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Elastic anisotropy of shocked aluminum single crystals: Use of molecular dynamics simulations

J. A. Zimmerman,1 J. M. Winey,2 and Y. M. Gupta2

1Sandia National Laboratories, Livermore, California 94551, USA
2Institute for Shock Physics and Department of Physics, Washington State University, Pullman, Washington 99164, USA

(Received 3 February 2011; revised manuscript received 1 April 2011; published 23 May 2011)

Molecular dynamics (MD) calculations were used to examine shock wave propagation along [100], [111],
and [110] directions in aluminum single crystals. Four different embedded-atom method (EAM) potentials were
used to obtain wave profiles in ideal (defect-free) crystals shocked to peak longitudinal stresses approaching
13 GPa. Due to the lack of defects in the simulated crystals, the peak stresses considered, and the short time
scales examined, inelastic deformation was not observed in the MD simulations. Time-averaged and spatially
averaged continuum variables were determined from the MD simulations to compare results from different
potentials and to provide a direct comparison with results from nonlinear elastic continuum calculations that
incorporated elastic constants up to fourth order. These comparisons provide a basis for selecting the optimal
potential from among the four potentials examined. MD results for shocks along the [100] direction show
significant differences for stresses and densities determined from simulations using different EAM potentials.
In contrast, the continuum variables for shocks along the [111] and [110] directions show smaller differences
for three of the four potentials examined. Comparisons with the continuum calculations show that the potential
developed recently by Winey, Kubota, and Gupta [Modell. Simul. Mater. Sci. Eng. 17, 055004 (2009)] provides
the best overall agreement between the MD simulations and the continuum calculations. As such, this potential
is recommended for MD simulations of shock wave propagation in aluminum single crystals. Extending the
current findings to elastic-plastic deformation would be desirable. More generally, our work demonstrates that
MD simulations of elastic shock waves in defect-free single crystals, in combination with nonlinear elastic
continuum calculations, constitute an important step in establishing the applicability of classical MD potentials
for simulations involving dynamic compression.
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I. INTRODUCTION

In recent years, classical molecular dynamics (MD) simu-
lations have been used increasingly to examine the shock com-
pression response of crystalline solids.1–3 Such simulations can
provide important insight into the microscopic mechanisms
governing material phenomena such as inelastic deformation
and structural phase transformations. Despite the potential
usefulness of classical MD simulations for understanding the
dynamic response of solids, it is difficult to evaluate the
validity of the calculated results since direct comparisons with
experiments pose a challenge: the length and time scales of
the simulations and experiments differ by orders of magnitude.
Also, not all material details (e.g., defects, heterogeneities) can
be incorporated realistically into the MD simulations.

Although the above indicated differences are well recog-
nized and they constitute an important impetus for advances
in computational capabilities,4 there is also a fundamental
scientific issue that needs attention. Because results from MD
simulations depend on the choice of the interatomic potentials,
establishing the applicability of the potentials for the loading
conditions of interest constitutes an important need. Here,
we address this need by focusing on the following two key
questions: how to ascertain the applicability of a potential
for simulations involving shock wave compression, and how
to choose the optimal potential when several choices are
available.

Our approach to address these questions consists of us-
ing MD simulations to examine and analyze shock wave
propagation along different crystal orientations in idealized
(or defect-free) crystals. The lack of defects in the simulated

crystals results in purely elastic deformation for shock loading
to peak stresses that would otherwise result in yielding and
inelastic deformation in crystals having defects. Therefore,
our approach enables a direct comparison between the ther-
momechanical variables determined from MD simulations of
shock wave compression and the thermomechanical variables
from nonlinear elastic continuum calculations that utilize
known second-, third-, and fourth-order elastic constants. By
making such comparisons for each of the different interatomic
potentials, we have a basis for selecting between different
potentials. To the best of our knowledge, this approach
to selecting an optimal potential has not been carried out
previously for MD simulations of shock compression of
crystals.

