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Short-range-order diffuse scattering in decagonal Ni-rich Al-Ni-Co quasicrystals
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An analytical expression of the diffuse scattering (DS) intensity due to short-range order derived in a recent
paper [A. Yamamoto, Acta Crystallogr. Sect. A 66, 372 (2010)] is applied to analyze DS intensities of the
S1 phase at 1120 K and the quenched basic Ni rich (b-Ni) phase in decagonal Al70Ni22Co8 (d-Al70Ni22Co8)
quasicrystals. The analysis is based on a microdomain model consisting of 20 Å clusters. The S1 and b-Ni phases
are low- and high-temperature phases of d-Al70Ni22Co8 so that microdomains with the S1 phase structure are
assumed to be formed in the b-Ni phase and vice versa. The intercluster correlation of the 20 Å clusters within the
microdomains is assumed to be the same as that in a corresponding completely ordered structure up to the third
intercluster distance �32 Å. It is demonstrated that simulated DS intensity distributions reproduce characteristic
features in the observed DS intensity in these phases. This suggests that the analysis of DS intensity is efficient
for understanding phase transition mechanisms of quasicrystals. It also shows the effectiveness of the theory
and applicability of cluster-based DS intensity calculations to real quasicrystals, which reduce the number of
short-range-order parameters drastically.
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I. INTRODUCTION

In quasicrystals, it is known that there exists diffuse
scattering (DS) due to random phasons together with the
DS due to phonons. These two are called the phason diffuse
scattering (PDS) and the thermal diffuse scattering (TDS).
The former is specific to quasicrystals and its nature is
theoretically investigated.1–3 This is observed in close vicinity
to Bragg reflections similarly to the DS by phonons. They
are caused by a long-range correlation of the fluctuation
of atom positions. The theory of PDS was applied to icosahe-
dral Al-Pd-Mn (i-Al-Pd-Mn), decagonal Al-Ni-Co (d-Al-Ni-
Co), and d-Al-Ni-Fe quasicrystals.4–6 In conventional crystals,
a solid solution shows DS with a different origin. This is caused
by a statistical distribution of different atoms which occupy an
atom site. The correlation length in this case is usually short
and therefore this is called short-range-order diffuse scattering
(SRODS). Recently a theory of SRODS in quasicrystals was
given by the author.7

Since most quasicrystals are alloys (solid solutions in
metals), SRODS is generally expected. A variety of DS
intensity distributions have been observed in d-Al-Ni-Co
and d-Al-Ni-Fe quasicrystals as expected, which depend on
their chemical composition and/or thermal history.8–12 In
i-Al-Pd-Mn quasicrystals, PDS is very strong but they are
expected also to show SRODS.4,13,14 The intensity distribution
of SRODS is determined by the correlation function of the
fluctuation of atomic scattering factors (or scattering lengths
of neutron) from their average value. In order to demonstrate
the effectiveness of the theory of SRODS in solid state physics,
we apply this theory to that of d-Al-Ni-Co quasicrystals to
obtain information on the phase transformation mechanism
in quasiperiodic structures. For simplicity, SRODS is simply
called DS hereafter.

Decagonal quasicrystals have a period c along the tenfold
axis, so that their diffraction pattern has a period c∗ = 1/c

along this direction. An important feature of DS in decagonal
quasicrystals is that the DS intensity exists only on Bragg
reflection planes normal to the tenfold axis. In some cases,

however, DS is observed at the midpoint of two Bragg
reflection planes without accompanying Bragg reflection.
Even in this case, DS intensity appears only on the plane. The
former suggests that the correlation length of a quasicrystal
along the tenfold axis is very large, while the latter implies
that there is a short-range order related to a superstructure with
a doubled period. In this paper, we consider the former case
where a quasicrystal is assumed to have a complete period
along the tenfold axis, although real b-Ni and S1 phases
show DS intensity at the midpoint of two Bragg reflection
planes.

Al70Ni22Co8 gives a diffraction pattern consistent with the
decagonal symmetry at high temperatures but shows satellite
reflections indicating a quasicrystalline superstructure phase15

at lower temperatures.16,17 The higher and lower temperature
phases are called the basic Ni rich (b-Ni) phase and the
S1 phase, respectively. The structure of the b-Ni phase is
determined by x-ray diffraction18,19 and the space group of this
structure is determined to be P 105/mmc(1071mm). (In this
paper the space group and point group symbols recommended
by IUCr are employed.20,21) A structure refinement of the S1
phase has not been performed yet but from high-resolution
transmission electron microscopy (HRTEM) observations and
5D modeling, it is considered that this phase consists of
so-called 20 Å (columnar) clusters showing fivefold symmetry
(5f clusters) in the innermost shell.22–24 The true symmetry of
the 20 Å clusters is however not fivefold symmetric and they
have only mirror symmetry.

In both phases, there exists DS which strongly depends on
the sample temperature in high temperature experiments or
the quenching temperature in room temperature experiments
as mentioned below. The DS of the b-Ni phase with chemical
composition Al72Ni20Co8 quenched at 1073 K differs from that
at temperature 1116 K.10 Very clear temperature dependent DS
is also observed in the S1 phase with chemical composition of
Al70Ni17Co13 measured at 300 K and 1120 K.5,25 These exper-
imental evidences indicate that local structural fluctuations of
these phases from their average structures strongly depend on
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temperature and thermal history and suggest that the analysis
of DS intensity near the phase transition temperature Tc

provides important information on the intra-quasi-crystalline
phase transition mechanism. In this paper, the theory of DS in
quasicrystals is applied to the b-Ni and S1 phases for the
first time. The analysis of DS clarifies that medium-range
correlation of the order of 30 Å is developed near Tc. Thus
we can confirm by the analysis of the DS intensity as shown
below that the phase transition occurs by the creation of
microdomains near Tc. Therefore this provides a new way
for investigating phase transition mechanisms in quasiperiodic
structures, which are not clarified yet.

In a previous paper24 a model with the color space
group P 105/mc′m′(1071mm) has been proposed for the S1
phase. (The prime means an antisymmetric operator, which
is combined with the rotation and time-reversal operations.)
In this phase, there are 20 5f clusters which are obtained
from two basic clusters by the symmetry operation in the point
group 5(52). On the other hand, the b-Ni phase consists of
ten clusters with mirror symmetry (m clusters).24,26 The ten
clusters are also obtained from one basic cluster by 5(52).

In the b-Ni phase of d-Al70Ni22Co8 quenched from
1073 K, which is 81 K above the phase transition temperature
(Tc � 992 K), broad peaks are observed around strong Bragg
reflections and they are attributed to the satellite reflections
in the S1 phase.9,10 It is known that the correlation length of
the DS estimated from FWHM of the broad peaks are about
28 Å.10 To analyze the broad peaks therefore, we need to
consider the correlation up to this distance. In such a case,
if we consider the correlation of each atom, the number
of short-range order parameters (so-called α parameters27)
becomes large, because there are many atoms within the
correlation length from an atom, and many independent
inter-atomic distances. If we can consider that the correlation
within the 20 Å cluster is complete, the number of intercluster
correlation parameters will be small. However even after this
simplification, the DS intensity analysis of the d-Al-Ni-Co is
not straightforward because of the following reasons.

These clusters are situated at fixed positions in ideal
structures in the b-Ni and S1 phases. There are ten cluster
sites in the b-Ni phase, each of which is occupied by one of
the ten clusters as shown later. Similarly, there are 50 sites in
the S1 phase, which are occupied by one of the 20 clusters.
Therefore if we consider a disordered structure in these phases,
it is conceivable that one cluster site among 10 or 50 sites is
occupied by one of the 30 clusters. This corresponds to a
case in the DS in conventional crystals where there are 10 or
50 sites in a unit cell and each atom site is occupied by one
of 30 atom species.7 Kobas et al. analyzed the DS of the S1
phase assuming that some site is randomly occupied by the ten
m clusters of the b-Ni phase.5 In this analysis, the contribution
of the 5f clusters to the DS is not taken into account. In this
paper, we consider a simple case where three clusters (two 5f

and one m cluster) among 30 clusters occupy each cluster site
statistically, although the triplets of the clusters are different
depending on the sites. The purpose of the paper is to clarify
the origin of the DS based on such a model which will be
closely related to the phase-transition mechanism and to show
the efficiency of the cluster-based DS theory.

The arrangement of this paper is as follows. The structure
models of the S1 and b-Ni phases proposed previously are
summarized in Sec. II. The phase transition of the S1 phase
to the b-Ni phase and their structural change are written in
Sec. III. To consider the correlation between 20 Å clusters, the
correlation of the clusters in the completely ordered structures
in both phases is discussed in Sec. IV. The DS intensity theory
in quasicrystals is summarized in Sec. V. The correlation of
clusters used in the DS intensity calculations is described in
Sec. VI. Finally DS intensity distributions of the S1 and b-Ni
phases are analyzed in Sec. VII.

II. S1 AND B-NI PHASES

We use two coordinate systems to describe structures of the
b-Ni and S1 phases. They are related with a transformation
matrix T written in Appendix A. The lattice constant a0 of
the b-Ni phase is � 2.7 Å while that of the S1 phase is a =
2 cos(π/10)a0 � 5.2 Å. The lattice constant c (period along
the tenfold axis) is � 4.0 Å in both phases.24 The coordinates
with respect to the former and latter phases are denoted as
(x1,x2,x3,x4,x5)0 and (x1,x2,x3,x4,x5). The external (physical)
and internal (complementary) space components of a 5D
vector are represented by the superscripts e and i. We consider
only x-ray DS, for which the distribution of Al and transition
metal (TM) atoms are relevant to the scattering intensity. (Two
TMs, Ni and Co, are not distinguished from each other since
it is difficult to discriminate them by a conventional x-ray
diffraction experiment.)

