
PHYSICAL REVIEW B 83, 184119 (2011)

Optimized orthogonal tight-binding basis: Application to iron
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The formal link between the linear combination of atomic orbitals approach to density functional theory and
two-center Slater-Koster tight-binding models is used to derive an orthogonal d-band tight-binding model for
iron with only two fitting parameters. The resulting tight-binding model correctly predicts the energetic ordering
of the low-energy iron phases, including the ferromagnetic bcc, antiferromagnetic fcc, hcp, and topologically
close-packed structures. The energetics of test structures that were not included in the fit are equally well
reproduced as those included, thus demonstrating the transferability of the model. The simple model also gives
a good description of the vacancy formation energy in the nonmagnetic fcc and ferromagnetic bcc iron lattices.
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I. INTRODUCTION

While Kohn-Sham (KS) density functional theory (DFT)1

has found very broad application for the simulation of inter-
atomic bonding, its computational cost still places limitations
on its application when treating the length scales necessary
for the strain fields from dislocations2 or light elements in
metals.3 Furthermore as the system size grows, the number of
configurations needed for thermodynamic integration becomes
intractable. This makes the use of computationally efficient
parametrized methods attractive. The continued interest in
parametrized methods also comes from the obvious wish to
gain physical insight. In this respect, one of the most successful
methods is the tight-binding (TB) method.

In its conventional form, the TB method models the total
energy as a repulsive pair potential and a bonding many-body
term. The bonding energy is obtained by solving a two-center
Slater-Koster (SK) Hamiltonian.4 Following the empirical
introduction of the TB method, several conceptual advances
have been made, mainly the TB bond model,5,6 the Harris-
Foulkes functional,7,8 and the related second-order expansion
of the KS energy functional.9–11 Together these provide an
appealing conceptual framework, but in practice there are
several “philosophies” on how the parametrization should be
performed and the success of the TB method depends on this
parametrization.12–15

There is thus a demand for TB parametrizations based
as closely as possible on the DFT energy functional. In the
present paper, we construct an orthogonal TB model for iron.
Special focus is put on using a limited number of fitting
parameters without compromising the predictive quality of the
model. We demonstrate how the formal link between the DFT
linear combination of atomic orbitals (LCAO) method and
two-center TB method may be used to obtain the TB bonding
energy. This is achieved by downfolding a pseudo-atomic
orbital (PAO) basis onto a minimal basis set. We demonstrate
the transferability of both basis functions and bond integrals,
thereby validating the two-center approximation. We show
how the resulting TB model for iron correctly predicts the
energetic ordering of the low-energy iron phases, including
the ferromagnetic (FM) bcc, antiferromagnetic (AFM) fcc,
and topologically close-packed structures. Finally, we test the
transferability of the model on the vacancy formation energy
in the nonmagnetic (NM)-fcc and FM-bcc iron lattices.

II. METHOD

A. Background

In LCAO, the basis functions are written as a product of a
radial part with an angular function,

φIjμ(r) = φIjlm(r) = uIjl(r)Ylm(r̂). (1)

We use the capital indexes I and J to label atoms and the index
μ as a condensed index for the angular character lm. We leave
out the principal quantum number, as we only treat the valence
states. While minimal basis sets use just one basis function
for each valence atomic orbital, the variational flexibility of
LCAO basis sets can be improved by adding several radial
functions for a given angular momentum, which are the so-
called multiple-ζ basis functions. The index j in Eq. (1) counts
the number of radial functions for a given angular character
μ. Furthermore, higher spherical harmonics, which are the
so-called polarization functions, are often added to further
improve the basis. By expanding the Kohn-Sham (KS) orbital
wave functions in terms of a basis set,

|ψn〉 =
∑
Ijμ

c
(n)
Ijμ|φIjμ〉, (2)

the KS equations can be written in matrix form, which
introduces the Hamiltonian and overlap matrices,∑

Jjν

HIiμJjνc
(n)
Jjν = εn

∑
Jjν

SIiμJjνc
(n)
Jjν,

(3)
HIiμJjν = 〈φIiμ|H |φJjν〉, SIiμJjν = 〈φIiμ|φJjν〉.