By examining idealized, or defect-free, crystals over the
peak stress range considered here, the focus of our simulations
is purely on the thermoelastic response of the material. Because
the thermoelastic response reflects the intrinsic behavior of the
crystal lattice, its validation is a key first step toward the use
of MD simulations of shock-induced inelastic deformation
and/or structural transformations. Our long-term objective is
to use MD simulations to help develop continuum models for
dynamic compression of crystals.5

In the present work, we chose to examine the anisotropic
response of shocked aluminum single crystals. Aluminum
was selected for this study because it is representative of
face-centered cubic (fcc) metals having high stacking fault
energies and because several embedded-atom method (EAM)
potentials for Al are available.6–10 To address the scientific
questions indicated above, we have focused on elastic shock
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wave propagation along [100], [110], and [111] orientations in
Al single crystals. Continuum averages from MD simulations,
carried out using four different EAM potentials, are com-
pared with each other and with nonlinear elastic continuum
calculations that utilize elastic constants up to fourth order.
Computational methods are described in Sec. II and the
continuum results are summarized in Sec. III. The results
are discussed in Sec. IV and conclusions from our work are
provided in Sec. V.

II. COMPUTATIONAL METHODS

A. MD simulations

All of our MD simulations were performed using the
LAMMPS code.11 To simulate shock wave propagation in
aluminum single crystals, atomic systems containing ∼1 mil-
lion atoms were constructed having approximate dimensions
640 Å (x1) × 160 Å (x2) × 160 Å (x3), where the xi’s refer
to a coordinate system in which the shock wave propagates
along the x1 direction. Free surface boundary conditions
were used in the longitudinal (x1) direction, whereas periodic
boundary conditions were applied in the transverse (x2 and x3)
directions. Shock wave propagation was examined along the
[100] direction (x1 − [100],x2 − [010],x3 − [001]), the [111]
direction (x1 − [111],x2 − [1̄10],x3 − [1̄1̄2]), and the [110]
direction (x1 − [110],x2 − [1̄10],x3 − [001]). The systems
were equilibrated for 10 ns (107 time steps of 1 fs each) to
bring them to zero stress and 300-K temperature. To produce
planar shocks in the equilibrated systems, four atomic layers
at one end of the crystal were assigned a fixed velocity for
the duration of the simulation, resulting in the propagation of
supported shock waves having prescribed particle velocities.
Previous work has shown that shock wave propagation in
MD simulations is insensitive to the method by which the
shocks are produced.1 The simulations presented here utilized
a small time step (0.01 fs) to adequately capture the dynamics
associated with the propagating shock wave.

B. Continuum variables from MD simulations

To calculate mass density, Cauchy stress, and temperature
from our MD results, we used the method introduced by
Hardy,12 in which two descriptions of a material system
are considered. One description constitutes the continuum
viewpoint, where the variables are pointwise functions of fixed
spatial positions and time. The other description is that the
system consists of atoms, each of which has an associated
mass, momentum, potential energy, and kinetic energy. The
two descriptions are connected using a prescribed localization
function ψ , which enables the properties of the atoms to be
averaged over a localized region surrounding the spatial point
and allows the atoms to contribute to continuum properties at
that point. For example, mass density at fixed spatial position
xi is given by

ρ (xi,t) =
N∑

α=1

mαψ
(
xα

i − xi

)
, (1)

where N is the number of atoms in the system, mα is the mass
of atom α, and xα

i is the spatial position of atom α. By using

expressions similar to Eq. (1) for mass, momentum, and energy
densities in the balance laws of continuum mechanics, Hardy
was able to derive an expression for Cauchy stress (assumed
positive in compression here),12

Pjk(xi,t) = 1

2

N∑
α=1

N∑
β=1
β �=α

x
αβ

j f
αβ

k Bαβ(xi)

+
N∑

α=1

mαv̂α
j v̂α

k ψ
(
xα
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)
, (2)

where x
αβ

j ≡ xα
j − x

β

j , f
αβ

k is the interatomic force between
atoms α and β, Bαβ(xi) is a bond function determined by
integrating ψ , and v̂α

j (xi,t) ≡ vα
j − vj (xi,t), where vα

j is the
velocity of atom αand vj (xi,t) is the continuum velocity field
calculated by dividing momentum density by mass density.
Although not derivable from the continuum balance laws,
Hardy also defined an expression for localized temperature,

T (xi,t)

=
N∑

α=1

mαv̂α
j v̂α

j ψ
(
xα

i − xi

)/(
3kB

N∑
α=1

ψ
(
xα

i − xi

))
,

(3)

where kB is Boltzmann’s constant. Further details about
Hardy’s method and its use in thermomechanical problems
can be found in Ref. 13.

We defined spatial points as the vertices (nodes) on a
rectangular grid. For our simulations, this grid consisted
of 4,672 elements, each having approximate dimensions:
10 Å × 20 Å × 20 Å. To allow for translation of the atomic
system, the grid extended a length of 730 Å in the longitudinal
direction to encompass the atomic system plus some free space.
Linear interpolation functions between nodes were used to
create a tent-shaped localization function in three dimensions.
Continuum variables were calculated at the spatial points every
0.01 ps (1000 time steps).

