . Here, ρ̃γ is the normalized LDOS,
ρ̃γ ≡ ργ /〈ργ 〉, where 〈ργ 〉 is the system-averaged LDOS at ω = 0.
Results are shown for 16 (L = 10), 5 (L = 15), and 2 (L = 20)
disorder configurations, such that the number of LDOS values in
each case is roughly the same.

system sizes tend to be severely limited. It appears that, as
with other measures of localization, the usefulness of the
LDOS distribution will depend on the inclusion of finite-size
corrections.

Figure 3 shows the probability distribution function
PG(ln G2) for the GIPR, obtained by calculating G2(ω) at
ω = 0 for 1500 distinct impurity configurations. This figure
shows that the width of the distribution depends strongly on γ ,
and that PG(ln G2) is sharply peaked when γ � �. Because
the distribution of ln G2 is narrow, the mean and most probable
values of the distribution are close to each other. For this reason
we study the finite-size scaling of the typical GIPR36

G
typ
2 (ω) = exp [〈ln G2(ω)〉] , (16)

where 〈. . .〉 refers to an average over disorder configurations.
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FIG. 3. (Color online) Effect of γ on the probability distribution
of the GIPR at ω = 0. Results are for (a) extended (W = 13) and
(b) localized (W = 20) states, and are for 1500 disorder configura-
tions with L = 10.

We argued in the previous section that one should take γ ∝
�, where � depends on both Ns and W . To understand whether
the W dependence of � is important, we take two cases: γ ∝
W/Ns and γ ∝ Wc/Ns , where Wc here refers to the accepted
value of 16.5. As we discussed in Sec. II, the first choice
overestimates the W dependence of �, while the second choice
underestimates it. Note that there is nothing fundamental about
the proportionality constant Wc in the second case; it was
chosen because it gives γ values that are quantitatively close
to those in the first case. In total, we have taken four cases:
two with γ ∝ W/Ns (γ = W/Ns and γ = 2W/Ns) and two
with γ ∝ Wc/Ns (γ = Wc/Ns , and γ = 2Wc/Ns).

Figure 4(a) shows the dependence of G
typ
2 (0) on L for

different strengths of disorder for the case γ = W/Ns . At short
length scales, all the systems are in the critical region (albeit
in a region where finite-size corrections are significant), and
therefore all show similar size dependence. At long length
scales, however, the lines diverge. For W < Wc, the slope
becomes steeper with increasing L, consistent with a crossover
to Ld with d = 3. For W > Wc, the slope decreases with
increasing L, consistent with a crossover to a constant value.
This figure suggests that the GIPR is indeed able to distinguish
localized and extended states, even for the relatively small
systems studied here.

We show that the GIPR displays the same critical behavior
as the IPR near Wc, namely that

G
typ
2 = L−d2

(
F [(W − Wc)L1/ν] + A0

Ly
+ A1

L2y
+ · · ·

)
,

(17)
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FIG. 4. (Color online) Scaling of the GIPR for γ = W/Ns .
(a) Plots of G

typ
2 as a function of L for 3000 disorder configurations.

(b) Y2, defined by Eq. (18), for best-fit values of A0, d2 and y. For these
parameters, the critical disorder at which all curves cross is Wc =
16.2, corresponding to the optimized fitting parameters A0 = 0.64,
y = 1.6, and d2 = 1.3. (c) Plot of dY2/dW at W = Wc (symbols),
along with power law fits (solid lines) to the data. The exponents in the
fitted curves give ν−1, from Eq. (20). The two outlying curves are for
the extremal values (d2,Wc,y) = (1.5,15.9,3.2) and (1.2,16.4,1.2)
and are used to determine uncertainties for ν. The middle curve is for
the optimized parameters, from which we obtain ν = 1.1. Results are
summarized in Table I.
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TABLE I. Critical parameters from finite-size scaling. For com-
parsion, previously published results from Refs. 35 and 31 are shown.
In the first column, Wc refers to the accepted value of 16.5. Numbers
in parentheses are estimated bounds on parameters, and are based on
the parameter regions χ 2

red � 1.

γ d2 Wc ν y

W/Ns 1.3 (1.2,1.5) 16.2 (15.9,16.4) 1.1 (1.0,1.1) (1.2,3.2)
2W/Ns 1.3 (1.0,1.4) 16.6 (15.9,17.2) 1.0 (0.9,1.4) (1.4,2.5)
Wc/Ns 1.5 (1.2,1.5) 15.8 (15.7,17.0) 1.3 (1.3,1.4) (2.1,3.0)
2Wc/Ns 1.1 (1.0,1.4) 17.2 (16.2,17.4) 1.7 (1.2,1.8) (1.7,2.2)
Published 1.3 16.54 1.57

where Aj are finite-size corrections and y is the critical
exponent for the leading-order irrelevant variable.35 In all
cases, we are able to obtain good scaling behavior for 4 � L �
17 with Aj = 0 for j � 1. We thus have five fitting parameters:
d2, Wc, ν, A0, and y.

