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We study the thermodynamic stability of dilute C, N, O, B, and C+N interstitial distributions in bcc iron,
combining parameter-free density functional theory (DFT) in the generalized gradient approximation and
microscopic elasticity theory. This scheme allows us to fully capture the long-range elastic impurity-impurity
interactions using moderately sized DFT calculations. Employing this approach we compute temperature-
concentration phase diagrams including the effects of external pressure, and provide direct insight into the
formation mechanisms of martensite. For all investigated impurities, except for B, tetragonal states are predicted to
be preferred even at low impurity concentrations. The preference is shown to originate from a thermodynamically

driven orientational ordering of the interstitials.
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I. INTRODUCTION

Alloying elements significantly affect the structural and
mechanical properties of steels. Even low concentrations
of interstitials can trigger the martensitic transformation in
iron during quenching from the high-temperature, austenitic
face-centered phase. The metastable tetragonally distorted
body-centered-cubic (bcc) martensite!™ has a great strength-
ening effect on iron and underlies technologically important
properties of steels, such as corrosion resistance, fracture
toughness, high mechanical damping, shape memory effect,
superelasticity, and superplasticity.*

The tetragonality of the martensite lattice is a direct
consequence of the preferential occupation of one of the three
possible octahedral sublattices by impurities (Fig. 1). The
occurrence of ordered phases has been attributed to a homo-
geneous diffusionless deformation (Bain’s transformation)™°
from fcc austenite to bee ferrite, during which the impurity
atoms occupying the octahedral interstitial sites of the fcc
lattice fall into only one interstitial sublattice of the bcc phase
and thus cause the tetragonal distortions. While the formation
of such tetragonal states is well established for high impurity
concentrations [>0.6 wt % for Fe-C (Ref. 7) and > 0.75 wt %
for Fe-N (Ref. 8)], only one experimental study reports the
formation of the tetragonal Fe-C martensite’ at low impurity
concentration (0.18 wt %). Zener'® suggested a “self-induced
preferential distribution” of impurity atoms on one octahe-
dral subcell in bee Fe driven by an elastic (strain-induced)
interaction between them. Based on this idea, Kurdjumov
and Khachaturyan''~'* deduced the transition from an ordered
tetragonal state to a disordered cubic phase, using the method
of static concentration waves'> and microscopic elasticity
theory (MET),'*'® which takes into account the discrete
nature and elastic anisotropy of crystal lattices. The MET is
formulated in reciprocal space and a priori has no limitations
on the interaction radius. It thus naturally takes into account the
long-range strain-induced interactions between point defects
in an alloy matrix. The order-disorder transition of dilute
Fe-C solid solutions at room temperature has been predicted
within the framework of the MET,!%!217-20 which describes
the strain-induced interaction only. However, it has been
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subsequently shown'!®?! that for an accurate description of
the martensitic transformation, also chemical C-C interactions
have to be considered in addition to the elastic interaction.

We recently demonstrated®” the efficiency of combining
atomistic simulations with MET for studying martensitic
stability limits in a dilute Fe-C solid solution. The employed
approach allowed for a consistent description of the strain-
induced and chemical interaction of C impurities with all
parameters determined using atomistic simulations exclu-
sively. Nevertheless, atomistic methods, based on semiem-
pirical approaches, such as the embedded atom method used
in that study, are restricted to the availability of reliable
interaction potentials. Moreover, magnetic properties, which
play a dominant role in Fe-based solid solutions, are difficult
to capture at the atomistic level, although some promising
approaches®? in this direction have emerged over the last few
years.

In order to overcome the above-mentioned limitations, we
use a combination of parameter-free density functional theory
(DFT) and MET to capture both the short-range chemical and
the long-range elastic interactions in iron-based systems. In
particular, we study the formation mechanism of martensites
in bece Fe with low impurity concentrations and predict their
stability limits. The technologically important impurities C,
N, O, B, as well as the C+N system, which are commonly
employed to tune the hardness, deformability, machinability,
corrosion resistance, and strength of steels, are used as alloying
elements.

Pressure critically affects the propagation of elastic waves
and thus the interatomic interactions, as well as the mechanical
stability of solid solutions. Therefore, the order-disorder
transition was investigated as a function of the external stress
state of the systems.

