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Classification of laminate domain patterns in ferroelectrics
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Ferroelectric crystals are known to adopt low-energy, compatible domain configurations. Observations show
that these configurations are commonly multirank laminate patterns. In this work, a method to classify and
enumerate the laminate domain patterns that can form is presented. The criteria of exact compatibility for
laminates structures in a ferroelectric single crystal are used to find all the rank-2 arrangements of domains in the
polar tetragonal crystal system. Surprisingly, only eight distinct rank-2 laminate patterns that satisfy compatibility
conditions at all domain walls are found. These patterns are classified and correlated with observations of domains
in single crystals, showing good agreement.
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I. INTRODUCTION

The domain structure in ferroelectric single crystals is a
crucial factor that determines macroscopic properties. Obser-
vations show that domains typically form multirank laminate
structures, such as the well-known herringbone and stripe
patterns, which result from twinning to minimize the overall
energy of the crystal.1–3 These patterns are significant in bulk
materials because the geometric arrangement of domains con-
trols the macroscopic material properties, such as piezoelectric
coefficients, elastic moduli, and dielectric permittivity.4,5

Moreover, the ferroelectric switching behavior is strongly
dependent on the domain pattern.6–9 At the microscopic
and nanoscale, thin-film ferroelectrics also show compatible
domain patterning,10–13 and again it is found that the domain
pattern strongly influences material responses, for example, the
thermal stability14–18 and achievable remanent polarization.19

Given the great number of publications reporting observations
of particular domain patterns, it is remarkable that there is up
to now no systematic classification of these patterns. What
periodic arrangements of domains are possible? Of these,
which are minimum energy states? What is the relationship
between the underlying crystal structure and the domain
patterns that form? In the present work, we set out a method for
determining the compatible arrangements of domains that can
form in a given crystal system, and illustrate the power of this
method with a detailed study of polar tetragonal crystals. The
approach is sufficiently general to permit extension to other
ferroelectric crystal systems as well as multiferroics and shape
memory materials.

The formation of domain patterns in ferroelectrics is well
explained by the constrained theory,20,21 which assumes that
material points adopt minimum energy states of a multiwell
potential. The central result is that where a pair of domains
meet, the domain wall adopts an orientation which satisfies
compatibility conditions. Many theoretical models use the
compatibility equations, which are an analog of the twin-
ning equation for martensites, to predict domain patterns in
ferroelectric crystals.4,8,22 The models proposed by Li and
Liu4 and Yen et al.8 focus on specific domain laminate
arrangements which satisfy compatibility equations between
laminate composites averagely. Then, the assumption of a
fine phase mixture, with a separation of length scales be-
tween successive laminations,20 is necessary to ensure energy

minimization. However, observations of domains in single
crystal ferroelectrics suggest that these materials commonly
adopt structures in which successive levels of lamination occur
with similar domain wall spacing—that is, no separation of
length scale. For such structures to minimize energy within
the constrained theory, it is necessary that the compatibility
equations are satisfied at every junction of domains. Tsou
and Huber22 have identified exact compatibility conditions for
laminates and used these conditions to find laminate domain
arrangements that can form under given strain and polarization
boundary conditions.

It is of interest to compare the constrained theory with other
physical models, such as the time-dependent Ginzburg-Landau
(TDGL) theory,23,24 which is one of the most widely used
approaches. Models using the TDGL theory6,25–28 treat the
domain wall as a diffuse interface and by adopting periodic
boundary conditions can find periodic domain patterns. For
given initial conditions, a TDGL simulation generates a unique
equilibrium solution. Since the domain walls in ferroelectrics
are thin (generally a few lattice parameters29), the patterns
generated by TDGL models typically satisfy the compatibility
conditions of the constrained theory, either averagely or
exactly. Thus, they closely match the patterns generated by
sharp interface models using the constrained theory. However,
the simplicity of the sharp interface models makes it possible
to find all of the compatible domain patterns which satisfy
a given set of boundary conditions.19,22 By removing the
boundary conditions altogether, a further step can be taken:
the entire set of compatible domain arrangements can be
enumerated. Hence, an advantage of the constrained theory
is the opportunity to obtain an overview of the set of domain
patterns that may form. This is the approach pursued in the
present work, subject to the restriction that we consider only
those patterns that can be classified as periodic multirank
laminates.