We now describe the fitting procedure, using the case γ =
W/Ns as an example. Figure 4(b) shows a plot of

Y2 ≡ G
typ
2 Ld2 − A0

Ly
, (18)

versus W for the optimal values of A0, y, and d2. Error bars on
the data are the root-mean-square uncertainty in G

typ
2 due to the

finite width of the GIPR distributions (shown, e.g., in Fig. 3).
The solid curves in Fig. 4(b) are cubic fits to the data points.
Each pair of curves crosses at a different disorder strength,
denoted Wj ± δWj , where j ∈ [1,Ncross] and Ncross is the the
number of such crossing points. (For the eight curves shown
in Fig. 4(b), there are Ncross = 28 crossing points.) The uncer-
tainties δWj are calculated from the uncertainties in the fitting
parameters. If the scaling form Eq. (17) holds and the critical
parameters are correctly chosen, all curves will cross at a single
point WX. For each A0, y, and d2, we find WX(A0,d2,y) by
minimizing

χ2 =
Ncross∑
j=1

(
Wj − WX

δWj

)2

. (19)

Plots of WX(A0,d2,y) are shown in Fig. 5 for optimal values
of y for γ = W/Ns and for γ = Wc/Ns . We extract our own
best-fit values for Wc from the global minima of χ2(A0,d2,y),
and these are shown as circles in Fig. 5. A qualitative
sense of the goodness of fit can be obtained from Fig. 4(b),
which is based on the best-fit parameters for γ = W/Ns . A
quantitative measure of goodness of fit can be obtained from
the reduced chi-square χ2

red ≡ χ2/(Nc − 1). Figure 5 shows
contours around the region of parameter space χ2

red < 1. In
this region, all Y2(W ) curves cross, within error, at a common
point.

The best-fit values for Wc and d2 are summarized in Table I,
along with previously published values. The quantities in
brackets are extremal parameter values satisfying χ2

red < 1, and
are used to estimate the uncertainty in the critical parameters.
The values for Wc and d2 found from this analysis are generally
within uncertainty of the previously published results.

The next step is to obtain the critical exponent ν, which is
done by fitting a power law to

dY2

dW

∣∣∣∣
W=Wc

= L1/νF ′(0). (20)

In Fig. 4(c), we show dY2/dW at W = Wc, along with power
law fits to the data. The three curves correspond to the best-fit,
minimal, and maximal values of Wc and d2 shown in Table I.
The fitted exponents give three values of ν for each γ , and
are shown in the fourth column of Table I. We note that ν is
systematically underestimated for γ ∝ W/Ns , but is closer to
the correct answer for γ ∝ Wc/Ns . One of the conclusions of
this work is that ν is more sensitive to the W dependence of γ

than either Wc or d2. This follows directly from the derivative
with respect to W in Eq. (20), and means that obtaining
an accurate value for ν depends on establishing an accurate
relationship between � and W .

In summary, we have shown that the GIPR can distinguish
between localized and extended states, and moreover that it is
possible to extract critical parameters from a scaling analysis of
the GIPR. The main issue which arises is how the broadening γ

influences the results. In Table I, comparing γ = 2W/Ns with
γ = W/Ns and comparing γ = 2Wc/Ns with γ = Wc/Ns ,
we see that the results for larger γ generally have larger
uncertainties, but do not appear to be systematically shifted
toward or away from their true values. It thus seems likely that
one could obtain accurate values of Wc and d2 for larger values
of γ provided one can study systems that are large enough
to keep the uncertainties to a reasonable size. As mentioned
above, one has the additional requirement that γ and � both
have the same dependence on W to obtain accurate values for ν.
This can be achieved, for example, by taking γ ∝ 1/ρ0(W )Ns ,
where ρ0(W ) is the ensemble-averaged density of states
calculated for each strength of disorder.
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d2
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(b)  γ = Wc/Ns

15 16 17

1.2 1.3 1.4
d2

0.5

0.6

0.7

0.8

A
0

(a) γ = W/Ns

FIG. 5. (Color online) Critical parameters for (a) γ = W/Ns and
(b) γ = Wc/Ns at the best-fit values (a) y = 1.6 and (b) y = 2.9.
Intensity scale shows the value of WX that minimizes χ 2 locally for
each d2 and A0. Circles indicate best-fit values of d2 and A0, obtained
from the global minimum of χ 2. Black contours bound the regions
χ 2

red < 1.
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IV. CONCLUSION

We have tested the usefulness of a generalized inverse
participation ratio as a measure of Anderson localization
by benchmarking it against the well-studied case of a dis-
ordered three-dimensional tight-binding lattice. Because the
generalized inverse participation ratio depends on the local
density of states, and not the single particle wave functions, it
is potentially useful for studying interacting systems where
single particle wave functions are not defined. We have
found that it is possible to extract critical parameters for the

Anderson MIT, and have shown that finite-size effects are not
an impediment if the spectral broadening γ used to calculate
the local density of states is of the same order as the level
spacing �.
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