II. METHOD

A. Interatomic interactions

A fundamental understanding of the physics governing the
interactions between interstitial atoms in bcc Fe is critical
for a correct description of the properties of steels. In order
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FIG. 1. (Color online) Schematic structure of the bcc lattice,
containing (a) three interpenetrating bcc sublattices of octahedral
interstices (open circles, triangles, squares) within the Fe host
matrix (gray balls), and (b) only one octahedral sublattice occupied
by impurity atoms [red (small gray) balls]. Octahedral cages are
indicated in either case. Scenario (b) is interpreted as orientational
ordering and causes the tetragonal distortions of the Fe host lattice.
A fully random distribution of impurities on all three sublattices in
(a) results in cubic symmetry. The first five coordination shells for
interstitial impurities are indicated by arrows.

to accurately describe impurity-impurity interactions within
the Fe matrix, we represent the interaction between two
interstitials at positions p and ¢ in two unit cells separated
by a translation vector R in matrix form || V;;(;(R)”'B In such
a matrix, the diagonal elements describe the interaction within
each interstitial sublattice (see Fig. 1) and nondiagonal entries
correspond to effective cluster interactions between atoms
on different sublattices. The total effective pair interaction
is considered as a sum of a chemical part ||V;2(R)|| and a
strain-induced part ||V[§‘q(R)||, which is mediated by lattice
relaxation.

The chemical contribution to the impurity-impurity interac-
tion as a function of the impurity separation R was obtained by
calculating the energy of the system with all atoms constrained
to their ideal positions. In particular, the pairwise chemical
interaction was determined by

V;;;(R) — EEZ+2X(R) _ EFE _ 2(EF€+X _ EFe)’ (1)

where E}SP2X(R) and EF**X are the energies of the systems
containing two X impurity atoms separated by a distance R
and a single X atom within the Fe matrix, respectively. E
is the energy of the Fe matrix. The last term is the energy of
injection of an interstitial atom X in the Fe host.

The strain due to the presence of interstitial atoms in the
system is described as the elastic response of the lattice to
a virtual force field, given by the Kanzaki forces F,(R).!***
Based on this model, the strain-induced interaction potential
between two interstitial atoms at positions p and ¢ in two unit
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cells separated by a translation vector R reads in reciprocal
space as'>14

VS (&) = —F,(0GBF:K) + 0,8, 2)

where Q,, is the self-interaction correction:
1
Qpp = 3 2 FpGHRF, (k). 3)
K

The summation is carried out over the first Brillouin zone
by N k vectors. F,(k) is the Fourier component of the
pairwise Kanzaki force F,(R), G(k) = D~ (k)(k # 0) is the
Fourier component of the lattice Green’s function,” D(k) is
the dynamical matrix, and &, is the Kronecker delta.

We neglect the Kanzaki forces for the third and higher
coordination shells of the host lattice surrounding the inter-
stitial atoms. This allows us to obtain an analytic expressions
for F,(Kk) in terms of macroscopic material properties only:
elastic constants c;;, the lattice constant ag of the host matrix
in the absence of impurity atoms, as well as the L0, Lo10],
and Lo coefficients (see, e.g., Ref. 26), which describe
the concentration dependence of the impurity-induced lattice
distortions in the [100], [010], and [001] directions, respec-
tively. The analytic form of G(k) (Ref. 14) is a function of
¢ij and ag only. Note, that the MET is rigorously defined for
interstitial alloys since they can be strictly separated into a
metal matrix, described by lattice Green’s functions and an
impurity subsystem which acts on the host matrix by Kanzaki
forces.

B. Ab initio calculations

The pairwise chemical interactions between the impu-
rity atoms, as well as the parameters for the long-range
strain-induced interactions within the MET, have been
obtained from DFT?7?8 calculations. For the description of the
electron-ion interactions we have employed Blochl’s projector
augmented-wave (PAW) potentials® in combination with
the Perdew, Burke, and Ernzerhof (PBE)30 parametrization
of the exchange-correlation functional, as implemented in
the Vienna Ab Initio Simulation Package (VASP).>'=** The
ground-state phase of Fe [ferromagnetic (FM) bcc (Ref. 35) at
low temperatures] has been assumed in all calculations. The
integration over the first Brillouin zone has been performed
using the Methfessel-Paxton scheme?® of order one.

To ensure accurate values of the derived chemical and
elastic interactions, careful convergence tests have been
performed with respect to the plane-wave (PW) energy cutoff,
the k-point mesh, as well as the supercell size.

A plane-wave energy cutoff of 450 eV was found to allow
for convergence with respect to the equilibrium lattice constant
[Fig. 2(a)] and the bulk modulus of bcc Fe.