An exactly compatible laminate structure has one-to-one
perfect matching of domains, such that wherever domains
meet, there is no incompatibility. In a multirank laminate,
this can be achieved provided: (i) laminations have matched
domain wall spacings wherever they meet, (ii) laminations
have aligned domain wall orientations wherever they meet,
and (iii) each pair of adjacent domains satisfies the compati-
bility equations.22 These conditions are further explained and
restated in algebraic form in Sec. II.
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Observations1,3,30 and theoretical models5,19,21,22,31 show a
variety of exactly compatible laminate structures, particularly
of rank 2. Thus, it is natural to seek the set of rank-2
laminate structures that can form. A knowledge of the set
of possible structures is helpful for several reasons: First, it
assists in the interpretation of microstructure observations.
For example, images obtained through microscopy give a two-
dimensional view and commonly present ambiguity between
domain types. Secondly, it is desirable to optimize material
properties and structures for technological applications. A
knowledge of the possible domain arrangements can be used
to design future materials with optimum performance. Domain
engineering can be achieved through bulk-scale processing, or
by manipulation of domains using tools, such as the atomic
force microscope. For example, Balke et al.32 recently demon-
strated the ability to nucleate domains in BiFeO3 by scanning
probe methods. Several recent works report observations of
domain patterns and their dynamics using methods, such as
atomic force microscopy (AFM) and piezoresponse force
microscopy (PFM).33–35 However, the classification of such
patterns has not been tackled previously. Consequently, the
insight provided by having an overview of the set of possible
patterns is currently not available from the literature.

In order to identify the set of possible rank-2 laminate
domain patterns, we utilize the exact compatibility conditions
to evaluate all periodic laminates in the polar tetragonal crystal
system. Surprisingly, just eight distinct types of compatible
rank-2 domain topology can form. This family of structures
is classified, and observations of barium titanate (BaTiO3)
single crystals are used to identify several of the structures.
Examples of all eight structures can be found in the literature,
either in micrographs or model predictions. The methods used
to identify the full set are readily applied to other material
systems; this is illustrated using the polar rhombohedral system
as an example.

II. THEORY

A. Domain compatibility and tree diagram

There are six crystal variants in the polar tetragonal crystal
system. Number these variants 1,. . .,6 corresponding to the
six polarization directions p̂ = ±[1,0,0], ±[0,1,0], ±[0,0,1],
respectively. Each crystal variant has a corresponding eigen-
strain ε of the form

ε = ε0
(
p̂ ⊗ p̂ − 1

3 I
)
, (1)

where ε0 is a crystal parameter, and strains are referred to a
cubic reference state of equal volume; I is the 3 × 3 identity
matrix. A domain is a region with uniform eigenstrain and
polarization. Now, consider a pair of domains i and j with
strain states εi , εj and polarization states pi , pj . The normal n
to the domain wall separating domains i and j is required to
satisfy the well-known compatibility equations:4,21

εi − εj = 1
2 (a ⊗ n + n ⊗ a), (2)

(pi − pj ) · n = 0 (3)

for some vector a. Equation (2) has solutions of the form:22

n = e2 ± e1√
2

, (4)

FIG. 1. (Color online) Rank-2 tree diagram representing the
domain pattern 1325.