In the present paper we will use the radially confined PAOs16

implemented in the GPAW code for the radial functions in
Eq. (1).17,18 The PAO basis functions have a well-defined
radial extent due to the confinement potential used; see
Fig. 1.16,17 Confinement of the radial extent of the atomic
orbitals increases their energy. Following the original work,19

this energy shift �EPAO is used to define the radial cutoff.
For most of this paper, we use the standard setup of GPAW,
�EPAO = 0.1 eV, which leads to confinement radii of 4.7 Å
for the s PAO and 2.7 Å for the d PAO of iron, and an onset of
the confining potential at 60% of the confinement radius.

In order to achieve the precision of a systematic grid or
plane-wave basis, an atomic basis must include both multiple-ζ
and polarization basis functions, thus far removed from the
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FIG. 1. (Color online) Illustration of the downfolding of a triple-ζ (3-ζ ) basis to an optimal single-ζ basis. Left plot: The original 3-ζ GPAW

pseudo-atomic orbitals (PAOs) basis. Right plot: the optimal basis function for Fe in the simple cubic (with a lattice constant of a = 2.50 Å),
the fcc (a = 3.46 Å) and the bcc (a = 2.87 Å) structures. The structures all have a nearest-neighbor distance of 2.5 Å and the basis functions
are virtually indistinguishable. The confinement potentials corresponding to �EPAO = 0.1 eV are shown in black. Also shown with a dashed
line is the optimal basis function for the Fe dimer at an interatomic distance of 2.5 Å.

simple TB models that we wish to construct. We therefore use
the dual basis sets of grid points20 and atomic orbitals17 im-
plemented in the GPAW code. We first calculate self-consistent
total energies and potentials using the systematic grid basis.
We then obtain the eigenstates |ψn〉 expanded in a 3-ζ basis,
given by Eq. (2), by performing a single diagonalization in the
potential obtained by the grid calculation. Figure 2 illustrates
the very good agreement between the density of states (DOS)
calculated with the grid basis and with a 3-ζ basis.

B. Optimized atomic orbitals

The optimized minimal (1-ζ ) basis is obtained from the
multiple-ζ basis by a downfolding of the LCAO eigenstates
for a given atomic configuration. In a nonorthogonal minimal

basis {|ϕIμ〉}, the contravariant basis {〈ϕIμ|} provides a simple
expression for the closure relation,

〈ϕIμ| =
∑
Jν

S−1
IμJν〈ϕJν |,

∑
Iμ

|ϕIμ〉〈ϕIμ| = 1̂, (4)

with the overlap matrix S = 〈ϕIμ|ϕJν〉. The closure relation
may be seen as a projection operator, which, if applied on
|ψn〉, measures to what extent |ψn〉 can be represented in the
basis. We thus write the projection of |ψn〉 expanded in the
multiple-ζ basis {|φIjμ〉}, given by Eq. (2), on the minimal
basis {|ϕIμ〉} as

Pn =
∑
Iμ

〈ψn|ϕIμ〉〈ϕIμ|ψn〉, P = N−1
e

∑
n

fnPn, (5)

FIG. 2. (Color online) Comparison of the density of states (DOS) of nonmagnetic iron calculated using three different basis sets. The
lattice constants for the calculations are a = 3.46 Å (fcc) and a = 2.87 Å (bcc). The structures have a nearest-neighbor distance of 2.5 Å.
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where fn is the occupation of the eigenstate n, and Ne is the
number of valence electrons. The basis function ϕIμ is written
as a linear combination of the 3-ζ basis functions for the same
angular character,

ϕIμ(r) =
∑

j

αIjlφIjμ(r). (6)

The coefficients αIjl , given by Eq. (6), are found by max-
imizing the projection P , given by Eq. (5). Equation (5)
was introduced earlier for reducing multiple-ζ (Ref. 21) and
plane-wave basis sets22 to minimal basis sets. However, it
has not been broadly applied for this purpose because the
optimal basis for a given structure is not transferable. This
is less of a problem for the TB method, where we wish to
parametrize the bond integrals as a function of interatomic
distance. Figure 1 shows that for a given interatomic distance,
there is a very good agreement for the 3d PAO between the two
extreme cases of a close-packed solid Fe and the Fe dimer. For
the 4s PAO, there is also a very good agreement between
the solids, whereas the 4s orbital for the dimer contracts
somewhat.