To exclude spurious energy contributions due to interac-
tions of the impurity atoms with their periodic images, we
studied the convergence of the pairwise chemical interactions
Vh(R) with respect to the supercell size (Fig. 3). A4 x 4 x 4
cubic supercell containing 128 Fe host atoms, and two inter-
stitial atoms in octahedral sites (see Fig. 1) has been chosen
as a compromise between the accuracy of the calculations
and their computational feasibility. The use of a k-point mesh
equivalent to the 16 x 16 x 16 Monkhorst-Pack’’ mesh for
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FIG. 2. (Color online) Convergence of the equilibrium lattice
constant (a), (b) and bulk modulus (c) of Fe with respect to the
cutoff energy (a) and the k-point mesh density (b), (c). Squares
and circles in (b) correspond to plane-wave cutoff energies of 440
and 460 eV, respectively. a" are the equilibrium lattice constants
calculated (a) using a cutoff energy of 520 eV and a 27 x 27 x 27
k-point grid, and (b) using a 48 x 48 x 48 k-point mesh for either
cutoff energy. The maximal error in the calculated lattice constant
using a 27 x 27 x 27 k-point mesh and a smearing parameter of
0.1eVislessthen 1.5 x 10~* A. (c) The different symbols correspond
to different electronic temperatures in eV, as marked on the graph.

the conventional bce cell in conjunction with a smearing
parameter of 0.1 eV ensures a convergence of V°"(R) to within
0.4 meV /atom.

The description of elastic properties tends to require
denser k-point meshes since the calculation of these quantities
implies discontinuous changes in the PW basis set due to
variations in the supercell shape. The convergence of the
elastic properties (ao, ¢;j, By) of pure bcc Fe was therefore
carefully studied as a function of the k-point grid (Figs. 2
and 4) and the smearing parameter o. As discussed above,
the lattice parameter and the elastic constants serve as inputs
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FIG. 3. (Color online) Dependencies of the pairwise chemical
contribution to C-C interactions as a function of the C-C separation
for supercells of different sizes. Doubling of the supercell of the Fe
matrix (from 54 to 128 atoms) dramatically decreases the spurious
effect of periodic boundary conditions [note in particular the inter-
atomic distance of 4(ay/2), corresponding to coordination shells 18
and 19].

for the MET-based determination of the long-range elastic
interactions. For a reliable application of this approach these
parameters therefore need to be well converged. Increasing the
smearing parameter o in the Methfessel-Paxton scheme allows
for a more efficient sampling of the Fermi surface, and hence
a reduction in the required integration mesh. Our calculations
indicate that, although the convergence of the bulk modulus
[Fig. 2(c)] and the elastic constants (Fig. 4) with respect to
the k-point mesh is indeed improved for higher values of o,
the absolute values of the calculated elastic constants are also
shifted with increasing o value. For example, the deviation
between the converged result for By, as determined using
o = 0.1and 0.3 eV is within 1% [Fig. 2(c)], while the deviation
between the converged result for c44, obtained for identical
smearing parameters, can be as large as 10% (Fig. 4). Such
a large variation in cy4 is critical since its influence on the
elastic response of polycrystalline materials was found® to
be two orders of magnitude larger than that of, e.g., the bulk
modulus. To achieve an accuracy of 5 GPa in the elastic
constants (Fig. 4) and a convergence of the lattice constants
to within 1.5 x 10~* A [Fig. 2(b)], we therefore chose the
following parameter set: an energy cutoff of 450 eV and a
27 x 27 x 27 Monkhorst-Pack k-point grid per conventional
bee cell in conjunction with a smearing parameter of 0.1 eV.
Hence, two different integration meshes were used for the
determination of chemical and elastic interaction parameters.
We note that, for calculating the elastic properties, a careful
choice of the electronic temperature (e.g., 0 = 0.3) may allow
a reduction in the k-point sampling by a factor of 2-3 times,
and a corresponding speed up of the calculations.

The influence of hydrostatic pressure on the energetic and
elastic properties of the Fe-based solid solutions was studied
using the calculated results for a range of nonequilibrium
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FIG. 4. (Color online) Convergence of the elastic constants of
bee Fe with respect to the number of k points. The different symbols
correspond to electronic temperatures in eV, as marked on the graph.
Experimental measurements (Ref. 39) at 4.2 K are indicated by the
dashed-dotted red horizontal line.

volumes V. The transformation of the calculated energies to
units of external pressure has been performed using P(V) =
—dE(V)/dV, where E(V) is provided by the Murnaghan
equation of state®” fitted to the ab initio calculated energy-
volume data.