To reduce the statistical uncertainties in the continuum
variables, averaging methods were used. First, the 64 nodes
located at the same longitudinal position were averaged to
create a single value for each continuum variable. Next,
to arrive at steady-state estimates of continuum properties
behind the shock front, the continuum variables were averaged
spatially over a domain of 200 Å and temporally over a domain
of 3 ps.

C. Nonlinear elastic continuum calculations

For comparison with the MD results, continuum variables
for shocked Al single crystals were calculated using nonlinear
elasticity theory.14–16 It is convenient to express the differential
changes in stress and temperature in terms of the elastic strain
increments and entropy change:14,15

dtij = Cijkldηkl − ρ0�ijT dS, (4)

dT = −T �ijdηij + T dS/cη, (5)

where Cijkl are the isentropic elastic coefficients and both the
thermodynamic stresses tij and the Lagrangian strains ηij are
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referred to the initial configuration. In our calculations, both
the Grüneisen tensor �ij

14 and the specific heat at constant
strain cη were held constant.

The isentropic elastic coefficients Cijkl are defined as the
second derivatives of the internal energy with respect to strain
at constant entropy.15,16 Therefore, from a truncated expansion
of internal energy in powers of elastic strain, the elastic
coefficients are given by16

Cijkl (S,η) = C̄ijkl + C̄ijklmnηmn + 1

2
C̄ijklmnpqηmnηpq, (6)

where C̄ijkl , C̄ijklmn, and C̄ijklmnpq are the second-, third-, and
fourth-order elastic constants, respectively, and the overbar
indicates evaluation at the initial configuration. Measured
values for the second- and third-order constants for aluminum
were taken from Refs. 17 and 18, respectively. The fourth-
order constants were determined from available shock wave
propagation data, as described in the Appendix. For the elastic
loading calculations considered here, the entropy dependence
of the elastic coefficients can be neglected.

For elastic shock waves propagating along [100], [110], or
[111] directions in a cubic crystal, the Lagrangian strains are
uniaxial and can be written as

η11 = −e + 1
2e2, (7)

where e = 1 − ρ0/ρ is the engineering strain and x1 is
along the wave propagation direction. For uniaxial strain, the
Cauchy stresses (positive in compression) are related to the
thermodynamic stresses by

Px = − (1 − e) t11, (8)

Py = − t22

(1 − e)
, (9)

Pz = − t33

(1 − e)
. (10)

In terms of the Cauchy stresses and engineering strain, the
entropy change encountered in shock wave loading is19

2ρ0T dS = e dPx − Px de. (11)

To determine Cauchy stresses and temperature for shocked
Al single crystals, numerical methods were used to obtain
a simultaneous solution for Eqs. (4)–(11). The stresses and
temperatures determined from the continuum calculations
were then compared with analogous quantities from the MD
simulations.

III. RESULTS

MD simulations of defect-free Al single crystals shocked
along the [100], [111], and [110] directions were performed
using four different EAM potentials: Voter and Chen (VC),6,7

Ercolessi and Adams (EA),8 Mishin, Farkas, Mehl, and
Papaconstantopoulos (MFMP),9 and Winey, Kubota, and
Gupta (WKG).10 Shock waves having particle velocities of
300 and 600 m/s were simulated, resulting in peak longitudinal
stresses of ∼6 and ∼13 GPa, respectively. Detailed examina-
tion of the atomic positions behind the shock front revealed
that the material response was elastic for all the simulations
reported here.

Averaged continuum variables for shocked Al, determined
from the MD simulations as described in Sec. II B, constitute
the key results of this study. Because the crystal response
is elastic, temperature results are of less importance and
the main focus is on the mechanical variables—stresses as
a function of density compression. For each simulation, the
following stresses, corresponding to the peak state, are shown
in Figs. 1–3: longitudinal (Px) and lateral stresses (Py , or Py

and Pz when not equal), the mean stress (Pm), and the stress
difference (Px–Py). Although the mean stress and the stress
difference do not provide information that is not already
contained in the longitudinal and lateral stresses, plots of these
quantities are useful in discussing crystal anisotropy effects.
Also shown in the figures are continuum curves for shocked
Al single crystals, calculated using nonlinear elasticity theory
as described in Sec. II C.