The independent occupation domains (ODs) and the atom
arrangement of the S1 phase are shown in Figs. 1 and 2. The
so-called 20 Å cluster includes atoms in a decagon in Fig. 2 and
a part of small ten pentagons around it. The radius of the cluster
(a distance between the centers of a decagon and a pentagon
around it) is about 10 Å(τ 3a0 � 10.2 Å). Adjacent two
20 Å clusters share two pentagons when they are distant
by 20 Å(2τ 3a/

√
5 � 19.7 Å). The nearest decagon distance

is about 12 Å(2τ 2a/
√

5 � 12.2 Å). Then they are slightly

FIG. 1. Independent occupation domains (ODs) of a model of
the S1 phase with the color space group P 105/mc′m′(1071mm),
which are located at (a) (0,2,−1,1,5z)/5 and (b) (0,4,−2,2,5z)/5
(z = 1/4). [These two positions are represented by the coordinates
(1,1,1,1,5z)0/5 and (2,2,2,2,5z)0/5 in the b-Ni phase.] White and
black domains are occupied by colored Al and transition metal (TM)
atoms, while light and dark gray ones are occupied by gray Al and TM
atoms. Decagonal ODs labeled 0-4 and the corresponding decagonal
ODs in the inverted OD located at −(0,2,−1,1,5z)/5 create the atom
positions of the first shell in the 20 Å clusters in Fig. 2.
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FIG. 2. Structure of the S1 phase, which is projected along the
tenfold axis. Solid and open circles denote transition metal (Ni or
Co) and Al atoms, respectively. The labels E, A, B, C, and D indicate
that the cluster centers are generated by the decagonal ODs at the site
(s,s,s,s,5z)/5 (s = 0,1,2,3,4) shown in Fig. 5.

overlapped. In the phase transition from the b-Ni phase to
the S1 phase, the atom arrangement only in a decagon is
considered to be changed as is summarized in the next section.

The b-Ni phase has a cluster arrangement similar to that
of the S1 phase but each cluster position is occupied by a
different cluster as seen in Fig. 3. The cluster centers in both
phases form the Penrose pentagon tiling (PPT) with an edge
length of about 20 Å.24

FIG. 3. Structure of the b-Ni phase, which is projected along the
tenfold axis. Solid and open circles stand for transition metal (Ni or
Co) and Al atoms. The labels 1-10 represent that the cluster centers
are generated by triangles with the same number in Fig. 5(a).

III. PHASE TRANSITION BETWEEN B-NI AND S1 PHASES

In an ideal model of the S1 phase given by the ODs in
Fig. 1, the clusters are perfectly ordered. One of the two
5f clusters [Figs. 4(a) and 4(b)] and clusters equivalent to
them by symmetry operators Rk−1

5 and IRk−1
5 (1 � k � 5)

are located at each vertex of the PPT with an edge length of
about 20 Å, where R5 and I are fivefold rotation and inversion
operators. [They are the generators of the point group 5(52).]
The inner-most shells of the 5f clusters in Figs. 4(a) and
4(b) have different orientations. We call them down and up
orientations, although the 5f clusters have no true fivefold
symmetry because of their mirror symmetry in the outermost
shells. The cluster arrangement has a preference so that the
two clusters apart by 20 Å are of different orientations.23 The
clusters on the pentagon in the PPT cannot obey this preference
completely because the PPT includes many pentagons and
a pair of clusters among five pairs linked by edges of the
pentagon has to be the same orientation. If different cluster
orientations in such a pair are preferred energetically, this
system is energetically frustrated. Then we can easily expect
that some kind of disorder exists in this system. We take,
however, a perfectly ordered model 24 as a basis of the analysis
of DS intensity and consider fluctuation from this structure.

In a completely ordered model of the S1 phase, sharp super-
structure (satellite) reflections are observed in its diffraction
patterns without accompanying DS, although TDS around
each Bragg spot is expected. Near the transition temperature
(Tc) to the b-Ni phase, however, we may expect the dissolution
of the 5f clusters [Figs. 4(a) and 4(b)] and the creation of the
m cluster [Fig. 4(d)]. In fact such a change in clusters has been
observed.23 This will cause the DS.

The structure analysis of the b-Ni phase suggests that this
phase consists only of the m clusters.28 One kind of m cluster
with ten different orientations is located at a fixed position

FIG. 4. Two clusters in a decagon in the model of the S1 phase
shown in Fig. 2, (a) and (b), and that of the b-Ni phase, (d). The
former is obtained from the latter by the interlayer phason flip via the
intralayer phason flip state (c).24 The clusters in (a) and (b) are called
5f clusters while that in (d) is m cluster. Their symmetry is both m.
The position of the mirror plane is denoted by m. Note that the atom
arrangement of the outermost shells in (a) and (b) breaks the fivefold
symmetry.
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depending on the location of the cluster and it is completely
ordered in an ideal b-Ni structure. In a detailed examination
of synchrotron radiation data, however, broad peaks located at
the satellite reflection position are found in the quenched b-Ni
phase and b-Ni phase near Tc to the S1 phase.9,10 In this case
it is conceivable that there exists the 5f -cluster arrangement
seen in the S1 phase within a short range in the b-Ni phase.
Therefore it may be considered that at higher temperatures all
the 5f clusters disappear and only the m clusters exist, while
near Tc, a part of the m clusters is dissolved and the 5f clusters
are created.

There are 20 5f clusters and ten m clusters in total. They are
obtained from those in Figs. 4(a), 4(b), and 4(d) by applying
symmetry operations of the point group 5(52) as mentioned
above. In the following, we assume that the m cluster shown
in Fig. 4(d) dissolves and creates the cluster shown in Fig. 4(a)
or 4(b) and vice versa in the phase transition between the S1
and b-Ni phases. In the structural change from the structure
in Fig. 4(d) to that in Fig. 4(a), the number of necessary TM
and Al flips in the innermost ten atoms via the intermediate
state shown in Fig. 4(c) is 2, while in the change between
Figs. 4(d) and 4(b), it is 4. Additional six Al atom jumps have
to be accompanied in both cases to obtain the Al position in
the outermost shell in Figs. 4(a) and 4(b). They are called the
interlayer and intralayer phason flips in a previous paper.24

This suggests that the phase transition between the two phases
does not necessitate long-range atom diffusion. From the above
considerations, we can expect that the phase transition occurs
due to the interlayer and intralayer phason flips, which causes
the creation of the m clusters in the S1 phase accompanied by
the dissolution of the 5f clusters, while in the b-Ni phase the
creation of the 5f clusters is accompanied by the dissolution
of the m clusters.

Noting Al and TM arrangement in the innermost shell, two
orientations of the 5f cluster shown in Figs. 4(a) and 4(b) are
called down and up orientations for simplicity. In total, there
are ten up and ten down orientation 5f clusters. (Note that the
inverted cluster is said as a cluster with a different orientation
in this paper.) We consider 20 clusters obtained from Figs. 4(a)
and 4(b) by the symmetry operations Rk−1

5 (1 � k � 5) and
IRk−6

5 (6 � k � 10). The former ten [obtained from Fig. 4(a)]

are called C
5f

k clusters and the latter ten are called C
′5f

k clusters
(1 � k � 10). Among them, C

5f

k (1 � k � 5) and C
′5f

k (6 �
k � 10) are of down orientation, while C

5f

k (6 � k � 10) and
C

′5f

k (1 � k � 5) are of up orientation, respectively. Similarly
the clusters obtained from Fig. 4(d) by the same symmetry
operators are called Cm

k clusters (1 � k � 10).

IV. ARRANGEMENT OF CLUSTERS IN COMPLETELY
ORDERED STRUCTURES

In order to analyze the DS in the S1 or b-Ni phase, two 5f

and one m cluster, and their orientations have to be considered.
We neglect the difference in the structures between the S1
and b-Ni phases other than the difference in these clusters
and their orientations, assuming that the other atoms have
complete chemical order. Since the completely ordered parts
do not contribute to the DS, we can only consider the swap
of m and 5f clusters and their orientational disordering in

the calculation of the DS intensity. In this section, the cluster
arrangements of these clusters in ideal models of the S1 and
b-Ni phases are described.

A. Cluster arrangement in ideal structure models

In 5D models of the b-Ni and S1 phases proposed in
a previous paper,24 cluster centers are generated by the
decagon with a radius of 2τ−3a/

√
5 (Fig. 5) situated at xi =

(i,i,i,i,5z)/5 (i = 0,1, . . . ,4). We call these E, A, B, C, and D
sites and ODs located there, E, A, B, C, and D ODs. Similarly
the vertices in the PPT generated by these ODs are called E,
A, B, C, and D vertices and clusters centered at these positions
E, A, B, C, and D clusters hereafter. The vertices generated by
each OD are classified into ten subclasses, which are generated
by ten triangles in E, A, B, C, or D OD. (See Fig. 5.)