where e1 and e2 are eigenvectors of the matrix M = εi − εj

with eigenvalues λ1 = −λ2 and λ3 = 0. Applying Eq. (3)
produces a unique interface normal when pi ⊥ pj , giving a
90◦ domain wall. In the special case when pi ‖ pj , Eq. (2)
is trivially satisfied, and Eq. (3) provides a continuous set of
solutions for interface normal n. This gives 180◦ domain walls,
which have no habit plane and result in “watermark” domain
patterns.1

The relationship between the components of a periodic,
rank-2 laminate can be described by a tree diagram.36 Figure 1
shows a rank-2 tree diagram containing 7 nodes (k = 1, . . . ,7).
The material represented by node k has volume fraction fk . If a
node is not in the lowest level of the tree, it connects to exactly
two child nodes, and its volume fraction is the sum of the
volume fractions at the child nodes. Each node also has average
strain and polarization values given by the volume average of
those in its child nodes. All parent nodes are associated with
an interface normal vector nk that indicates the orientation of
the compatible domain wall between the materials represented
by its child nodes. Node number 1 (the root node) represents
the entire laminate structure.

Nodes 4–7, in the lowest level of the tree, represent pure
crystal variants, each of which is labeled by its variant number.
For clarity, we introduce a simple way to distinguish and label
laminate structures, using the variant numbers in the lowest
level of the tree diagram. For example, the rank-2 laminate in
Fig. 1 is labeled “1325,” while the rank-1 laminate represented
by node 2 is labeled “13,” and similarly node 3 is labeled “25.”
It is worth noting that the tree diagram specifies a pattern or
topology of domains. To describe a real structure, the physical
size of the layers is needed, and this can be achieved by
associating a domain wall spacing lk with each parent node.
Changing the domain wall spacings can make a significant
difference to the appearance of a laminate without altering its
topology, as shown in Fig. 2(b).

We can identify whether a rank-2 laminate domain structure
satisfies exact compatibility conditions by examining its tree
diagram.22 Condition (i) for exact compatibility requires
matching of domain wall spacings. In the rank-2 case,
this is achieved by matching the volume fraction ratios
f4/f5 = f6/f7 and length scales l2 = l3 regardless of topology.
Condition (ii) requires that the projection of each domain
wall normal onto the higher level interface must match that
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FIG. 2. (Color online) Equivalent domain topologies. (a) Struc-
ture 1325. (b) Structure 1325 with domain spacing l1 < l2 = l3.
(c) Structure 6351 is a rigid rotation of 1325 by 90◦ about the y axis.

of the corresponding domain wall on the opposite side of the
interface. By a “higher level” interface, we mean a domain wall
whose normal vector is associated with a higher rank lamina-
tion. For example, when two rank-1 laminations are combined
to form a rank-2 laminate, the interface separating the two
rank-1 laminates is a higher level interface. Condition (ii) is
satisfied if and only if the interface normals of nodes 1, 2, and 3
are coplanar,22 that is n1 · (n2 × n3) = 0. A similar condition
was given by Fousek and Mokry.37 Finally, Condition (iii)
requires that every domain wall must satisfy Eqs. (2) and (3).
In a rank-2 tree diagram, nodes 4, 5 and nodes 6, 7 must be
compatible across interface normals n2 and n3, respectively;
also nodes 4, 6 and nodes 5, 7 must be compatible across
interface normal n1. Given the set of crystal variants in the
lowest level of the tree diagram, Conditions (ii) and (iii) give
rise to a total of nine vector equations for the three interface
normals n1, n2, and n3. Thus, the system of equations is
greatly over constrained, and solutions exist only for particular
combinations of crystal variants. The set of solutions is found
below.