III. RESULTS

A. Strain-induced interaction

The equilibrium lattice constant ag for the pure Fe matrix
was found by a least-squares fit of the total energy as a function
of the unit-cell volume, using the Murnaghan equation of
state (see Fig. 5 and Table I). The elastic moduli of the
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FIG. 5. (Color online) Total energy of bcc Fe (left-hand axis) as
a function of the volume per atom (top axis) and the corresponding
external pressure (bottom axis). Circles indicate the results of ab initio
calculations. The dotted line was obtained by a least-square fit to the
Murnaghan equation of state E(V'). The red (solid) line represents the
dependence of the lattice parameter (right-hand axis) on the external
pressure determined by differentiating the Murnaghan equation of
state.

cubic crystals have been determined by a well-established
approach from the bulk modulus B = (c¢;; + 2c¢12)/3, which
is directly related to the energy-volume curve, and the two
shear moduli, c¢;; — c¢jp (longitudinal strain in the [100]
directions — orthorhombic distortions) and c44 (shear strain —
monoclinic distortions). Both shear moduli are obtained
by fitting third-order polynomials to the energy-strain data
and extracting the second-order coefficients. The calculated
lattice constant and local magnetic moment are in excellent
agreement with previous full-potential linearized augmented
plane-wave (FLAPW) and PBE data (Table I), indicating that
the deviation with respect to experiment is a consequence of
the chosen exchange-correlation functional. The experimental
elastic properties could be reproduced to within 10%, except
for c44, for which a deviation of 25% was obtained. The
pressure dependence of the elastic constants is shown in Fig. 6
and their pressure derivatives are listed in Table I. These
moduli were calculated at fixed volumes, which correspond
to particular external hydrostatic pressures according to the
Murnaghan equation of state, as was noted above.

The numerical measure of the host lattice deformation
under an external pressure in the presence of an impurity X is
given by

1 af§§z](P)

age(P) c

—afe(P)

Lixyz)(P) = , 4

where age(P) and a[F)‘f;Z](P) are the lattice parameters of

the host Fe matrix and the FeX system under an external
pressure P, respectively, and c is the impurity concentration.
To evaluate the Lixyz(P) parameters we calculated the
hydrostatic pressure dependence of the FeX lattice constants
along the [100], [010], and [001] directions using a 54-atom
Fe supercell with impurity concentrations of 1.818 at. %
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TABLE 1. Theoretical and experimental lattice constant ag (in A), bulk modulus By, elastic constants c; ; (in GPa), pressure derivative B,
and local magnetic moment m;, (in uB) of FM bcc Fe in the absence of external pressure. Theoretical and experimental pressure derivatives
dBy/dP,dc;;/dP of elastic constants are listed in the last three rows. Here PW91 denotes Perdew-Wang exchange-correlation functional, and
VWN denotes Vosko-Wilk-Nusair interpolation for the correlation part of the exchange-correlation functional.

ag Bo B(/) C11 C12 C44 ol my Reference
PAW-PBE 2.834 185 5.55 277 140 92 68.5 2.2 This work
PAW-PWI91+VWN 2.83 189 2.17 Ref. 34
FLAPW-PWO1 2.839 174 2.17 Ref. 41
FLAPW-PBE 2.84 186 279 140 99 69.5 2.17 Ref. 42
PAW-PBE 2.834 174 2.2 Ref. 43
Experiment (T ~ 0 K) 2.861 173 5.5(8) 243 138 122 52.5 2.2 Refs. 7, 39, 44, and 45

Pressure derivatives

PAW-PBE 5.55 7.82 4.42 3.25 1.7 This work
FLAPW-PBE 9.35 3.71 0.62 2.82 Ref. 46
Experiment (7' = 300 K) 5.29 6.72 4.58 2.59 1.07 Ref. 47

(one impurity atom) and 3.57 at. % (two impurity atoms).
The impurity atoms were distributed on a single octahedral
sublattice within the supercell so as to maximize their
separation. The atomic positions and the shape of the supercell
were allowed to relax.

The presence of impurities causes tetragonal distortions
of the host lattice for all systems considered (Fig. 7). For
each impurity concentration we determined the Lijoo)(P)
and Loo1;(P) parameters according to Eq. (4), as indicated
by the symbols in Fig. 8. Note that the different impurity
concentrations induce different pressure states of the systems.
In order to obtain a concentration independent measure of
the tetragonality, the pressure dependence of the calculated
data was fitted by fourth-order polynomials for either con-
centration and averaged for each system. It is emphasized
that this procedure is not only required to obtain the pressure
dependence of Ljoo; and Ligo) but also for the determination
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FIG. 6. (Color online) Dependence of the elastic constants of
bee Fe (dots) on the external hydrostatic pressure (bottom axis) and
corresponding volume per atom (top axis). The solid lines are fourth-
order polynomial fits to the calculated data. Pressure derivatives are
listed in Table I.

of the tetragonality under equilibrium conditions (P =0,
see Table II). The agreement of our results with available
experimental data is satisfactory, taking into account that the
considered impurity distributions may differ from the periodic
arrangement assumed here due to imposed periodic boundary
conditions.