Cluster centers occupied by an m cluster with a fixed
orientation in the b-Ni phase are created by a subdivided OD
shown in Fig. 5. (See Appendix B.) Each fin (triangle) of
the pinwheel-shaped OD in the figure generates the cluster
center positions where the clusters with the same orientations
(including the orientation of the outermost shell) are located.
At the vertices created by OD 1 in Fig. 5(a), the m cluster
shown in Fig. 4(d) is located. On the other hand, the clusters
with the orientation which is obtained from Fig. 4(d) by the
rotation operator Rk−1

5 is located at the positions generated by
ODs k (1 � k � 5). Similarly, the position generated by ODs k

(6 � k � 10) are occupied by the clusters which are obtained

FIG. 5. Occupation domains of the cluster centers for the b-Ni
phase (a) and for the S1 phase (b-d). The horizontal and vertical
directions are parallel to a4 and a5 of the S1 phase. The radius of the
decagon is τ−4

√
5a0/2 (= 2τ−3a/

√
5) with a0 = 2.73 Å[τ = (1 +√

5)/2]. The center of the decagon in (a) is located at (s,s,s,s,5z)/5
(s = 0,1,2,3,4) in the unit cell of the S1 phase. These decagons
generate the vertices of the pentagon Penrose tiling (PPT) with an
edge length of 2τ 3a/

√
5 � 19.7Å. In an ideal b-Ni structure, the m

cluster with the same orientation is located at the positions generated
by ODs with the same label independent of s. Three independent
ODs in the S1 phase centered at (0,0,0,0,5z)/5, (1,1,1,1,5z)/5, and
(2,2,2,2,5z)/5 are shown in (b), (c), and (d). (These sites are referred
to as E, A, and B sites in the text.) A different triangular region in
the subdivided ODs generates cluster centers occupied by a different
cluster.
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TABLE I. The cluster distribution of 20 5f clusters in the S1
phase (the first five lines) and ten m clusters in the b-Ni phase (the
last line). The symbols C5f

k and C′5f

k (1 � k � 5) denote the clusters
which are obtained from those in Figs. 4(a) and 4(b) by Rk−1

5 , where
R5 is the fivefold rotation operator. The symbols C5f

k and C′5f

k (6 �
k � 10) represent inverted clusters of C5f

k and C′5f

k (1 � k � 5) by
I , where I denotes the inversion operator. Similarly, Cm

k (1 � k � 5)
denote the clusters which are obtained from Fig. 4(d) by Rk−1

5 while
Cm

k (6 � k � 10) by IRk−6
5 . In the b-Ni phase, the site Ak , Bk , Ck ,

Dk , and Ek are translationally equivalent, so that they are occupied
by the same clusters as in Ek which are shown in the last line.

site Ak (1 � k � 5) Ak (6 � k � 10)
cluster C5f

k C′5f

k

site Bk (1 � k � 5) Bk (6 � k � 10)
cluster C5f

k C′5f

k

site Ck (1 � k � 5) Ck (6 � k � 10)
cluster C′5f

k C5f

k

site Dk (1 � k � 5) Dk (6 � k � 10)
cluster C′5f

k C5f

k

site Ek (1 � k � 5) Ek (6 � k � 10)
cluster C5f

k C5f

k

site Ek (1 � k � 5) Ek (6 � k � 10)
cluster Cm

k Cm
k

from Fig. 4(d) by IRk−6
5 . The cluster shown in Fig. 4(a) is

transformed into that in Fig. 4(b) by time-reversal operation
E′ provided that the Al and TM atoms in the innermost shell
are colored atoms.29

The triangles for the ODs E, A, etc., are represented by
subscripts k within a range 1 � k � 10. In this notation, the
ODs 1-10 in Fig. 5(b) are denoted as ODs E1-E10, while the
ODs 11-20 in Fig. 5(c) as ODs A1-A10 and so on. Similarly,
the vertices, generated by these ODs are called the Ek and Ak

vertices for convenience.
In the b-Ni phase, the five sites A-E are translationally

equivalent, since xi (i = 1,2, . . . ,5) are equal to (0,0,i,0,z)0,
that is, lattice vectors of the b-Ni phase (Appendix A). Their
site symmetry is 10m2 for all sites, since all ODs (atoms) are
on the mirror plane normal to the tenfold axis (z = ±1/4). On
the other hand, the clusters located at these vertices have only
mirror symmetry. (Note that there exist another mirror plane
including the tenfold axis.) The vertices generated by ODs Ek ,
Ak , Bk , Ck , and Dk (1 � k � 10) are occupied by the cluster
Cm

k in the completely ordered b-Ni structure. The location of
all clusters in the b-Ni phase is given in the last rows of Table I.

In the S1 phase, the E, A, and B sites are independent,
while the D and C sites are related with the A and B sites
by the inversion, I . In an ideal model of the S1 phase,24

the sites Ak and Bk (1 � k � 10) are occupied by C
5f

k (1 �
k � 5) and C

′5f

k (6 � k � 10), which all have up orientation.
Similarly, the sites Ck and Dk (1 � k � 10) are occupied by
down orientation C

′5f

k (1 � k � 5) and C
5f

k (6 � k � 10).
In addition, ODs Ek are occupied by up orientation C

5f

k for
1 � k � 5 and down orientation C

5f

k for 6 � k � 10. The the
clusters at the sites Ck±5 and Dk±5 are related by the inversion
I to those at the sites Bk and Ak . The location of all clusters in
the S1 phase is listed in Table I.

B. Antiphase domains

We consider domain structures in the S1 phase, which will
appear in the b-Ni phase. Two kinds of antiphase domains
described below can be considered in the S1 phase. There is
a structure which is obtained from the S1 structure mentioned
above by swapping Al and TM in the innermost shell of clusters
shown in Figs. 4(a) and 4(b), where C

5f

k and C
′5f

k are swapped.
Then all the clusters with up orientation are replaced by those
with down orientation and vice versa. If we consider that Al
and TM atoms in the innermost shell of the cluster in Figs. 4(a)
and 4(b) are colored atoms, the color symmetries of these two
structures are both given by P 105/mc′m′.24 Using the color
symmetry operation, these two clusters are interchanged by the
time-reversal operator, E′. In a completely ordered S1 phase,
one of the two structures is realized. Near Tc however, the
two domains may coexist with a different volume ratio. In this
case, the two domains are related by E′, so that they are called
antisymmetric domains. This can be recognized as a kind of
the antiphase domains in quasicrystals.

There is another kind of antiphase domain, which is related
with the origin shift. In the b-Ni phase, the sites E, A, B, C,
and D are translationally equivalent, and the site E is at the
origin, as mentioned above. Then there are five possibilities
for the choice of origin in the S1 phase. We call them shift
domains. The structures with a different origin have the same
atom positions but with a different Al and TM arrangement.
They are also antiphase domains. The shift vector between
the adjacent antiphase domains will be given by one of
xs = (s,s,s,s,5z)/5 (1 � s � 4). That is, they are related to
each other by nonprimitive translations {E|xs}. In a completely
ordered S1 phase, one of them appears but in some cases, we
may expect a domain structure in the S1 phase where the
domain volumes of these antiphase domains are different.

V. DIFFUSE SCATTERING DUE TO DISORDERED
CLUSTERS

As mentioned in the previous two sections, there are 30
clusters in the S1 and b-Ni phases which occupy the vertices
in the PPT, that is, C5f

k , C ′5f

k , and Cm
k (1 � k � 10). In order to

apply the theory of the DS intensity formula mentioned below
[see Eq. (4)] to these phases, the clusters C

5f

k (1 � k � 10)
are denoted by the indices μ from 1 to 10 in the following, and
C

′5f

k and Cm
k (1 � k � 10) by μ from 11 to 20 and 21 to 30,

respectively. The structure factor of the μth cluster is denoted
by Fμ. The cluster distributions in the independent ODs are
shown in Fig. 6.

To calculate the DS intensities of both phases, the coordi-
nate system of the low-temperature phase with lattice constants
of a � 5.2 Å and c � 4.0 Å are used in both phases.24 In the
following, the theory of DS intensity due to the disordered
clusters is shortly summarized.

As shown in the previous paper,7 the DS intensity due to
disordered cluster orientations can be calculated by using the
structure factor of the cluster in each orientation. When the
structure factor of a (columnar) cluster is written as F (q),
that of the cluster related to it by an operator {R|τ } is given
by F (R−1q) exp(2πq · τ ).30 Since a structure considered in
this paper is completely periodic along the tenfold axis, F (q)
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FIG. 6. Cluster distribution in the independent occupation
domains (ODs) of cluster centers. (a) ODs in the b-Ni phase. (b),
(c), and (d) ODs located at the E, A, and C sites in the S1 phase.
The number indicates the cluster index μ (see text). The cluster
distributions in the ODs at B and D sites are the same as those in (c)
and (d) for the sites A and C, respectively. The sites generated by the
gray and white ODs are occupied by the up and down orientation 5f

clusters shown in Figs. 4(b) and 4(a) in an ideal S1 structure.

has an intensity only on a plane with q3 = n (n = 0, ± 1, . . .),
where q3 is the c* component of the diffraction vector q (in the
external space). In the following, we consider the DS intensity
on these layers. Then the DS intensity in these layers, which is
integrated along the tenfold axis, is obtained by the structure
factor of the atoms of a cluster within a period.

The DS intensity is expressed by the correlation function
of the statistical variable z

μ

i , which takes 1 when the ith site is
occupied by the μth cluster, otherwise 0.7 Then the structure
factor Fi for the ith site (the site generated by ith OD) is
represented by Fi = ∑

μ Fμz
μ

i = ∑
μ Fμ(〈zμ

i 〉 + �z
μ

i ). The
first term

∑
μ Fμ〈zμ

i 〉 ≡ 〈Fi〉 represents the average structure
factor of the clusters which occupy the ith site. The fluctuation
of the structure factor �Fi is defined by �Fi = ∑

μ Fμ�z
μ

i .
We denote the statistical variables for the clusters located at
xe

i0 and xe
i ′l as z

μ

i0 and zν
i ′l and the structure factors of the cluster

centered at these sites, as F
μ

0i and Fν
i ′l .