B. Set of exactly compatible rank-2 laminates

To find the set of distinct rank-2 laminate domain structures
in the polar tetragonal system, note that there are six crystal
variants, giving 64 = 1296 possible arrangements in the
lowest level of the tree diagram. However, permutations that
exchange all node pairs in any level of the tree give identical
topology, e.g., 1325 ≡ 3152 ≡ 2513 ≡ 5231. Next, remove
rigid rotations, reflections, and inversions according to the
symmetry operations that leave the set of six polarization
vectors invariant. For example, Fig. 2(c) shows that 1325
and 6351 have equivalent domain topologies since 6351 is
a rigid rotation of 1325 by 90◦ about the y axis. Those

TABLE I. Twenty-four distinct topologies of a rank-2 laminate
made of polar tetragonal crystal variants, showing the subset of eight
exactly compatible rank-2 laminates.

Not exactly Rank < 2, exactly Rank = 2, exactly
compatible compatible compatible

1123 1111 1112
1134 1113 1213
1135 1122 1221
1223 1133 1234
1235 1212 1314
1315 1313 1324
1332 1331 1325
1335 1342
1345

symmetry operations are the elements of the m3m symmetry
group. This leaves only the 24 distinct topologies listed in
Table I.

Now check if the 24 distinct topologies can satisfy Condi-
tions (ii) and (iii) for exactly compatible rank-2 laminates. The
compatibility equations contain nonlinearity and degeneracy;
an effective solution strategy was found by first solving for
average compatibility, and then testing each averagely com-
patible solution for exact compatibility. Average compatibility
is achieved if the compatibility equations can be solved for
node pairs (4,5), (6,7), and (2,3). In the case of node pair (2,3),
the strain and polarization states to be used in Eqs. (2) and
(3) are the volume averages of those in their child nodes. The
existence of an averagely compatible solution can be shown to
be independent of the choice of volume fractions f4, . . . ,f7,
provided f4/f5 = f6/f7. The degenerate 180◦ domain walls
that give a nonunique normal n are dealt with by changing
the solution order and using the coplanarity condition. This
procedure identifies nine domain topologies that violate the
exact compatibility conditions as shown in the first column of
Table I. Also, seven topologies have all domain walls parallel,
and so reduce to laminates of rank less than 2. Finally, eight
topologies satisfy the exact compatibility conditions and are
of rank 2—see Table I.

Schematic unit cells of these eight types of domain pattern
are shown in Fig. 3, where the notation {· · ·} is used to
represent families of symmetry related patterns. It is worth
noting that the domain walls marked with dashed lines in Fig. 3
indicate 180◦ domain walls which can curve to form watermark
domain patterns. However, some 180◦ domain walls in Fig. 3
are constrained by the 90◦ domain walls they meet. This
phenomenon was also observed by Hu et al.2 Where the pattern
of laminations forces two regions of material of the same
crystal variant to meet, there is no domain wall, but fictitious
domain walls are included in Fig. 3 to aid visualization of the
periodic laminate structure.

The patterns in the {1112} and {1221} families have only
two crystal variants present, separated by 180◦ walls. The only
distinction between these patterns is whether the domain walls
cross, as in {1221}, or form closed loops, as in {1112}. It is
interesting to note that four families, {1213}, {1234}, {1314},
and {1325}, show herringbone patterns on at least one surface.
However, all patterns except {1325} can show stripes of
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FIG. 3. (Color online) Unit cells of the eight exactly compatible,
periodic, rank-2 laminate domain patterns.

domains at a surface. This presents considerable ambiguity in
identifying domain patterns from surface images. Only family
{1325} among these eight types has both in-plane and out-
of-plane polarization directions present. Thus, the resulting
domain structure is the most three-dimensional among the
exactly compatible rank-2 laminates. Finally, family {1342}
takes the form of an array of polarization vortices with
alternating sense. These domain patterns can all be considered
as minimum energy states within the constrained theory.
Note, however, that the formation of several of the patterns
from a high symmetry cubic state results in the presence
of disclinations at the junctions of domain walls. Tsou and
Huber22 gave a method to check laminate domain patterns
for the presence of disclinations. Using this method, we find
that patterns {1213} and {1314} contain disclinations of
magnitude 2(c − a)/a at the domain junctions, where a and
c are lattice parameters. Pattern {1342} has disclinations of
magnitude 4(c − a)/a. Pattern {1325} also has a disclination,
though its magnitude is only ∼0.8(c − a)2/a2; the other
patterns are disclination free.