Having determined all necessary input parameters (do, Cij,
Lixyz)), the strain-induced interaction || V;iq(k)u was obtained
using MET. The eigenvalues A, (k) of this matrix exhibit a
nonanalyticity as shown in Fig. 9. In the close vicinity of the
I' point, the eigenvalues have an undefined value, which is
critically dependent on the direction from which the I' point
is approached. Such a behavior is attributed to the long-range
character of the strain-induced interactions between impurities
and reflects the large Zener anisotropy factor of iron. This
principal feature of the strain-induced interaction is the same
for all studied impurities and differs only quantitatively.

e FeC
22921 = FeN a, [001/]/*
@ A FeO
S ¢ FeB
S pggl  TeCN t
3 a_[100]
A
2841 .~ A 2 [010]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0 1 2 3

Impurity content (at.%)

FIG. 7. (Color online) Dependence of the lattice parameters of
various Fe-X solid solutions on the impurity concentration under
zero external pressure. The dashed lines emphasize the increased
tetragonality with increasing concentration and serve as guide to the
eye only.
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FIG. 8. (Color online) Pressure dependence of L;o (a), (b) and
Lioo1y (c), (d) for impurity concentrations of 1.818 at. % (circles) and
3.57 at. % (squares). The lines are fourth-order polynomial fits to the
calculated data.

B. Chemical interaction

The chemical part of the interaction between impurities was
determined ab initio by Eq. (1), as shown in Fig. 11(a). For
all impurity species considered here the chemical interaction
energy is a fast decaying function, which is essentially
confined to within the ~7 nearest-neighbor shells. Nonzero
interaction energies in shells with higher coordination numbers
are attributed to Friedel oscillations and supercell-size effects
(see Fig. 3). In order to exclude numerical noise, and taking
into account the limited accuracy of our ab initio calculations
(uncertainty in pairwise interaction parameters of ~50 meV
for a supercell consisting of 128 Fe atoms), we focus in the
following analysis on the first seven shells. This is equivalent to
assuming a cutoff radius of 2.5a/2 (3.55 A) for the chemical
interaction between the impurities. It is noted that despite
the obvious effect of periodic boundary conditions on the
impurity-impurity interactions in higher coordination shells
(e.g., shells 18 and 19—see Fig. 3) in the 3 x 3 x 3 supercell,
a comparison with larger supercells shows that this supercell is
sufficient to describe the pairwise chemical interactions in the
lower coordination shells considered in this study. As for the
elastic interactions, the chemical interactions were obtained
as a function of the pressure state of the involved systems

TABLE II. Parameters for the Kanzaki forces obtained ab initio
at zero external pressure. Parameters based on available experimental
data are listed in parentheses.

System Liion Lioon
FeC —-0.017 1.013
(—0.09) (Ref. 7) (0.86) (Ref. 7)
FeN 0.02 0.993
(—0.07) (Ref. 8) (0.83) (Ref. 8)
FeO 0.14 0.972
FeB —0.006 1.064
FeCN 0.00373 0.989

PHYSICAL REVIEW B 83, 184112 (2011)

(eV)

S|
k

c [£E0]
(%1) (000)

e oozl [z21] |5
111 000 001) (11

(111) (222] (000) ( )[220]

wavevector &, units 2n/a

FIG. 9. (Color online) Dispersion curves for the eigenvalues,
Lo (K), of the strain-induced interaction matrix of the Fe-C system
at zero external pressure.

[Feips X5, Feipg X, and bulk Fe, see Eq. (1)], as determined
using the Murnaghan equation of state. External pressure
significantly affects the interaction between nearest-neighbor
impurities (squares in Fig. 10), while for interactions in all
other shells the dependence is weak. In order to include the
pressure dependence of the pairwise chemical interactions
in the following analysis, ab initio determined data points
were interpolated by third-order polynomials. As an example,
the results for the pairwise interaction between N atoms in
the first four neighbor shells are shown in Fig. 10. Similar
dependencies were obtained for all impurities considered.
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FIG. 10. (Color online) Dependence of the N-N chemical inter-
action on external pressure (bottom axis) and corresponding volume
per atom (top axis). Only the interaction within the first four shells

are shown. Symbols indicate ab initio results and lines represent the
third-order polynomial fits.
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FIG. 11. (Color online) Dependence of pairwise (a) chemical,
(b) strain-induced, and (c) total impurity-impurity interactions as
a function of the separation distance. The insets magnify the
interactions within shells with higher coordination number. The top
axis indicates the coordination shells corresponding to the interaction
radii.