The correlation function of the fluctuation of the cluster
structure factors, 〈�Fi0�Fi ′l〉, is given in terms of z

μ

i0 and zν
il

by

〈�Fi0�Fi ′l〉 =
∑
μν

FμF ν
〈
�z

μ

i0�zν
i ′l

〉
, (1)

where μ and ν run from 1 to 30 and〈
�z

μ

i0�zν
i ′l

〉 = 〈
z
μ

i0z
ν
i ′l

〉 − 〈
z
μ

i

〉〈
zν
i ′
〉

≡ g
μν

ii ′l ≡ −〈
z
μ

i

〉〈
zν
i ′
〉
α

μν

ii ′l (2)

is the correlation function of the fluctuation of z
μ

i0 and zν
i ′l . The

correlation function g
μν

ii ′l and the α parameter α
μν

ii ′l depend on
the external space component of the vectors �xii ′l ≡ xi0 − xi ′l ,
so that they are explicitly written as g

μν

ii ′ (�xe
ii ′l) and α

μν

ii ′ (�xe
ii ′l)

in the following. They are assumed to decrease with the
intercluster distance |�xe

ii ′l|. Using the correlation function

and the structure factor of clusters, the DS intensity is given
by7

ID(q) = −κ
∑
ii ′l

vii ′
(
�xi

ii ′l
)( ∑

μ>ν

|�Fμν |2gμν

ii ′
(
�xe

ii ′l
))

× exp
(
2πiq · �xe

ii ′l
)
, (3)

where κ = V/�n, �Fμν ≡ Fμ − Fν , V is the volume of a
quasicrystal (in the external space) while �n denotes the unit
cell volume of the decagonal lattice of the S1 phase. The
frequency of the cluster center pairs (or vertex pairs of PPT
in the present case) apart by �xe

ii ′l = xe
i0 − xe

i ′l is proportional
to vii ′ (�xi

ii ′l), which is the overlapped area of the ODs of the
cluster centers located at xi0 and xi ′l in 5D space when they are
projected onto the 2D internal space. Therefore it is a function
of the internal space component of �xii ′l , �xi

ii ′l . In Eq. (3),
i and i ′ run from 1 to 50, μ and ν run from 1 to 30, l runs
lattice vectors which give rise to nonzero vij (�xi

ij l). (Note that
for lattice vectors with large |�xi

ii ′l|, vii ′ (�xi
ii ′l) vanishes. See

Fig. 3 in Ref. 7.)
Using symmetry operations of a space group, Eq. (3) is

rewritten as

ID(q) = −κ
∑
ii ′l

vii ′
(
�xi

ii ′l
)
aii ′ (�xii ′l)

∑
μ>νR

|R�Fμν |2

× g
μν

ii ′
(
�xe

ii ′l
)

exp
(
2πiq · R�xe

ii ′l
)
, (4)

where R�Fμν ≡ Fμ(R−1q) − Fν(R−1q), i,i ′, and l run sites
of independent OD pairs within the correlation length, R runs
symmetry operations of the point group 10/mmm(1071mm)
and aii ′ (�xii ′l) is the multiplicity of the OD pair, which is
determined by the site symmetry of the ith and i ′th ODs and the
point group (see Appendix C). Thus if vii ′(�xi

ii ′l), aii ′ (�xii ′l)
and g

μν

ii ′ (�xe
ii ′l) for independent cluster pairs together with the

space group and the structure factor of clusters are known, the
DS intensity is determined.

VI. CORRELATION OF CLUSTERS

As a model structure of a disordered b-Ni phase, we employ
a microdomain model discussed in Sec. IV. In this model
it is assumed that microdomains consisting of the antiphase
domains of the S1 structure are created in the b-Ni phase,
when the temperature approaches to Tc. A microdomain is
considered to be one of the ten antiphase domains discussed
in Sec. IV. The antiphase domains are assumed not to be
correlated. The volume ratio of all antiphase domains is
the same, that is, it is given by 1/10. In this case, the average
structure of this disordered domain structure maintains the
symmetry of the b-Ni phase. This ensures that there is no
Bragg reflections at the satellite reflection positions of the S1
phase independent of the domain size whenever the domain
size is less than the coherence length of x rays. However we
can expect broad peaks at these positions which are coming
from the antiphase domains (microdomains) with the structure
of the S1 phase. The peak width of such a broad peak depends
on the domain size. In the following, we consider the
correlation within a range of the third nearest intercluster
distance.
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Soon after the phase transition from the b-Ni phase to
the S1 phase, the existence of the antisymmetric domains
is expected. However, the volume ratio of these domains
should be different. One domain will become dominant after
a time sufficiently long for growing dominant domains. In the
following, we do not consider the shift domains in the S1
phase for simplicity but the possibility of the antisymmetric
domains will be taken into account, since such antisymmetric
domains are observed in d-Al-Ni-Fe, although this structure
corresponds to the Co-rich phase of d-Al-Ni-Co.31

In the S1 phase, the microdomains having the structure of
the b-Ni phase are assumed to be created near Tc to the b-Ni
phase. In addition, it is assumed that the dissolution of 5f

clusters at the sites Ek , Ak , Bk , Ck , and Dk creates m clusters,
Cm

k . In the current model, these sites in two antisymmetric
domains create the same m cluster, since the dissolution of
C

5f

k and C
′5f

k creates Cm
k . Created m clusters are the same as

those appearing in the ideal b-Ni phase. Such a model will
approximate a case in which the intercluster correlation up
to the third nearest cluster distances is taken into account.
In contrast to the b-Ni phase, the created microdomains are
correlated, since the structure in the microdomains is the
same. Thus even if the microdomains are randomly distributed,
inter-micro-domain correlations may exist. In the following,
however, we do not take the inter-micro-domain correlations
into account for simplicity.

In Eq. (4), we consider the self-correlation together with
the intercluster correlation up to the third nearest clusters

TABLE II. The area of overlapped occupation domains (OD)
shown in Fig. 7. (The values for independent OD pairs are shown.)
The two decagonal ODs are distant by the vectors listed in the
first column. Each decagonal OD is subdivided into ten triangles
with labels 1-10 shown in Fig. 5(a). The first, second, and third
nearest cluster distances along a1 are given by the external space
components of �x1 = (−1,4,4,−1,0)/5 = −(1,−1,−2,0,0)0,
�x2 = −(−3,7,7,−3,0)/5 = (2,−2,−3,0,0)0, and �x3 =
(−4,11,11,−4,0)/5 = −(3,−3,−5,0,0)0, respectively. The
lengths of their external space components are 2aτ 2/

√
5, 2aτ 3/

√
5,

and 2aτ 4/
√

5, respectively, while those of the internal space
components are 2aτ−2/

√
5, 2aτ−3/

√
5, and 2aτ−4/

√
5 (see

Appendix A). The overlapped part of the ith and i ′th triangles in the
left and right decagonal ODs in Figs. 7(a), 7(b), or 7(c), when they
are projected onto the internal space, is denoted by OD(i-i ′) in the
second column. The third column shows the area of the overlapped
part in the unit of the area of the triangle in Fig. 5, which is given by
2τ−6a2/5 sin(π/5).

Vector Overlapped part Area

�x1 OD(10-6) τ−2

�x2 OD(4-2) 2τ−3

OD(4-6),OD(10-2) τ−2

OD(10-6) τ−1

�x3 OD(8-2),OD(4-8) τ−2

OD(4-2) 2τ−3

OD(8-6),OD(10-8) τ−3

OD(2-6),OD(10-4) τ−3

OD(4-6),OD(10-2) τ−4

OD(6-6),OD(10-10) τ−4

OD(10-6) τ−3

with intercluster vectors �x1, �x2, and �x3 as �xii ′l and
equivalent to them under the space group (see Table II). The
corresponding intercluster distances are about 12, 20, and 32 Å.
We employ the correlation function within these inter-cluster
distances in the completely ordered phase as a correlation
model.

In the zeroth approximation, the intercluster correlation
is neglected. Then the self-correlation term mentioned later
determines the DS intensity. In the next approximation, the
intercluster correlations are taken into account.

Equation (4) includes only independent cluster-center pairs
for each neighbor. They are generated by overlapped parts of
the small triangles shown in Figs. 7(a)–7(c). These figures are
obtained from Fig. 5(a) and another OD which is obtained
from it by shifting by the internal space components of �x1,
�x2, and �x3, that is, �xi

1, �xi
2, and �xi

3. Each overlapped

FIG. 7. Overlapped parts of two decagonal occupation domains
for the three nearest cluster-center distances, after the projection of
the two domains onto the internal space. (The horizontal and vertical
directions are parallel to a3 and a4, respectively.) The two domains are
distant by �x1 (a), �x2 (b), and �x3 (c) (see Table II). The overlapped
parts of the kth and k′th triangles in the left and right decagonal ODs
labeled k-k′ create the cluster center pairs distant from each other
by 2τ 2a/

√
5 � 12 Å (a), 2τ 3a/

√
5 � 20 Å (b), and 2τ 4a/

√
5 � 32

Å (c) along the first axis a1. These intercluster distances correspond
to the external space components of the three vectors, �xe

1, �xe
2,

and �xe
3, while the distances of the left and right ODs in (a), (b),

and (c), to their internal space components, �xi
1, �xi

2, and �xi
3. The

independent cluster pair positions are generated by the labeled parts
in the upper or lower half area. In the b-Ni phase, the parts labeled
k-k′ create the cluster centers which are occupied by the m clusters
with kth and k′th orientations (see text).
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part is denoted by i − i ′ in Fig. 7 using the OD numbers in
Fig. 5(a). The pairs only in an upper (or a lower) half part of
Fig. 7(a) are, however, really independent as shown below.

A. Independent cluster pairs

In the b-Ni phase, the sites at xs = (s,s,s,s,5z)/5 (0 � s �
4) are translationally equivalent since they are a lattice vector
of this phase as mentioned in Sec. IV. Their site symmetry
is 10m2(5mm) since the space group of the b-Ni phase is
P 105/mmc(1071mm). At each site, ten triangular ODs are
situated sharing one corner (see Fig. 5). The site symmetry of
each triangle is 2mm(mm1). [Note that in the b-Ni phase, the
coordinate system is rotated by π/10 and a mirror plane in
10m2(5mm) is on the normal from the center to an edge of the
decagon, which divides the triangle into two similar triangles.]
Since the site symmetry of an independent OD (a triangular
OD) is low, there are many (ten in this case) equivalent
ODs. Therefore independent pairs of these sites have to be
considered. This means that there are ten independent cluster
pairs in general for a fixed index i, since i ′ runs from 1 to 10.
We consider ten cases where two ODs are distant by Rn

5�xj ,
and IRn

5�xj (j = 1,2,3 and 0 � n � 4).
There are ten equidistant cluster pairs with a distance

|Rn
5�xj | = |IRn

5�xj | (0 � n � 4) for each j . One of them
is shown in Fig. 7 for the intercluster distance up to the third
neighbors. The overlapped area vii ′ (Rn

5�xj ) or vii ′ (IRn
5�xj )

is, however, zero for many pairs when j = 1, while many pairs
give nonzero overlapped area for j = 3 as shown below.