To illustrate the applicability of the methods described
here, rank-2 laminates in the polar rhombohedral crystal
system were classified by the same method. In this system,
there are eight crystal variants; number them 1, . . . ,8 with
polar directions

√
3p̂ = ±[1,1,1], ±[−1,1,1], ±[−1, − 1,1],

and ±[1, − 1,1], respectively. The corresponding eigenstrains,
measured from an equal volume reference state, are given

TABLE II. Fifty-one distinct topologies of a rank-2 laminate made
of polar rhombohedral crystal variants, showing the subset of exactly
compatible rank-2 laminates.

Not exactly Rank < 2, exactly Rank = 2, exactly
compatible compatible compatible

1123 1223 1111 1112
1124 1224 1113 1213
1134 1315 1114 1214
1135 1316 1122 1221
1136 1332 1133 1234
1145 1335 1144 1243
1235 1336 1212 1314
1236 1346 1313 1324
1246 1368 1331 1325
1326 1415 1414 1342(1432)
1345 1436 1441 1357
1358 1445 1423

1467 1426
1458

by Eq. (1). The 84 permutations of the rank-2 tree reduce
using the m3m symmetries to 51 distinct topologies of which
only 14 are distinct exactly compatible patterns not equivalent
to a lower rank structure, as listed in Table II. Patterns
{1342} and {1432} have identical topology, arising from
a coincidence of domain wall orientations n2 ≡ n3 in both
patterns. Some of the patterns in Table II have been found
by other methods; for example, a rhombohedral {1357}
laminate was predicted using phase-field methodology by
Shu et al.38 Our method provides an extremely rapid and
complete identification of minimum energy laminates. The
method is readily extended to higher rank laminates, though the
number of patterns becomes large and laminates of rank greater
than 2 are less commonly observed in ferroelectric crystals.
Applications to nonpolar systems, such as shape memory
alloys, also reveals interesting structures, and will be described
elsewhere.

III. OBSERVATIONS OF TETRAGONAL RANK-2
LAMINATES

Each of the tetragonal structures described in Sec. II has
been reported in the literature, either as the result of direct
observation, or from theoretical considerations. In this section,
evidence for the formation of rank-2 domain structures is
given, predominantly by comparing the patterns in Fig. 3
with similar patterns found in the literature. Additionally, we
used a variety of standard imaging techniques, including scan-
ning electron microscopy (SEM), atomic force microscopy
(AFM), piezoresponse force microscopy (PFM), and optical
microscopy to find examples of several of these structures in
an unpoled tetragonal barium titanate single crystal. Examples
are shown in Fig. 4.

Figure 4(a) shows a watermark domain pattern with
antiparallel out-of-plane polarization directions found in a
BaTiO3 single crystal, etched using 10% HF aqueous solution
for 20 s. The image was generated using a Zeiss EVO LS
15 ESEM in secondary electron mode, with a 10-keV beam
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FIG. 4. (Color online) SEM, PFM, AFM, and optical microscopy
used to show rank-2 laminate domain patterns in tetragonal barium
titanate: (a) {1112}, (b) {1234}, (c) and (d) {1324}, and (e) {1342}.

and 7 mm working distance. This illustrates a {1112} type
structure in which domain walls are curved. A corresponding
surface of the {1112} unit cell is shown. The {1221} type
structure, with crossing 180◦ domain walls, was not found
in our crystals, and experimental observations appear to be
rare. A possible explanation is that the crossing domain walls
in {1221} can separate, merging the regions into closed
domain loops and, thus, transforming the pattern into the
{1112} type. This would reduce the overall domain wall
energy. There are several reported observations of {1112} type
structure,39–41 and the {1221} type is also illustrated in the
literature.42