C. Total interaction

In order to compare the general features of the strain-
induced interactions obtained within the MET [in reciprocal
space—Eq. (2)] and the chemical interactions directly derived
by the ab initio calculations [in real space—Eq. (1)] we Fourier
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transform the strain-induced interaction into real space:

. 1 : .
Vo R) = =3 V3 (e, (5)
k

In contrast to the fast decaying chemical interactions
[Fig. 11(a)], the strain-induced pair interactions exhibit a
long-range oscillatory behavior in real space [Fig. 11(b)], orig-
inating from the slow decay of the atomic displacement field,
induced by the impurity atoms. We remark that a real-space
description of such long-range strain-induced interactions
would be challenging, while they are naturally taken into
account in a reciprocal-space formulation, such as the MET.

The superposition of chemical and strain-induced interac-
tion energies between C-C, N-N, O-O, and C-N impurities
are strongly repulsive in the first two coordination shells and
attractive in the third shell. The total pairwise interaction
between B-B atoms, on the other hand, is attractive in the
first three coordination shells. For impurities separated by a
larger distance, however, the character of the interaction is
qualitatively similar for all impurities considered and clearly
dominated by the strain-induced part (see the insets in Fig. 11).
The dominance of the strain-induced interactions justifies the
truncation of the chemical interaction beyond the seventh
coordination shell, as discussed above.

For the following discussion it is convenient to express
the total interaction matrix in Fourier space: ||V 2'(k)| =

IVl + IV, (). Here [Vib()| and Va0 are
the matrices of the strain-induced and chemical contribu-
tions to impurity-impurity interactions in reciprocal space,
respectively. By diagonalizing the total interaction matrix its
eigenvalues A, (k) are obtained, where the index o specifies
the interstitial sublattice. According to the static concentration
wave method,'? the configurational energy of the most stable
phase is defined by the global minimum of A, (k). Using the
interaction matrices based on our ab initio calculations for
the different impurities, we find the minimal eigenvalue at
k = Oin all cases, which corresponds to an infinite interatomic
distance in real space. The global minimum is represented
in terms of the following interaction matrix, A;(k =0) =
Vi9H0) + 2V5'(0) and Ax(k = 0) = V$'(0) — V/9'(0), while
M3(k = 0) is degenerate to A;(k = 0). The minimum of A,
at k = 0 corresponds to an ordered structure'® in which only
one octahedral sublattice is occupied by impurity atoms. Such
ordering with a well-defined orientation results in tetragonal
distortions of the Fe host matrix. The minimum of A; at
k = 0 corresponds to a disordered phase, where all three
interstitial sublattices are occupied with equal probability.

TABLE III. Eigenvalues in eV of the impurity-impurity interac-

tion matrix || V,ﬁ‘;‘(k)ll at zero external pressure.

System Mk =0) ok =0)
FeC 1.00 —6.380
FeN 12.390 —9.929
FeO 7.322 —9.357
FeB —17.411 3.764
FeCN 6.893 —7.953
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Depending on whether the global minimum is at A;(k = 0) or
Xo(k = 0), a disordered or ordered state is realized. Applying
this criterion, we find for all solid solutions studied here the
orientationally ordered, tetragonally distorted state except for
the boron impurities (see Table III).

The qualitatively different behavior of B compared to
all other impurities can be understood by analyzing the
real-space total interactions in the first shells [Fig. 11(c)].
Unlike all other impurity atoms, only B atoms exhibit attractive
(negative) interactions in the first two coordination shells. The
interaction in the third shell, which corresponds to impurities
on the same sublattice (shell 3 in Fig. 1) is attractive for
all impurities considered. Therefore, for C-C, N-N, O-O,
and C-N, the first attractive (stable) configuration involves
interstitials on a single sublattice only. This preferential
occupation of a particular sublattice is the fundamental
origin of the tetragonal distortion of these solid solutions.
In contrast, B-B favors nearest- and next-nearest-neighbor
pairs on different interstitial sublattices. Thus, the qualitatively
different interactions in the first two neighbor coordination
shells explains why C, N, O, and C-N can form martensite,
while at least in thermodynamic equilibrium this is not possible
for B. The predicted thermodynamic instability of a B-induced
martensite phase is in line with the absence of any experimental
observation*® of such a phase.

Moreover, the predicted repulsive C-C, N-N, and C-N
interactions within the first two coordination shells is consis-
tent with Mossbauer spectroscopy-based investigations (see,
e.g., Refs. 49 and 50).