We first consider possible pairs between OD 1 and other
ODs with an intercluster vectors �xii ′l = Rn

5�x1 or �xii ′l =
IRn

5�x1. Noting that the internal space component of �x1 is
rotated by 4nπ/5 by Rn

5 , and is inverted by I , the overlapped
area is nonzero, only when �xii ′l = IR5�x1 or �xii ′l = �x1

as is clear from Fig. 7(a). In the latter case, an OD pair OD(1 −
5) has nonzero area. The intercluster vector in the internal
space IR5�xi

1 is a vector which is obtained from �xi
1 by the

rotation of −2π/10. Then the OD 2 in a decagonal OD at this
position is overlapped with OD 1 as is clear from Fig. 5(a).
The OD (1 − 2) pair with the intercluster vector of IR�x1 is
equivalent to the OD pair (10 − 6) shown in Fig. 7(a) since the
former is transformed to the latter by IR3

5 in the point group

5(5
2
) which generates all vectors equivalent to �x1. At the

same time the vector IR5�x1 is transformed to �x1 by the
same operator.

These two OD pairs are however related with m(m)
which leaves �x1 invariant. Thus only one OD pair is
independent. Other equivalent OD pairs are obtained from
them by symmetry operators in the point group 5m(52m). A
similar consideration concludes that there are four independent
OD pairs in the second nearest intercluster distance, while
there are 12 pairs in the third nearest intercluster distance.
They are given by the labeled OD pairs in the upper half of
Fig. 7. The areas of overlapped parts of these independent OD
pairs are shown in Table II. The independent OD pairs can be
determined by the site symmetry groups of two ODs and the
group which leaves the intercluster distance �xi invariant (see
Appendix C).

In the S1 phase, there are five translationally nonequivalent
decagonal ODs denoted by E, A, B, C, and D, which

are occupied by different clusters. Therefore, we need to
consider different combinations of ODs for each case men-
tioned above. Since �x1 = x1 + (0,−1,−1,0,0), �x2 = x3 +
(0,−2,−2,0,0), and �x3 = x4 + (0,−3,−3,0,0) (see Table
II), that is, they are x1, x2, x3 plus a lattice vector of the
S1 phase, the combinations of OD pairs for the inter-cluster
distance �x1 are A-E, B-A, C-B, D-C, and E-D, where
A-E, etc., denote that the left and right decagonal ODs in
Fig. 7 are ODs A and E, etc. Similarly, for �x2, the possible
combinations are C-E, D-A, E-B, A-C, and B-D. For �x3,
they are given by D-E, E-A, A-B, B-C, and C-D. Thus for
each nearest neighbor, there are five possible combinations.
(In b-Ni phase, E, A, B, C, and D sites are translationally
equivalent. Therefore all the pairs are equivalent to E-E pair.)

B. Self-correlation of clusters

As the simplest approximation, we consider the DS inten-
sity due to the self-correlation first. In this case, the correlation
function is determined by 〈�z

μ

i 〉. The nonzero self-correlation
function is given by

g
μν

ii (0) = 〈
z
μ

i

〉
δμν − 〈

z
μ

i

〉〈
zν
i

〉
. (5)

Since the DS intensity formulas Eqs. (3) and (4) include only
g

μν

ii ′ (�xe
ij l) with μ 	= ν, the DS intensity is determined by

g
μν

ii (0) = −〈zμ

i 〉〈zν
i 〉 (μ 	= ν). Then the α parameter is given

by α
μν

ii (0) = 1 (μ 	= ν).
In the S1 phase, each vertex of the PPT is occupied by one of

C
5f

k or C
′5f

k (1 � k � 10) in the completely ordered structure
as mentioned in Sec. IV. When the index i is represented
by 10s + k′, (0 � s � 4 and 1 � k′ � 10), the indices 0 �
s � 4 indicate the sites Ek′ , Ak′ , Bk′ , Ck′ , and Dk′ . On the
other hand, μ = 10(μ′ − 1) + k (1 � k � 10 and 1 � μ′ �
3) stand for C

5f

k , C
′5f

k , or Cm
k for μ′ = 1,2, or 3, that is,

the indices μ′ and k represent the kind of clusters and their
orientation. Then the occupation probability of the ith site,
〈zμ

i 〉, is 1 only when k = k′ for μ′ = 1, or 2 in the completely
ordered structure, otherwise, zero. In the disordered structure
model, 〈zμ

i 〉 becomes 2σ (σ � 1/2) for k = k′ (1 � k � 10)
and μ′ = 1 or 2. At the same time, 〈zμ

i 〉 for μ′ = 3 takes
(1 − 2σ ), since C

5f

k or C
′5f

k partially dissolves and creates Cm
k

with the same probability (1 − 2σ ).
Similarly, in the (disordered) b-Ni phase, 〈zμ

i 〉 = (1 − 2σ )
with k = k′, and μ′ = 3 and 〈zμ

i 〉 = σ for k = k′ and μ′ = 1
or 2 for any k since Cm

k partially dissolves and creates C
5f

k and
C

′5f

k with the probability σ .
In Eq. (4), we use vii(0) as the unit of the area of a triangle

in Fig. 5(a). Since the independent pair is only (k,k) = (1,1)
and its multiplicity is 1 (see Appendix C), the DS intensity
due to the self-correlation, I 0

D(q) in both b-Ni and S1 phases,
is given by

I 0
D(q) = −κ

4∑
s=0

∑
μ′>ν ′R

|R�Fμν |2gμν

ii (0), (6)

where i = 10s + k, μ = 10(μ′ − 1) + k, ν = 10(ν ′ − 1) + k

with k = 1 and μ′ and ν ′ run values within the range 3 � μ′ >

ν ′ � 1 and R runs symmetry operations of the point group
5(52). Because of different correlation function values in b-Ni
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and S1 phases, intensity distributions are, however, different.
Since the employed model of the S1 phase does not consider
a correlation depending on the sublattices (indicated by the
index s) and the sublattices are translationally equivalent in
the b-Ni phase, each term in the above expression is the same
for different s.

C. Intercluster correlation

The DS intensity due to the j th nearest intercluster
correlation, I

j

D(q), is given by

I
j

D(q) = −κ

4∑
s=0

∑
(k,k′)

vii ′(�xj )
∑

μ′,ν ′R

|R�Fμν |2

× g
μν

ii ′
(
�xe

j

)[
exp

(
2πiq · R�xe

j

) + c.c.
]
, (7)

where i = 10s + k, i ′ = 10s ′ + k′, μ = 10(μ′ − 1) + k, ν =
10(ν ′ − 1) + k′ and c.c. means the complex conjugate. μ′
and ν ′ run 1 � μ′,ν ′ � 3 for k 	= k′ while they run values
within the range 1 � ν ′ < μ′ � 3 for k = k′ and R runs all
the operators in the point group 5m(52m). The combination
of s and s ′ is fixed for each intercluster distance, that is,
s ′ = s + 1, s ′ = s + 3, and s ′ = s + 4 (mod 5) for j = 1,2,
and 3, respectively. For these pairs of s and s ′, 1, 4, or 12
pairs of k and k′ are possible as shown Table II. Note that
the multiplicity is one in the summation on the symmetry
operation in Eq. (4) (see Appendix C).

D. Intercluster correlation in the b-Ni phase

Although a site is occupied by several clusters, the cor-
relation function g

μν

ii ′ (�xe
ii ′l) is nonzero only for the indices

(μ,ν) mentioned above. In the current model, each site is
occupied by one of three clusters, which are specific to the
triangular ODs. For these combinations of (μ,ν), g

μν

ii ′ (�xe
ii ′l)

is different in general depending on the cluster distances, since
the correlation between clusters in the S1 phase can be different
for different �xe

ii ′l .
For the first neighbor, there is only one independent OD

pair in the b-Ni phase, as shown in Table II. On the other hand,
in the S1 phase there are five different OD pairs for this pair
in the b-Ni phase. Corresponding to OD(10 − 6) in the b-Ni
phase, there are five nonequivalent OD pairs, OD(10 − 46),
OD(20 − 6), OD(30 − 16), OD(40 − 26), and OD(50 − 36).
These i and i ′ are represented by 0 � s � 4, s ′ = s + 1 and
(k,k′) = (10,6). These OD pairs are occupied by the cluster
pair specified by (μ,ν) with (10,6), (20,6), (20,16), (10,16),
and (10,6), while these pairs are created by the dissolution
of the cluster pairs (30,26). Note that the cluster pairs (10,6)
(20,16) are parallel, while (20,6) and (10,16) are antiparallel.
Therefore, parallel and antiparallel pairs appear 3 and 2 times,
respectively.

In the second neighbor, the ODs at the site pairs C-E, D-A,
E-B, A-C, and B-D have to be considered. The sites E, A,
B, C, and D are occupied by up/down, up, up, down, and
down orientation clusters in the S1 phase (see Fig. 6 and
Appendix D). These give four antiparallel and one parallel
cluster pairs for all the combinations of possible independent
cluster pairs in this cluster distance. On the other hand, for the
third intercluster neighbor, s ′ = s + 4 and this is equivalent to
s ′ = s − 1 so that there are three parallel and two antiparallel
pairs.