A. [100] compression

In Fig. 1, the averaged stresses from the MD simulations,
for each of the four potentials, are plotted as a function of
density compression for shock wave propagation along the
[100] direction. For shocks having a given particle velocity,
Fig. 1(a) shows that density compression ρ/ρ0, longitudinal
stress Px , and lateral stress Py values determined from the MD
simulations are significantly different for the different EAM
potentials. Similarly, the stress difference Px−Py , shown in
Fig. 1(b), differs significantly for different potentials.

Also shown in Fig. 1 are the continuum stress-density
curves. Comparisons between the MD results and the con-
tinuum curves show that simulations using the WKG potential
provide the best agreement with the continuum calculations.
Although all the Py values from the MD simulations are
close to the continuum curve in Fig 1(a), this agreement
is somewhat misleading because the density compression
values are quite different. Perhaps the most telling results
are those shown in Fig. 1(b) for the higher shock amplitude
(particle velocity of 600 m/s). The mean stress and the stress
difference values are markedly different for the four potentials.
The continuum curve provides the basis for selecting between
the four potentials.

B. [111] compression

In Fig. 2, averaged stresses from the MD simulations
are plotted as a function of density compression for shock
wave propagation along the [111] direction. Compared to the
[100] results shown in Fig. 1, the MD simulation results in
Fig. 2(a) show that differences for the stresses and density
compression values, corresponding to the four potentials, are
less pronounced. Although the results from the WKG potential
again provide the best overall agreement with the continuum
curves, the other three potentials show reasonable agreement
with the continuum curves. Similar to Fig. 1(b), the stress
difference results in Fig. 2(b) are helpful in discriminating
between the different potentials.

C. [110] compression

In Fig. 3, averaged stresses from the MD simulations are
plotted as a function of density compression for shock wave
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FIG. 1. (a) Longitudinal (Px) and lateral (Py) stresses vs density
compression and (b) mean stress (Pm) and stress difference (Px–Py)
vs density compression for Al single crystals shocked along the
[100] direction. Px , Py , and Pm refer to Cauchy stresses assumed
positive in compression. The lines are continuum stress-density
curves calculated using the second-, third-, and fourth-order elastic
constants. The symbols denote averaged stresses determined from
MD simulations of elastic shock compression. Results are shown for
four different EAM potentials: WKG (Ref. 10); MFMP (Ref. 9); EA
(Ref. 8); VC (Refs. 6 and 7). Error bars are shown for simulation
results where the statistical uncertainties are larger than the size of
the symbols.

propagation along the [110] direction. In Fig. 3(a), the two
lateral stresses Py and Pz are plotted separately because they
are not equivalent for shocks along [110]. The stresses and
density compression obtained for three of the four potentials
(WKG, MFMP, and EA potentials) are in good agreement
with each other. In contrast, the longitudinal stress Px , mean
stress Pm, and stress difference Px−Py resulting from using
the VC potential show differences when compared to the
other potentials. Results using the WKG, MFMP, and EA
potentials agree well with the continuum calculations, whereas
the agreement for results using the VC potential is not as good.

FIG. 2. (a) Longitudinal (Px) and lateral (Py) stresses vs density
compression and (b) mean stress (Pm) and stress difference (Px–Py)
vs density compression for Al single crystals shocked along the
[111] direction. Px , Py , and Pm refer to Cauchy stresses assumed
positive in compression. The lines are continuum stress-density
curves calculated using the second-, third-, and fourth-order elastic
constants. The symbols denote averaged stresses determined from
MD simulations of elastic shock compression. Results are shown for
four different EAM potentials: WKG (Ref. 10); MFMP (Ref. 9); EA
(Ref. 8); VC (Refs. 6 and 7). Error bars are shown for simulation
results where the statistical uncertainties are larger than the size of
the symbols.

Results from both the MD simulations and the calculated
continuum curves show that the stress difference Px−Py is
large for shock propagation along the [110] direction and is
comparable to the mean stress Pm. This result is in contrast
to the results for shock propagation along the [100] and [111]
directions, where Px−Py is significantly smaller than Pm.