D. Thermodynamics
The configurational free energy of the orientationally
ordered structure can be expressed'’ within a mean-field
approximation in terms of the eigenvalues X;(k = 0) and
Mo(K = 0) of the total interaction matrix:
N c\2 c\2
Fle = Zauk=0)(5) +3Nuk=0)(5) »
2 3 3
C
3
xn[ S0 +2n)]+2[1- S0 -]

x ln[l _ %(1 — n)] + [1 - g(l +2n)]

ksTN{250 —mm][<a ‘142
+ky {5( —m)n[S0—m]+ S0 +2m)

x In [1 — %(1 + 2n)] } (6)

Here the first two terms denote the enthalpy of the solid
solution and the remaining terms describe the configurational
entropy. n is the long-range order (LRO) parameter of the
system with n = 1(0) for the perfectly ordered (disordered)
state, kp is the Boltzmann constant, and 7 is the absolute
temperature. The concentration ¢ corresponds to the atomic
fraction of impurities in the Fe matrix.

The LRO parameter can be easily obtained as a function
of temperature (see Fig. 12) by numerically minimizing
the free-energy functional Eq. (6) and keeping the impurity
concentration fixed. As a direct result, we obtain the critical
temperature T at which n abruptly changes from 0 to 1.
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FIG. 12. (Color online) Long-range order parameter as a function
of temperature assuming a carbon content of 1.13 at. % in the Fe host
matrix. The equilibrium LRO parameter at 7 = 300 K is defined
by 6F/én = 0 and indicated by the dotted line. The AB region of
n values corresponds to the absolute stability of the ordered phase;
BC delineates the metastable ordered phase, for which the energy
minimum of the ordered phase is higher than the energy minimum of
the disordered phase; in the CD region ordered phases are absolutely
unstable; DE is the region of metastable stability of the disordered
phase. A first-order phase transition occurs at point B at a temperature
Tp corresponding to the critical LRO parameter 1.

The abrupt (discontinuous) change corresponds to a first-order
phase transition.

Using this approach the dependence of the order-disorder
transition temperature on the impurity concentration can be
obtained:

B ANk = 0)c {

T:
0 ks

[1 4+ 201[3 — (1 — no)] }1
n . (D
[T —=mnol[3 —c(1 —no)l

Here 7o is the equilibrium LRO parameter defined by
SF/énly=n, = 0.

Solving Eq. (7) together with the equilibrium condition
F(c,n9) = F(c,0) for ordered and disordered phases, we
evaluated the temperature-dependent stability range of the
disordered phase, as a function of the impurity concentration
(Fig. 13). The disordered state consists of a random distribution
of the impurity atoms over all octahedral interstices of the
host Fe bcc lattice involving no orientational ordering and
tetragonal distortions. All systems for which orientational
ordering is predicted behave qualitatively the same. The
critical concentrations at which such transition occurs at room
temperature are listed in Table IV.

In the predicted phase diagram (Fig. 13) the experimental
eutectoid isotherms (1000 K for Fe-C and 865 K for Fe-N)
and the solubility limits of C (0.09 at. %/0.02 wt %) and
N (0.4 at. %/0.1 wt %) in bcc Fe are indicated by thin lines
colored in green and blue, respectively, in order to delineate the
concentration regime, in which the order-disorder transition
can take place. The N solubility in bcc Fe is considerably
higher (by a factor of 4) than that of C and the eutectoid
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FIG. 13. (Color online) Predicted equilibrium phase diagram of
Fe-based solid solutions. The order-disorder transformation temper-
atures (7p) as calculated by Eq. (7) are plotted by solid lines. The
dot corresponds to the only available experimental data (Ref. 9)
for the dilute Fe-C system. Above cp,x the disordered Fe-C phase
is thermodynamically unstable. Below temperature 7y the disorder-
order transition is kinetically hindered, due to the slow diffusion
of the interstitial C atoms. Thus no martensitic transformation is
expected below the corresponding concentration c¢y,;,. Qualitatively
similar arguments hold for the Fe-N, Fe-O, and Fe-C-N systems. The
dashed-dotted line represents the Fe-C solid solution as described
by ab initio determined chemical interactions and a MET-based
description of the strain-induced interaction with experimentally
obtained input parameters. No ordered, tetragonally distorted phase
was found in the low concentration regime of the Fe-B phase diagram.

temperature is lower (by 150 K), but qualitatively the relevant
part of the Fe-N and Fe-C phase diagram is very similar.
According to Fig. 13, there are two fundamentally different
transformation mechanisms giving rise to tetragonal states of
Fe-based interstitial solid solutions. Here we discuss them
for the example of the Fe-C system. For concentrations
above cpx, a direct (Bain-type) transformation from austenitic
fcc to the ordered (tetragonally deformed) martensite takes
place.>® For impurity concentrations below cpa, the marten-
sitic transformation involves a disordered phase, which has to
be ordered by atomistic diffusion during the quenching of the
austenitic phase in order to create the tetragonal lattice. Such

TABLE IV. Critical impurity concentration of the order-disorder
transition at room temperature under zero external pressure. FeC*
corresponds to the solid solution with chemical interactions calculated
ab initio and strain-induced interactions obtained within the MET
with experimentally measured input parameters (see text for details).
Experimental data are listed in parentheses.