Accordingly, for the first and third neighbors, when an
m cluster is dissolved and a 5f cluster is created with the
occupation probability of σ , probabilities of pairs with parallel
and antiparallel orientations are 3/5 and 2/5, respectively.
On the other hand, they are 1/5 and 4/5 for the second
neighbor. As mentioned before, we use a microdomain model
where microdomains with the S1 phase structure are dispersed
in the b-Ni phase. Then a 5f cluster appears only in
the microdomains and the correlation within the domain is
assumed to be complete up to the third intercluster neighbor.
In this model, the correlation functions are given by those in
either the ideal S1 phase or ideal b-Ni phase. The 5f -cluster
pairs appear only in the microdomains and the ten antiphase
domains are assumed to be randomly distributed. When the m

clusters are dissolved with the probability of 2σ , they create
microdomains having ten antiphase domain structures in the
S1 phase with the same probability σ/5. Then the correlation
functions for the parallel and antiparallel 5f -cluster pairs
are given by (3/5)σ (1 − σ ) and (2/5)σ (1 − σ ) for the first
case, while they are (1/5)σ (1 − σ ) and (4/5)σ (1 − σ ) in
the second case. The cluster pairs (μ,ν) = (20,26), (10,26),
(30,6), (30,16) with (μ′,ν ′) = (1,3) or (2,3) appear neither
in the S1 phase nor in the b-Ni phase, so that the correlation
functions for μ = 1, 2 and ν = 3 or μ = 3, and ν ′ = 1, 2
are given by −σ (1 − 2σ ). The m cluster appears only in the
b-Ni phase so that correlation function for μ = 3 and ν = 3
is 2σ (1 − 2σ ). The correlation function values for possible
combinations of (μ,ν) up to the third intercluster distances are
given in Table III.

The total correlation is described by a 30 × 30 matrix for
each cluster distance. This is, however, a 10 × 10 block matrix,
each element of which is a 3 × 3 matrix. The kk′ element
of the block matrix denotes the correlation between the kth
and k′th sites, where the three kinds of clusters, denoted by
μ′ = 1,2,3 with the kth and k′th orientations are located. This
block matrix is symmetric and includes many zero elements
(3 × 3 zero matrices).

As shown in Table III, each element of the block matrix is
a 3 × 3 symmetric matrix with a form⎛

⎜⎝
A1 A2 B

A2 A1 B

B B C

⎞
⎟⎠ , (8)

where A1 = σ (3/5 − σ ), A2 = σ (2/5 − σ ), B = −σ (1 −
2σ ), and C = 2σ (1 − 2σ ) for the first and third neighbors,
while A1 = σ (1/5 − σ ), A2 = σ (4/5 − σ ), B = −σ (1 −
2σ ), and C = 2σ (1 − 2σ ) for the second neighbor. For k = k′,
only the upper or lower triangular matrix excluding the
diagonal part is necessary in the calculation of DS intensity.

E. Intercluster correlation in the S1 phase

In the b-Ni phase, an OD with index k was assumed to be
occupied by Cm

k , C
5f

k , and C
′5f

k . In particular, the occupation
probabilities of the last two were the same because we consider
the ten antiphase domains of the S1 with equal volume ratio
appearing in the b-Ni phase. In contrast, in the S1 phase, the
probabilities of C

5f

k and C
′5f

k for a fixed k are different in
general.
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TABLE III. The correlation functions and α parameters of the
clusters in the b-Ni phase. The correlation functions g

μν

ii′ (�x) =
g

νμ

ii′ (�x) (1 � i,i ′ � 50, 1 � μ,ν � 30) are nonzero only when i =
10s + k, i ′ = 10s ′ + k′, μ = 10(μ′ − 1) + k, ν = 10(ν ′ − 1) + k′,
(0 � s � 4, 1 � k,k′ � 10, 1 � μ′,ν ′ � 3) for any s and s ′. In
addition to these conditions, the following conditions for s, s ′, k

and k′ have to be fulfilled. For �x = 0, s = s ′, k = k′, while for
�x = �x1, �x2, and �x3, s ′ = s + 1, s ′ = s + 3, and s ′ = s + 4,
(mod 5), respectively, and k and k′ must be a number pair shown in
Fig. 7. When k 	= k′, μ is not equal to ν independent of μ′ and ν ′, even
if μ′ = ν ′. Therefore the terms with μ′ = ν ′ in the table contribute
to the diffuse scattering (DS) intensity. In contrast, they do not
contribute to the DS intensity when k = k′ and μ′ = ν ′. [See Eqs. (3)
and (4).] Such cases appear for �x = 0 and �x3. The occupation
probability of a dissolved m cluster in the b-Ni phase is given
by 2σ . [ξ1 ≡ (3/5)(1 − σ ), ξ2 ≡ (2/5)(1 − σ ), ξ3 ≡ (1/5)(1 − σ ),
ξ4 ≡ (4/5)(1 − σ ) and ξ5 ≡ (1 − 2σ ).]

�x g
μν

ii (�x),aμν

ii (�x) g
μν

ii (�x),aμν

ii (�x)
μ′ = 2,ν ′ = 1 μ′ = 3,ν ′ = 1, 2

0 −σ 2,1 −σξ5,1
�x g

μν

ii′ (�x),aμν

ii′ (�x) g
μν

ii′ (�x),aμν

ii′ (�x)
μ′ = 2,ν ′ = 1 μ′ = 3,ν ′ = 1, 2
μ′ = 1,ν ′ = 2 μ′ = 1,2,ν ′ = 3

�x1 σξ2,−σ−1ξ2 −σξ5,1
�x2 σξ4,−σ−1ξ4 −σξ5,1
�x3 σξ2,−σ−1ξ2 −σξ5,1
�x g

μν

ii′ (�x),aμν

ii′ (�x) g
μν

ii′ (�x),aμν

ii′ (�x)
μ′ = ν ′ = 1,2 μ′ = ν ′ = 3

�x1 σξ1,−σ−1ξ1 2σξ5,−2σξ−1
5

�x2 σξ3,−σ−1ξ3 2σξ5,−2σξ−1
5

�x3 σξ1,−σ−1ξ1 2σξ5,−2σξ−1
5

Then Ek , Ak , Bk , Ck , and Dk sites in the average structure
are statistically occupied by C

5f

k , C
′5f

k , and Cm
k . In the ideal

structure of the S1 phase, they are occupied by one of C
5f

k ,
C

′5f

k as shown in Table I. In the S1 phase, even if two
antisymmetric domains exist, their volume ratio has to be
different. We call domains with larger and smaller volumes
major and minor domains and denote their volume ratios
as η1 ≡ (1 + η)/2 and η2 ≡ (1 − η)/2 (0 � η � 1). (That is
η1 + η2 = 1 independent of η.)

Two typical cases are conceivable, where the domain size
of the major and minor antisymmetric domains is nearly equal
to and much larger than that of the created m-cluster domains,
which is the order of the third intercluster neighbor. In the
former, even if there are no m clusters in the S1 phase, DS
can be expected because of the short-range order in two
antisymmetric domains and this is a highly disordered S1
structure. Therefore we consider only the latter case.

In the latter, we can consider the major and minor
antisymmetric domains separately, neglecting the correlation
between major and minor domains. We assume that the 5f

clusters in the major and minor domains are dissolved with
the same probability. Then the occupation probabilities of C

5f

k

and C
′5f

k in these two domains are given by η1ξ and η2ξ

with ξ = 2σ , respectively, while the total occupancy of Cm
k is

(1 − 2σ ). The site i = 10s + k in the S1 phase is occupied by
C

5f

k or C
′5f

k depending on s in the major domain and C
5f

k and

C
′5f

k are flipped in the minor domain. In the major domain,
C

5f

k appear at ODs with s = 0,1,2 and 1 � k � 5 and s = 3,4
and 6 � k � 10, while in the minor domain C

′5f

k appear at the
same ODs. Similarly C

′5f

k appear at ODs with s = 1,2 and
6 � k � 10 s = 0,3,4 and 1 � k � 5 in the major domain
and C

′5f

k is replaced by C
5f

k in the minor domain. Therefore
they are occupied by C

5f

k or C
′5f

k with different occupation
probabilities.

We consider a case, where C
5f

k appear in the major domain.
Then the 3 × 3 block matrix is given by⎛

⎜⎝
A1 A2 B1

A2 A3 B2

B1 B2 C

⎞
⎟⎠ , (9)

A1 = η1ξ (1 − η1ξ ), A2 = −η1ξη2ξ ,B1 = −η1ξ (1 − η1ξ −
η2ξ ) = −η1ξ2σ , A3 = η2ξ (1 − η2ξ ),B2 = −η2ξ (1 − η1ξ −
η2ξ ) = −η2ξ2σ , C = 2σ (1 − 2σ ). In the other case where
the C

5f

k is in the minor domain, the first and second lines and
columns are swapped.

In the following, we consider the simplest case with η = 1
so that η1 = 1 and η2 = 0. Then the minor domain disappears.
Let the major cluster in each site in an antisymmetric domain
be a cluster in an ideal S1 phase shown in Figs. 6(b-d). Noting
that the matrix elements in the second column and second line
in Eq. (9) are zero, we can consider 2 × 2 matrix with a form(

A B

B C

)
, (10)

where A = 2σ (1 − 2σ ), B = −2σ (1 − 2σ ) and C = 2σ (1 −
2σ ). For k = k′, its upper (or lower) triangular part without the
diagonal terms contributes to the DS. It should be noted that
these correlation functions are independent of the site index s.
The contribution of the pairs denoted by (k,k′) with different
s in Eq. (4), however, depends on s, because the ODs at kth
domain with the domain number i = 10s + k are occupied by
different clusters as shown in Fig. 6 and accordingly Fμν is
different depending on s.