Equation (5) was first used by Meyer and coworkers for
defining optimal atomic orbitals (AOs) for the TB parameters
from a plane-wave basis.23–25 Our method differs through
the choice of an LCAO basis for |ψn〉, which makes the
downfolding a numerically simpler procedure. Equation (5)
can be calculated using only the variational coefficients c(n),
the overlap matrix, and the sparse matrices containing the
coefficients α; see Eq. (6). We maximize P with respect to α

using a standard conjugate gradient method and have found
the same minimum for all test cases, irrespective of starting
values. A further feature of the present method is that the basis
underlying the TB parameters has a well-defined radial extent,
which means that its influence on the bond integrals may be
studied systematically.

The construction of a minimal sd basis for the fcc- and
bcc-iron structures used for Fig. 2 gave P = 0.995 for both.
Not surprisingly, P ≈ 1 also means that the DOS calculated
with an optimized basis is very similar to the 3-ζ DOS. We
have also compared to the DOS found by optimizing the band
energy directly and found it virtually indistinguishable from
that obtained through projection.

C. TB energy functional

To a good approximation, the structural energy of the
transition metals is determined by the d valence,26 while the
contribution of the s electrons may be approximated by a
volume-dependent embedding contribution. For the evaluation
of the TB energy, we further assume that the charge transfer
in Fe is small and may be neglected. We therefore assume
that the atoms remain charge neutral and only allow for
magnetic fluctuations, such that our TB energy functional is
given as

ETB = Ebond + Emag + Erep + Eemb − Efree atoms. (7)

The first term is the bond energy of the d electrons within the
TB bond model,5,6 which for collinear spins may be written
as27

Ebond =
∑

σ=↑,↓

∑
IμJν

I �=J

ρσ
IμJνHIμJν, (8)

where σ labels the spin. As we assume local charge neutrality,
the second-order term of the expansion of the DFT energy
only contains a magnetic contribution depending on the Stoner
exchange integral.28 The second term in Eq. (7) is the Stoner
exchange energy,28–30

Emag = −1

4

∑
J

IJ m2
J , (9)

where mJ is the magnetic moment on atom J . We further
approximate the Stoner parameter IJ as an atomic quantity.
The third term in Eq. (7) is a pairwise repulsive contribution
modeling the double-counting term of the TB bond energy.6

We write the repulsive potential as a simple exponential,

Erep =
∑

I,J �=I

aIJ
rep exp

( − bIJ
repRIJ

)
. (10)

Finally, Eq. (7) approximates the contribution of the s electrons
to the cohesive energy with a simple embedding term. Based
on the second-moment approximation to the DOS, we model
this as having a square-root dependence on the coordination
number, n = 1/2,31–33

Eemb = −
∑

I

[ ∑
J �=I

(
aIJ

emb

)2
exp

( − bIJ
embR

2
IJ

)]n

, (11)

where n = 1 would correspond to a pair potential. For the em-
bedding function, we use a Gaussian-like radial dependence.
This has been proposed earlier34 and will be justified later
in this paper. Finally, the term Efree atoms corresponds to the
energy of the atoms at infinite separation.

D. Bond integrals

We have calculated the band structure for a series of
interatomic distances for the iron dimer and for iron in the
fcc and bcc structures. The calculations were performed by
first calculating a self-consistent potential using the grid basis
of GPAW.20 Then a diagonalization was performed using a
standard 3-ζ PAO basis of the GPAW,17 which was then
downfolded in a minimal basis by maximizing the projection,
given by Eq. (5).