Figure 4(b) shows the domain pattern in an unetched
BaTiO3 single crystal, obtained by lateral PFM, that allows
mapping of in-plane piezoelectric distortions, and hence, the
polarization vector direction.43 An Asylum Research MFP-3D
AFM system in piezoresponse mode was used, with an
Olympus AC240TM cantilever. The scan rate was 1 Hz,
driving voltage 4.4 V, and frequency 885 kHz was used to
give contact resonance. In Fig. 4(b), domain pattern {1234},
with four distinct in-plane domain types in a herringbone
arrangement, is revealed by overlapping the results from two
orthogonal PFM scans. Note that the observed structure cannot
be any of the other herringbone patterns as PFM reveals four
in-plane domain types. This structure was also reported in a
recent PFM study by McGilly et al.44 and is a well-known
arrangement of tetragonal domains.5,7,41,45

Figures 4(c) and 4(d) show checkerboard domain patterns
in etched BaTiO3, imaged by AFM and optical microscopy,
respectively. The AFM image was obtained using a Veeco
Dimension 3100 AFM system with Nanoscope III D Con-
troller. SCM-PIC tips were used in contact mode at a scan
rate of 1 Hz, revealing a topographic contrast of about 100 nm
caused by etching. Square checks appear in patterns {1221},
{1324}, and {1342}, but here, alignment of the checks

to the crystallographic axes eliminates {1342} and makes
{1221} unlikely. The difference in etching depth between the
in-plane and out-of-plane domains confirms this as pattern
{1324}. It is interesting to note that the two sublaminates
(13 and 24) are separated by a 180◦ domain wall that
alternates between fixed orientation and flexible orientation
as it crosses the pattern, resulting in curved domain walls
between the crystal variants polarized in the out-of-plane
direction. Thus, the {1324} structure can form a watermark
pattern intersected by straight 90◦ domain walls as shown
in Fig. 4(d), which was produced by viewing an etched
BaTiO3 crystal using an Alicona InfiniteFocus microscope.
Similar domain configurations have been reported in previous
work.40,46

The {1342} pattern exhibits an array of polarization
vortices, a structure that has been predicted using diffuse
interface models.31,47 However, the pattern has not been widely
observed, perhaps due to the strong disclinations present,
which make this a relatively high energy state. The pattern has
also been shown to be unstable to an electric field except in
the presence of stress.45 The AFM image of etched barium
titanate shown in Fig. 4(e) was generated using the same
method as Fig. 4(c) on a different sample of barium titanate.
This appears to reveal the {1342} domain pattern, containing
90◦ domain walls in a checkerboard pattern oriented at 45◦ to
the crystallographic axes. Relatively low contrast between the
domains was achieved, as expected for the etching of in-plane
domains.

Finally, patterns in the {1325} family have been widely
observed and discussed.1–3,5,10,12,21,30 All the domain walls,
including the 180◦ walls, in this pattern have orientations
fixed by the requirements of compatibility. Domain patterns
of {1213} and {1314} were not found in our sample, but have
been discussed in the literature.42

IV. CONCLUSION

In this paper, three-dimensional compatibility conditions
were defined and used to classify compatible domain patterns
in ferroelectric single crystals. It was found that there are
remarkably few distinct domain arrangements that can form as
compatible laminates. The eight types of periodic exactly com-
patible rank-2 laminates are defined and examples from simu-
lation and observations confirm their existence. While each of
the eight patterns in the tetragonal system had already been de-
scribed, there does not appear to be a systematic classification
in previous works. Major advantages of the method developed
here are the rapidity and completeness of finding minimum
energy patterns. A further advantage is the ease with which
the method can be extended to other crystal systems or higher
rank laminates. The resulting classification is of direct use in
identifying observed domain patterns and provides a basis to
search for engineered domain configurations with optimized
properties.
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