In the first intercluster distance, s ′ = s + 1 as mentioned
in C. Then the cluster pairs to be considered for OD pairs
specified by (i,i ′) with (k,k′) = (10,6) and s ′ = s + 1 are
given by (μ′,ν ′) = (3,1), (3,2), (3,2), (3,1), and (3,1) for
s = 0,1,2,3,4 and other combinations (1,3),(1,3), (2,3), (2,3),
and (1,3) for s = 0,1,2,3,4, since the clusters of the ODs at the
sites B and D are equal to those at the sites A and C. (See Fig. 6.)
Note that the latter combinations are equal to (1,3), (2,3), (2,3),
(1,3), and (1,3) for s ′ = 0,1,2,3,4 (mod 5). Similarly, for
the second intercluster distances with s ′ = s + 3, the cluster
pairs with (k,k′) = (4,2) have nonzero correlation function
for (μ′,ν ′) = (3,2), (3,2), (3,1), (3,1), (3,1) for s = 0,1,2,3,4
and other ones for s ′ = 0,1,2,3,4 in which the first and
second numbers are flipped. In both cases, cluster pairs with
(μ′,ν ′) = (3,1) [or (1,3)] appear three times, while those with
(3,2) [or (2,3)], two times. This is because the ODs at the site
E [Fig. 6(b)] are occupied only by clusters with μ′ = 1, while
five among ten ODs at the sites A, B, C, and D are occupied
by the clusters with μ′ = 1 and the other five by those with
μ′ = 2 as is clear from Table I and Fig. 6. The same is true for

184203-10



SHORT-RANGE-ORDER DIFFUSE SCATTERING IN . . . PHYSICAL REVIEW B 83, 184203 (2011)

the ODs at sites B and D. Thus in each intercluster distance,
three of five OD pairs with the same (k,k′) and s = 0,1,2,3,4
are occupied by (3,1) cluster pairs and two of five by (3,2).
Therefore the sum over s in Eq. (7) can be replaced by the sum
over two terms with weights 3 and 2.

VII. DIFFUSE SCATTERING INTENSITY

Using the correlation functions given in the previous
section, the DS intensity is calculated. Figures 8(a) and
8(b) show the DS intensities of b-Ni and S1 phases in the
layers normal to the tenfold axis (zeroth Bragg layer) due to
the self-correlation and correlations up to the third nearest
intercluster distances in the case of σ = 0.1 and σ = 0.4,
respectively, while Fig. 8(c) indicates the DS intensity of the
S1 phase in the first Bragg layer for σ = 0.4. (To compare
with reported DS patterns,9,10,25 the x and y axes are taken to
be parallel to the unit vectors a1 and a2 of the b-Ni phase.24,30)
Figures 8(a) and 8(b) have similar DS intensity distributions
but around the position shown by the arrows, the difference in
DS intensity is clearly seen. A characteristic feature in both
phases is that there are broad peaks at the position of the main
and satellite reflection positions. Around the strong Bragg peak
positions, ten broad peaks appear forming a decagon and they
are linked by broad lines. (The strongest four Bragg reflection
positions are shown in Fig. 9 by arrows.) Furthermore, there are
many broad peaks forming ten pentagons around the decagon.
Note that a similar intensity distribution linked by broad lines
is seen in the S1 phase at 1120K. (See Fig. 2 in Ref. 25.) Thus
the broad peaks observed at the satellite peak positions in the
quenched b-Ni phase, and the broad peaks linked by broad
lines observed in the S1 phase at 1120 K are reproduced by the
current models, although the correlation models do not include
adjustable parameters except for σ , so that agreement between
the experimental and simulated results is not complete.

When only the self-correlation of the clusters is taken into
account, the DS intensity in the S1 phase shows very broad
peaks at several strong Bragg peak positions as shown in Fig. 9.
These pattern will correspond to a case where clusters of the
b-Ni phase are created in the S1 phase but they are randomly
distributed without being correlated. In particular they do not
form a micro cluster within which the constituent clusters are
correlated. A similar DS pattern is obtained for the b-Ni phase,
although detailed intensity distribution is slightly different
because the respective correlation functions are different.

VIII. DISCUSSION

At the room temperature, the S1 phase shows DS which
has very broad peaks at the position of several strongest Bragg
peaks.25 Such broad beaks are seen in the DS due to the self
correlation (Fig. 9). The observed broad peaks are therefore
considered to be due to the isolated 20 Å clusters with no
correlation to each other. The DS of the S1 phase due to the
self-correlation has been analyzed based on a different model.
Kobas et al. assumed that some cluster centers are randomly
occupied only by Cm

k (1 � k � 10) with the same probability.5

Then the DS due to the self-correlation is proportional to∑10
k=1 |Fμ − 〈F 〉|2 where μ = 20 + k (1 � k � 10), Fμ is the

structure factor of the m cluster with the kth orientation and

FIG. 8. The simulated diffuse scattering (DS) intensity calculated
with the correlation up to the third nearest intercluster distances. The
DS intensity distributions of the zeroth layer in the b-Ni phase (a) and
the S1 phase (b) and that of the first layer in the S1 phase (c). (A quarter
of each layer is shown. The origin is at the left bottom corner.) In
the structure factor calculations of clusters, the isotropic temperature
factor of 0.5 Å2 was used for all atoms. (The intensity is proportional
to darkness. σ = 0.1 for b-Ni and σ = 0.4 for S1 phases.)
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FIG. 9. Diffuse scattering intensity of the zeroth layer in the S1
phase calculated with only the self-correlation term given by Eq. (6).
(A quarter of the layer is shown.) The arrows indicate the four
strongest Bragg peak positions with indices 14410 (A), 37730 (B),
02210 (C), and 15630 (D). In Figs. 8(a) and 8(b), ten broad peaks are
seen around these points and points equivalent to them. (The intensity
is proportional to darkness.)

〈F 〉 = (1/10)
∑10

k=1 Fμ is the average structure factor of the
m clusters over ten different orientations.5,7 In this model,
the random arrangement of the 5f clusters is not taken into
account. If some sites are statistically occupied by the 5f

and m clusters, the structure factor of the 5f clusters has to be
included in the DS intensity calculations. If some specific sites
are preferentially occupied only by the m clusters, however,
the situation assumed by the model is realized. One probable
site may be site E, since this site is occupied by up and down
orientation 5f clusters even in the completely ordered model
of the S1 phase in contrast to other sites.

The broad peaks at the satellite reflection position in the
quenched b-Ni phase9 have to be explained by the correlation
used. In the current model, the micro domains with the S1
structure are assumed to be created. In particular, the two
5f clusters in the second nearest intercluster distance in the
S1 phase take antiparallel orientations preferentially. That is,
among all cluster pairs with this distance, one-fifth of them
takes both up or both down (parallel) orientations and four-
fifths take the different orientation (antiparallel orientation) as
stated in Sec. VI. This is considered to cause the broad peaks
at the satellite reflection position.

In a previous paper, it was demonstrated that the DS
intensities can be different for structures with the same average
structure.7 There is an opposite case where average structures
are different but they give the same DS intensity. The average
structure is determined by 〈zμ

i 〉, provided that atom positions
are the same. In Eqs. (6) and (7), if the correlation function
g

μν

ij ′ (�xij ′l) is the same for different 〈zμ

i 〉, the DS intensity is
the same. In the current model of the S1 phase, such a situation
occurs. In Eq. (10), we have two solutions giving same A, B,
and C. In the cases of σ = 1/10 and 2/5, A is 4/25. These two
cases give the same DS intensity since A = −B = C. That is,
the average structures with σ = 1/10 and 2/5 are different, but
their DS intensity is the same. Since 2σ represents the total

occupation probability of the 5f clusters, in the former the
m clusters are dominant, while in the latter the 5f clusters
are dominant. Therefore the former may not be realistic as
a model of the S1 phase. However, this result suggests that
we can not deny the possibility of the same DS intensity for
different structures in more realistic cases.

IX. SUMMARY AND CONCLUDING REMARKS

This paper demonstrated the effectiveness of a newly
proposed theory by applying it to the analysis of short-range
order diffuse scattering in quasicrystals. The quenched b-Ni
phase and the S1 phase at 1120 K show characteristic DS
intensity distribution. In the former, broad peaks exist with
estimated correlation lengths of about 28 Å at the satellite
reflection positions of the S1 phase. This is explained by the
intercluster correlation of 5f clusters and m clusters with a
diameter of �20 Å up to the third intercluster distance (� 32
Å). The broad streaks observed at 1120 K in the S1 phase are
also reproduced by similar intercluster correlations between
5f and m clusters up to the third intercluster neighbors. Very
broad peaks at several strongest Bragg peaks in the S1 phase
at room temper are considered to be due to isolated m clusters
existing in this phase, since these peaks are reproduced by
self-correlation terms. It was shown that the cluster-based
DS analysis is applicable to the DS in b-Ni and S1 phases
of d-Al-Ni-Co quasicrystals. This simplifies the DS intensity
analysis drastically. These results suggest that the analysis
of temperature dependent DS intensity will give important
information of phase transition mechanism of quasicrystals.

APPENDIX A: COORDINATE SYSTEMS OF
THE b-Ni AND S1 PHASES

The unit vectors di (1 � i � 5) of the 5D decagonal lattice
of the S1 phase are defined by di = ∑5

j=1 Rij aj with 30

R = (2a/
√

5)

⎛
⎜⎜⎜⎜⎜⎜⎝

(c1 − 1) s1 (c2 − 1) s2 0

(c2 − 1) s2 (c4 − 1) s4 0

(c3 − 1) s3 (c1 − 1) s1 0

(c4 − 1) s4 (c3 − 1) s3 0

0 0 0 0 c
√

5/2a

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A1)

where ci = cos(2πi/5) and si = sin(2πi/5), a1, a2, and a5

are the unit vectors in the external space, a3 and a4 are those
in the internal space, and a and c are lattice constants of the
decagonal lattice. The unit vectors of the reciprocal lattice in
the b-Ni phase, d∗

0i (i = 1,2, . . . ,5), are expressed in terms
of those of the S1 phase, d∗

i , by d∗
0i = ∑

j Sij d∗
j ,15 where the

matrix S is given by

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0

0 1 0 −1 0

1 1 2 1 0

−1 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A2)
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FIG. 10. Independent occupation domains of the b-Ni phase.
These domains are located at (1,1,1,1,5z)0/5 (a) and (2,2,2,2,5z)0/5
(z = 1/4). The horizontal and vertical directions are parallel to a4 and
a5 of the S1 phase. The size of the overlapped decagons are the same
as that of the decagon in Fig. 5.