For a sd-minimal basis, 6 × 6 submatrices of the LCAO
Hamiltonian HIμJν or overlap SIμJν matrices are associated
with each pair of atoms. Each of these matrices can be rotated
into a bond-oriented coordinate system, resulting in the bond
integrals

βIμJν =
∑
ν ′μ′

U+
IμJν ′HIν ′Jμ′UIμ′Jν, (12)

where UIνJμ is the matrix that rotates the global coordi-
nate system into a bond-oriented one. In the two-center
approximation,4 by symmetry only the ssσ , sdσ , ddσ , ddπ ,
and ddδ matrix elements are nonzero. In our orthogonal
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FIG. 3. (Color online) Bond integrals: (a) nonorthogonal �EPAO = 0.1 eV, (b) orthogonal �EPAO = 0.1 eV, and (c) nonorthogonal
�EPAO = 0.4 eV. The solid lines in (b) show a fit to simple exponentials to the orthogonal �EPAO = 0.1 eV dimer curves.

d-valent TB model, we will retain only the ddσ , ddπ , and
ddδ integrals.

In Fig. 3 we show the bond integrals β that were calculated
from the optimal minimal basis using Eq. (12). The bond
integrals are discontinuous and poorly transferable. It has
earlier been shown that the inclusion of screening makes the
bond integrals β continuous at the nearest-neighbor and next-
nearest-neighbor distances.2,15,35,36 This prompted us to define
the bond integrals based on a Hamiltonian orthogonalized by
a symmetric Löwdin procedure,37

H̃ = S−1/2HS−1/2, (13)

where H corresponds to the full Hamiltonian in the sd-
minimal basis. Compared to other orthogonalization schemes,
the Löwdin orthogonalization has two important advantages:
the orthogonal orbitals bear the same symmetry as the
nonorthogonal original vectors,4 and they are the closest in a
least-squares sense.38 Figure 3(b) shows that the bond integrals
obtained by using H̃ in Eq. (12) are both transferable and
continuous. The very good agreement shown in Fig. 3(b),
even with the Fe dimer, is somewhat surprising. It has
already been shown in Fig. 1 that the optimal d basis is
transferable for a given interatomic distance. Therefore the
poor transferability observed in Fig. 3(a) can only be due to
three-center, 〈ϕI |VK |ϕJ 〉, contributions to the Hamilton matrix
elements leading to an environmental dependence of the two-

center integrals. The effect of the Löwdin orthogonalization
must be a screening of the three-center integrals.

A qualitative rationalization of the transferability can be
found by comparing H̃ to the D matrix used in an analy-
sis of chemical pseudopotential theory.39 Large three-center
contributions will be associated with large two-center overlap
integrals, thereby screening the large three-center integrals.
This interpretation is confirmed in Fig. 3(c), where radial
extents of the basis functions, and thereby the three-center
contributions, are reduced. Using �EPAO = 0.4 eV instead
of �EPAO = 0.1 eV reduces the radial extent of the d orbitals
from 5.1 to 3.9 Å. Consequently the unscreened bond integrals
show transferability and are continuous.

The bond integrals are fitted to simple exponentials as

βddλ(R) = addλ exp(−bddλR), λ = σ,π,δ. (14)

Due to the transferability of the bond integrals, shown in
Fig. 3, we simply use the bond integrals obtained for the
dimer; the parameters are given in Table I. At the nearest-
neighbor distance of the bcc and fcc structure of around
2.5 Å, the relative strength of the bond integrals, ddσ : ddπ :
ddδ = −0.60 : 0.41 : −0.08 eV, shows a surprisingly good
agreement with the canonical d-band ratio of −6 : 4 : −1.40

The transferability to the dimer also forms a link to the
widely used density-functional-based tight-binding (DFTB)
approach,13 where the bond integrals are evaluated from a
dimer calculation using a single-ζ basis in a potential from
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overlapping atomic densities.13 To a certain degree, Fig. 3 may
be seen as a validation of this approach. However, it should
be pointed out that the transferability obtained in Fig. 3(b)
holds only for the short-range d orbitals. The longer-range s

orbitals will be the subject of a future study. To this end, the

fact that our matrix elements are evaluated in the actual crystal
potential is a clear advantage when studying the influence of
three-center integrals.