D. Temperature calculations

As expected, temperature increases achieved in both the
MD simulations and the continuum calculations for shock
propagation along all three crystal orientations are quite
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FIG. 3. (Color online) (a) Longitudinal (Px) and lateral (Py

and Pz) stresses vs density compression and (b) mean stress
(Pm) and stress difference (Px–Py) vs density compression for
Al single crystals shocked along the [110] direction. Px , Py , Pz,
and Pm refer to Cauchy stresses assumed positive in compression.
The lines are continuum stress-density curves calculated using the
second-, third-, and fourth-order elastic constants. The symbols
denote averaged stresses determined from MD simulations of elastic
shock compression. Results are shown for four different EAM
potentials: WKG (Ref. 10); MFMP (Ref. 9); EA (Ref. 8); VC (Refs. 6
and 7). Error bars are shown for simulation results where the statistical
uncertainties are larger than the size of the symbols.

modest for the elastic loading examined here; calculated
results in Fig. 4 are shown primarily for completeness.
Compared to results for the [111] and [110] orientations,
temperature-density values from MD simulations of shock
wave propagation along the [100] orientation are significantly
different. In addition, differences in the temperature-density
values, corresponding to the four different potentials, are
significantly larger for the [100] orientation, as compared
to the other orientations. For all the orientations examined,
temperatures obtained from the simulations using the VC
potential are higher than those obtained using the other
potentials.

FIG. 4. (Color online) Temperature vs density compression
for Al single crystals shocked along the [100], [110], and [111]
directions. The lines are continuum temperature-density curves
calculated using the second-, third-, and fourth-order elastic constants,
along with constant values for the Grüneisen tensor and specific
heat. The symbols denote averaged temperatures determined from
MD simulations of elastic shock compression. Results are shown for
four different EAM potentials: WKG (Ref. 10); MFMP (Ref. 9); EA
(Ref. 8); VC (Refs. 6 and 7). Error bars are shown for simulation
results where the statistical uncertainties are larger than the size of
the symbols.

In contrast to the MD results, the continuum temperature-
density curves for shocked Al show only modest differences
for shock wave propagation along different crystal orienta-
tions. Compared to the other EAM potentials, results obtained
using the WKG potential provide somewhat better overall
agreement with the continuum curves.

IV. DISCUSSION

The results presented in Figs. 1–3 provide a basis for
examining the applicability of interatomic potentials for use
in MD simulations involving shock wave compression. In
particular, as discussed below, comparison of results from
MD simulations of shock waves in defect-free single crystals
with the results from nonlinear elastic continuum calculations
enables the optimal potential to be selected from the available
choices. Although our method is not the only way that different
interatomic potentials can be compared, it provides the only
approach currently available for directly comparing results
from MD shock wave simulations against a benchmark derived
from experimental results.20

Examining the stresses plotted in Fig. 1, the significant
differences in the results from MD simulations using different
EAM potentials clearly demonstrate the importance of com-
paring interatomic potentials to determine their applicability
for shock wave compression. Also, differences in the stresses
obtained from simulations using different potentials are con-
siderably larger for shock wave propagation along the [100]
direction (Fig. 1), in contrast to the [111] and [110] directions
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(Figs. 2 and 3). This finding demonstrates the need to test
interatomic potentials by examining shock wave propagation
along several orientations, and shows the importance of crystal
anisotropy for evaluating different potentials.

For the simulation results shown in Figs. 1–3, the stress
difference Px−Py exhibits the largest overall variation for
MD simulations using different potentials. Therefore, the
calculated Px−Py values provide the best discriminant for
choosing among the potentials examined. In contrast, the
differences in the calculated mean stress Pm using different
potentials are less pronounced. Hence, examination of Pm

alone does not provide a good basis for selecting between
available potentials.

For MD simulations of shock wave propagation along the
[110] direction (Fig. 3), the stress difference Px−Py and the
mean stress Pm are of comparable magnitude, in contrast
to results for the [100] and [111] directions, where Pm is
significantly larger than Px−Py . This feature, resulting from
the anisotropic elastic response of Al single crystals, pro-
vides an additional constraint for choosing between different
potentials.

Because the stress difference Px−Py is related to the shear
stresses that cause inelastic deformation, the large differences
in Px−Py for shocks along the [100] direction suggest that
MD simulations of the elastic-plastic response in Al single
crystals, with defects, will likely be different for different EAM
potentials. Thus, our results demonstrate the need to consider
the anisotropic elastic response, in addition to properties such
as the stacking fault energy, width of extended dislocations,
etc., when choosing the optimal potential for simulating shock
wave propagation in crystals having defects, where inelastic
deformation is anticipated. Whether the differences observed
here for elastic compression will also hold for elastic-plastic
deformation is a question that needs to be explored in the
future.