Therefore d∗
i are given by d∗

i = ∑
j Tij d∗

0j with T = S−1:

T = 1

5

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 1 −2 0

2 4 1 3 0

−3 −1 1 −2 0

2 −1 1 3 0

0 0 0 0 5

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

The coordinates with respect to the two systems are trans-
formed by the same matrices: x0i = ∑

j Sij xj and xi =∑
j Tij x0j .

APPENDIX B: ODS FOR THE CLUSTER CENTER WITH
THE SAME LOCAL MIRROR SYMMETRY

The subdivision of decagonal ODs in Fig. 5 comes from the
fact that lower symmetric ODs labeled 1-5 in Fig. 10(a) located
at (1,1,1,1,5z)0/5 and corresponding parts in the inverted
OD at −(1,1,1,1,5z)0/5 generate seven atom positions in the
second nearest atom positions from the cluster center in the
b-Ni phase shown in Fig. 3. [The decagons in Figs. 10(a)
and 10(b) have the same size as the OD of the cluster center
shown in Fig. 5.] On the other hand, three first nearest neighbor
positions are created by ODs 6–10 in Fig. 10(b) and the
corresponding parts of the inverted OD at −(2,2,2,2,5z)/5.24

Note that the area of the ODs 1–5 is 7/10 of that of the cluster
center OD, while the area of the ODs 6–10 is 3/10. This leads to
the subdivision of ODs for the cluster centers shown in Fig. 5.

APPENDIX C: MULTIPLICITY OF OD PAIRS IN
THE INTENSITY FORMULA

The multiplicity aij (�xii ′l) in Eq. (4) is determined by the
order of a group which is given by an intersection of three
groups mentioned below. Let the site symmetries of the ith
and i ′th ODs be G1 and G2 and a subgroup of G, which leaves
�xii ′l invariant, be G3. Then there are N/N1 and N/N2 sites
equivalent to the ith and i ′th sites, where N1, N2, and N are
the orders of G1, G2, and the point group G.

We consider the intersection (common group) of G1, G2,
and G3 and denote it as Gc = G1 ∩ G2 ∩ G3. Then equivalent
pairs are generated by the left coset representatives gi of G in
G = ∑

i giGc. The number of coset representatives is equal
to N/Nc, where Nc is the order of Gc. The multiplicity of an
OD pair distant by �xii ′l is therefore given by Nc/N . (When

Gc is a normal subgroup of G, the order of the factor group
G/Gc is equal to N/Nc.)

A site symmetry operation of an OD transforms the OD
into itself. This means that the shape of the OD has to
be invariant under the site symmetry group, in contrast to
a conventional crystal where the symmetry of an atom is
assumed to be equal to or higher than the site symmetry. In
general, the symmetry of an OD is lower than or equal to
the symmetry of its corner or center (of gravity) position. In
the case of triangular ODs, Ek , Ak , etc., they have the point
symmetry (point group) 2mm(mm1), since all ODs are on
the mirror plane normal to the tenfold axis, although the site
symmetry of one corner (center of the decagon) is 10m2. In
this case, the site symmetry group of each triangular OD, Gi

(i = 1,2), is 2mm(mm1) and G3 for �xii ′l = �xi (i = 1,2,3)
is 2mm(mm1). Their order is 4. The directions of 2(m) or
m(m) in these point groups for Ek , Ak , etc., with different
k are different, so that their intersection becomes m(1), the
mirror plane of which is normal to the tenfold axis. This is a
normal subgroup of the point group 10/mmm(1071mm) and
its order is 2. When the indices k of both ODs are the same,
the intersection G1 ∩ G2 is 2mm(mm1) but even in this case,
G1 ∩ G2 ∩ G3 is m(1). Therefore N/Nc = 20, since the order
N of the point group 10/mmm(1071mm) is 40. This means
that there are 20 OD pairs equivalent to each independent OD
pair and its multiplicity aii ′ (�xii ′l) is 1/2. In this case, the
factor group for all independent OD pairs is isomorphic to
5m(52m) and we can choose elements in 5m(52m) as the coset
representatives.

On the other hand for �xii ′l = 0, G1 and G2 are equal and
G1 ∩ G2 = 2mm(mm1), while G3 = 10/mmm(1071mm), so
that the intersection Gc = G1 ∩ G2 ∩ G3 is 2mm(mm1).
(Note that this is not a normal subgroup of the point group.)
In this case we can choose elements in 5(52) as the coset
representatives and the number of coset representatives is
N/Nc = 10. Therefore the multiplicity is 1/4. [Note that
G = ∑4

i=1 giGq = ∑4
i=1 Gqgi , where Gq = 5(52) and gi

(i = 1,2,3,4) are elements of Gc.]
Instead of using all symmetry operations in the point group

in the summation with respect to R in Eq. (4), we can use
the coset representatives mentioned above in order to avoid
redundant calculations. Then the multiplicity is 1 although the
coset representatives are different dependent on the OD pairs
and �xii ′l in general as mentioned above. This fact is used in
Eqs. (6) and (7). In practical calculations, we used R in the
group 5m(52m) in all intercluster distances in Eq. (4). Then
the multiplicities are 1 and 1/2 for �xii ′l = �xi and 0.

APPENDIX D: ORIENTATION OF 5 f CLUSTERS
IN THE S1 PHASE

The location of small ODs in Fig. 1 is conveniently
represented by a 6D representation of a 5D vector. The
6D representation of a 5D vector x = (y1,y2,y3,y4,y5,y6) is
defined by x = ∑6

j=1 yiej , where

ei = (2a/
√

5)(cia1 + sia2 + c2ia3 + s2ia4) (1 � j � 5),

(D1)
e6 = a5.
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Then the unit vectors dj (1 � j � 5) of the decagonal lattice
are given in terms of ei by

dj = ej − e5 (1 � j � 4),
(D2)

d5 = e6.

(See Appendix A.) Therefore 5D coordinates (x1,x2,x3,x4,x5)
of a 5D vector are obtained from its 6D representation by
xi = ∑6

j=1 Mijyj with a 5 × 6 matrix M:

M = 1

5

⎛
⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 −1 −1 0

−1 4 −1 −1 −1 0

−1 −1 4 −1 −1 0

−1 −1 −1 4 −1 0

0 0 0 0 0 5

⎞
⎟⎟⎟⎟⎟⎟⎠

. (D3)

The 6D representations of the position of ODs 0-4 in
Fig. 1 from the center at x0 = (0,2,−1,1,0)/5 are given
by y0 = (0,−2,1,−1,2,0)i/5, y1 = (2,0,−2,1,−1,0)i/5,
y2 = (−1,2,0,−2,1,0)i/5, y3 = (1,−1,2,0,−2,0)i/5, and
y4 = (−2,1,−1,2,0,0)i/5. [Note that latter four are obtained
from the first one by the cyclic permutation of elements yi

(1 � i � 5).]
Accordingly the 5D coordinates of yj (0 � j � 4) are

given by y0 = (0,−2,1,−1,0)i/5 = (−1,−1,−1,−1,0)i0/5,
y1 = (2,0,−2,1,0)i/5 = (4,−1,−1,−1,0)i0/5, y2 = (−1,2,0,

−2,0)i/5 = (−1,4,−1,−1,0)i0/5, y3 = (1,−1,2,0,0)i/5 =
(−1,−1,4,−1,0)i0/5, and y4 = (−2,1,−1,2,0)i/5 =
(−1,−1,−1,4,0)i0/5. The vectors yj (j = 1,2,3,4) are
obtained from y0 by fivefold rotations: yj = R

j

5 y0. Similarly,
the vectors obtained from x0 by fivefold rotations are
given by R5x0 = (−2,0,2,−1,0)/5, R2

5x0 = (1,−2,0,2,0)/5,
R3

5x0 = (−1,1,−2,0,0)/5, and R4
5x0 = (2,−1,1,−2,0)/5, at

which rotated ODs are located.
When x = y modulo a lattice vector is written as

x ≡ y, the relations R
j

5 x0 − x0 ≡ xk (1 � j � 4, k = 3j

mod 5) hold. [In fact we obtain R
j

5 x0 − x0 = xk + �Xj

with �X1 = (−1,−1,0,−1,0), �X2 = (0,−1,0,0,0), �X3 =
(−1,−1,−1,−1,0), and �X4 = (0,−1,0,−1,0).] Then we
have Rl

5(x0 + R
j

5 y0) ≡ R
l+j

5 xe
0 − xk (0 � l � 4). (Note that

R5xk ≡ xk .) This means that if the ODs at x0 + R
j

5 y0 are
occupied by TM or Al, TM or Al are located at Rl+j

5 xe
0 from the

cluster centers which are generated by ODs at −xk . This leads
to the arrangement of clusters. For the cluster centers generated
by ODs A, B, C, and D, the 5f clusters located at these
sites take up, up, down, and down orientations, respectively.
For sites generated by OD E, 5f clusters take up and down
orientations depending on the site. When the site is generated
by ODs with labels 1–5 in Fig. 6(b), the cluster has an up
orientation, while for the site generated by ODs with labels
6–10, it takes a down orientation.
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