A cutoff function given as

f (R) =

⎧⎪⎨
⎪⎩

1, R < Rcut − dcut,
1
2

(
cos

{
π

[
R−(Rcut−dcut)

dcut

]}
+ 1

)
, Rcut − dcut � R < Rcut,

0, R � Rcut,

(15)

was applied to the distance-dependent pair interactions. The
cutoff parameters are given in Table II and were chosen so
that the bond integrals and pair and embedding potentials are
cut off around the onset of the d and s confining potentials,
respectively. The resulting DOS of the TB model are shown
in Fig. 4. Apart from the obviously lacking peaks due to sd

hybridization, there is some disagreement with respect to the
magnitude of the DOS at the Fermi level. A good agreement
is found between the location of the peaks.

Omitting the s electrons in the bond energy means that
the number of d electrons must be introduced as a parameter.
As the fcc and hcp structures have the same first and second
nearest-neighbor shells, we assume that the embedding and
repulsive energies for the two structures at equal volume is the
same and the energy difference is purely due to the difference
in Ebond. We thus use the energy difference of the fcc and
hcp structures at equilibrium volume to fix Nd = 6.8 e/atom.
Thereby a bond energy difference between the fcc and hcp
structure of −53 meV, in good agreement with the DFT value
of −60 meV, is obtained.

Compared to earlier TB models of iron,27–30,41–43 our
treatment of magnetism is similar to that of Refs. 27 and 43.
Instead of obtaining the Stoner exchange integral directly
from DFT, we set it to I = 0.76 eV to get a good energy
difference between the magnetic and nonmagnetic structures.
This choice leads to a magnetic moment of 2.65 μB/atom
and 1.34 μB/atom at the equilibrium volumes of bcc iron
and fcc iron, respectively. Compared to DFT, 2.21 μB/atom
and 1.05 μB/atom, the magnetic moments found with our
TB model are too large. We attribute this to the lack of sd

hybridization in the model, and see this as a fundamental
limitation of the present approach. Finally, we have tested the

TABLE I. Parameters of the tight-binding model, given by
Eqs. (10), (11), and (14). The units of bemb are Å−2.

a (eV) b (Å−1)

ddσ −34.811 1.625
ddπ 63.512 2.014
ddδ −50.625 2.597
dcut, Rcut (Å) 0.5 3.5
Erep 1031 3.25
Eemb 3.70 0.23
dcut, Rcut (Å) 0.5 5.5

stability of the FM-bcc structure in our TB model by doing 500
molecular-dynamics (MD) steps at 300 K using an Andersen
thermostat and a velocity-Verlet integrator. We find the FM-bcc
structure to be stable.

E. Repulsive and embedding energies

For the repulsive and embedding terms, given by Eqs.
(10) and (11), the exponents are fixed by the extracted
bond and overlap integrals. The repulsive part we see as
an overlap repulsion, which should thus be proportional to
the square of the most long-range dd-overlap integral. Using
βddσ = 1.625 Å−1, suggests that we set brep = 3.25 Å−1. The
embedding part we see as arising from excluding the s states
in the bonding term; it is thus written in terms of the square of

TABLE II. Equilibrium lattice constants, phase stabilities with
respect to the nonmagnetic free atom, bulk moduli, and optimal c/a

ratios for the studied iron compounds.

V0 (Å3/atom) E0 (eV/atom) B0 (GPa) c/a

NM-fcc
DFT 10.38 −7.890 275.59
TB 10.38 −7.926 295.42
NM-A15
DFT 10.59 −7.729 271.23
TB 10.52 −7.767 287.39
FM-A15
DFT 11.72 −7.978 155.05
TB 11.90 −7.981 141.92
NM-χ
DFT 10.55 −7.840 273.20
TB 10.53 −7.790 271.24
FM-bcc
DFT 11.51 −8.064 174.38
TB 11.58 −8.067 138.29
AFM-fcc
DFT 10.79 −7.946 186.42
TB 10.74 −7.942 177.01
NM-hcp
DFT 10.31 −7.968 282.44 1.579
TB 10.35 −7.966 294.54 1.570
NM-σ
DFT 10.55 −7.786 275.60 0.522
TB 10.51 −7.796 267.23 0.532
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FIG. 4. Density of states obtained with the orthogonal d-band model. The structures are as in Fig. 2.