Comparing the MD results with the calculated continuum
curves in Figs. 1–4 shows that MD simulations using the WKG
potential10 provide better overall agreement with the contin-
uum results, as compared to the other potentials. Therefore,
the WKG potential is recommended for use in simulations
of shock wave propagation in aluminum single crystals. This
conclusion represents the end result of our evaluation and
demonstrates the efficacy of our approach for selecting an
optimal potential for MD simulations involving shock wave
compression.

The differences in ρ/ρ0, Px , and Py for MD results
using different potentials, shown in Fig. 1(a), indicate that
the elastic coefficients governing shock compression, which
depend on second- and higher-order elastic constants [see
Eq. (6)], are significantly different for different EAM poten-
tials. In contrast, previous simulations showed that the second-
order elastic constants of Al resulting from using different
potentials are not much different at ambient pressure and
temperatures of less than 400 K.10 Therefore, the differences
in stresses and density compression shown in Fig. 1(a)
are due to differences in the higher-order elastic constants
resulting from using different potentials. These results indicate
the importance of using higher-order elastic constants in the
development of interatomic potentials, as was done for the
WKG potential,10 because the higher-order constants contain

information about anharmonicity and crystal anisotropy under
mechanical loading that is not contained in the second-order
constants.

V. SUMMARY AND CONCLUSIONS

The applicability of available interatomic potentials for
molecular dynamics (MD) simulations involving shock wave
compression was examined by simulating shock wave propa-
gation along [100], [111], and [110] directions in defect-free
Al single crystals using four different EAM potentials. Due
to the lack of defects in the simulated crystals and the short
time scales examined, no evidence for inelastic deformation
was observed in the MD simulations for longitudinal stresses
reaching ∼13 GPa. Averaged thermomechanical continuum
variables were determined from the simulations to provide a di-
rect comparison with results from nonlinear elastic continuum
calculations performed using the elastic constants of aluminum
up to fourth order. This comparison, the key development in
the work presented here, provides a basis for selecting the
optimal potential from the four potentials examined.

MD results for shocks along the [100] direction show
significant differences for stresses, density compression, and
temperatures determined from simulations using different
EAM potentials. In contrast, the continuum variables for
shocks along the [111] and [110] directions show smaller
differences for three of the four potentials examined. These
results demonstrate the need to test potentials using simula-
tions of shock wave compression along more than one crystal
orientation and, more generally, indicate the importance of
crystal anisotropy in the evaluation of potentials.

Our results show that the stress difference Px–Py provides
the best overall discriminant among the different potentials. In
addition, the large differences in Px–Py for shock wave com-
pression along the [100] direction [Fig. 1(b)] suggest that the
elastic-plastic response resulting from shock wave simulations
of Al single crystals using different EAM potentials will likely
be different. Therefore, testing the anisotropic elastic response
under shock wave compression is an important factor (along
with stacking fault energy, width of extended dislocations, etc.)
for selecting a potential for use in MD simulations involving
shock-induced inelastic deformation.

Comparison of the MD results with the nonlinear elastic
continuum calculations shows that the potential developed re-
cently by Winey, Kubota, and Gupta (WKG)10 provides better
overall agreement among continuum variables, compared to
the other three potentials considered here. Strictly speaking,
validating this conclusion for shock-induced elastic-plastic
deformation will require further calculations in which the
material deforms inelastically. However, in the absence of
such calculations, the WKG potential is recommended for use
in MD simulations of shock wave compression in aluminum
single crystals. In addition, the good agreement between
the MD results and the continuum calculations for the
stress difference Px–Py suggests that the WKG potential may
prove useful for simulations of shock wave propagation in
Al crystals with defects, where elastic-plastic response is
expected.

In general, the work presented here shows that MD simu-
lations of elastic shock wave propagation in defect-free single
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crystals, in combination with nonlinear elastic continuum
calculations, constitute an important step in establishing
the applicability of classical MD potentials for shock wave
simulations.
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APPENDIX: DETERMINATION OF FOURTH-ORDER
ELASTIC CONSTANTS

The fourth-order elastic constants used in the nonlinear
elastic continuum calculations were determined by fitting
to available wave propagation data21 for shock loading and
unloading along the [100], [110], and [111] directions in Al
single crystals. Because of the limited data available, the
Cauchy relations22 were invoked to reduce the number of
independent fourth-order elastic constants from 11 to four. The
fitting was performed using a previously developed anisotropic
approach for wave propagation simulations in single crystals,23

along with the known second-order17 and third-order18 elastic
constants. The resulting fourth-order elastic constants are
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