the βssσ matrix element for the Fe2 dimer. We find this to be
well represented by a Gaussian with an exponent of 0.115 Å−2,
which suggests bemb = 0.23 Å−2. We thus end up with a TB
model where only two parameters must be found by fitting total
energies. We fit the parameters arep and aemb, given by Eqs. (10)
and (11), to the DFT energy-volume curves for nonmagnetic
bcc, fcc, and hcp structures. The resulting parameters are given
in Table I. The resulting bulk moduli and phase stabilities are
given in Table II. Table II also shows the results of applying
the TB model to a number of topologically close-packed
phases44 and the AFM-fcc and FM-bcc structures. It is seen
that the agreement is similar to the structures included in the
fit, which demonstrates the transferability of the model. The
main disagreement is the bulk modulus of the FM-bcc iron
phase, which is underestimated. We attribute this to the too
large magnetic moment found with I = 0.76 eV, leading to a
high-spin state at extended volumes.

F. Transferability

We further test the transferability of the model by evaluating
the vacancy formation energy (VFE) in FM-bcc and NM-fcc
iron, and the formation energy with respect to the solid of an
NM-fcc-(111) unsupported monolayer of Fe. The VFEs are
calculated in a 2 × 2 × 2 cubic supercell, which thus holds 15
atoms for bcc and 31 for fcc. As shown in Table III, we find
a reasonable agreement with DFT. In all three cases, we find
that the open structure is too low in energy compared to the
close packed. One would expect that an increase in n in the

TABLE III. Formation energies (FE) of vacancies in the FM-bcc
and NM-fcc structures and of an unsupported monolayer (UML) of
FCC-(111) iron. In the n = 0.55 model, the prefactors are reoptimized
compared to Table I, giving arep = 1088 eV and aemp = 3.18 eV.

FE (eV) FM-bcc NM-fcc UML

DFT 2.08 2.01 1.93
TB (n = 0.50) 1.91 1.70 1.58
TB (n = 0.55) 2.05 1.92 1.77

embedding function, given by Eq. (11), would stabilize the
close-packed structure compared to the open. Consequently,
we find that using an exponent of n = 0.55 instead of a
square-root potential gives a better agreement with DFT for the
formation energies of the open structure. Setting n = 0.55 and
reoptimizing aemb and arep, again only fitting to the NM-bcc,
NM-fcc, and NM-hcp structures, we find arep = 1088 eV
and aemp = 3.18 eV. The reoptimization can be done without
changing the agreement found in Table II, which shows that
by introducing a more flexible potential, better agreement can
be achieved at the expense of the simplicity of the model.

III. CONCLUSION

We have shown how to derive an orthogonal d-band
TB model for iron with only two fitting parameters. The
resulting TB model correctly predicts the energetic ordering
of the low-energy iron phases, including the ferromagnetic
bcc, antiferromagnetic fcc, and topologically close-packed
structures. We have found that test structures that were not
included in the fit are equally well reproduced as those
included, thus demonstrating the transferability of the model.
The simple model gives a good description of the formation
energy of a vacancy in the NM-fcc and FM-bcc iron lattices.

Simple orthogonal TB models form the basis of the
bond-order potentials (BOPs),45–47 which in their simplest
second-moment approximation are described by many-body
energy terms that correspond to a square-root embedding
function.31,32 At the same time, the BOPs constitute a sys-
tematic approximation of the TB model by including higher
moment contributions to the binding energy. The present
work could form a crucial link between DFT and interatomic
potentials in a hierarchy of controllable accuracy.
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23S. Köstlmeier, C. Elsässer, and B. Meyer, Ultramicroscopy 80, 145
(1999).

24N. Börnsen, B. Meyer, O. Grother, and M. Fähnle, J. Phys. Condens.
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