Cerit FeC FeN FeO FeCN FeC*

at. % 1.13 0.72 0.77 0.9 0.87
(0.84) (Ref. 9)

wt % 0.24 0.18 0.22 0.187

(0.18) (Ref. 9)
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FIG. 14. (Color online) Pressure dependence of the critical
concentration of the order-disorder transition at room temperature.

a rearrangement will be limited by a critical temperature, (7y),
below which the diffusion of the interstitial atoms is kinetically
hindered. Using the experimentally observed diffusion barrier
of C in bee Fe of 0.87 eV,>! T} is found to be ~270 K. Based on
the equilibrium phase diagram (Fig. 13), T4 can be related to
a critical carbon concentration ¢y, of 1.01 at. % (0.22 wt %),
below which no martensite formation is expected.

The same arguments also hold for N, O, and C+N
impurities in the bec Fe host matrix. The Fe-N system is the
least stable with respect to a order-disorder transformation—it
exhibits the smallest concentration-temperature regime corre-
sponding to the stability of the disordered, cubic phase. In other
words, our results suggest that N is the strongest martensite
stabilizer among the impurities considered in this study. The
relative stability of the ordered phase in the presence of the
different impurities follows from the relative magnitude of the
eigenvalues of the respective interaction matrices (Table III).
The entropic contributions to the free energy hence do not
significantly influence the stability of the solid solutions
considered in this study.

The only available quantitative experimental evidence for
an order-disorder transition at room temperature was reported
for carbon. A critical C concentration of 0.84 at. % (0.18
wt %) (Ref. 9) (indicated by a dot in Fig. 13) was reported
based on x-ray diffraction measurements, which is ~25%
off the 1.13 at. % (0.24 wt %), found in this study. The
experiment was performed on polycrystalline samples, in
which sizable internal stresses are expected due to misfit
strains. To estimate how strain affects the critical impurity
concentration, we use our computed pressure dependence of
the strain-induced (Figs. 5, 6, and 8) and chemical (Fig. 10)
interaction parameters. We find a notable change (of up
to 17% for C impurities) in the critical concentration at
room temperature for hydrostatic pressures between +5 GPa
(Fig. 14). The discrepancy between our results and experimen-
tal data may therefore be partly explained by the presence of
residual strains in the polycrystalline samples.
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A further reason for the discrepancy may be due to the fact
that the temperature dependence of the critical concentrations
at all external pressures was obtained using our ab initio
determined O K elastic constants of Fe (Table I). In order
to analyze the influence of the temperature dependence of the
elastic constants on the critical impurity concentration, we
repeated our analysis using experimentally determined finite
temperature elastic constants.>>>? At room temperature, the
adjusted elastic constants give rise to very modest increases
(between 1% for Fe-N and ~7% for Fe-C) in the critical
concentrations.

The principal origin of the discrepancy between our results
and the experimentally observed critical C concentration is
attributed to limitations in the description of the 0 K elastic
properties of Fe (Table I) and its solid solutions (Table II ) by
the exchange-correlation functional used. This becoms evident
when replacing the ab initio determined input parameters for
the MET (ay, ¢;j, Lixyz)) by experimental data at T ~ 0 K
and combining the thus obtained strain-induced interaction
terms with the ab initio calculated chemical ones. Using this
combined experimental and theoretical approach a critical
concentration of 0.87 at. % (0.187 wt %) at room temperature
under zero external pressure (see the dashed-dotted line in
Fig. 13) is found in good agreement with the available exper-
imental value. This fact indicates that a combined approach,
involving an ab initio determined chemical interaction term
and an experimentally informed MET-based description of the
strain-induced interaction allows one to overcome deficiencies
due to residual limits in present DFT functionals. For such an
approach only computationally inexpensive impurity-impurity
interactions within a rigid lattice have to be determined
ab initio.

IV. CONCLUSIONS

We applied a combination of microscopic elasticity theory
with parameter-free ab initio calculations for the simulation of
structural and thermodynamic properties of technologically
important Fe-based interstitial solid solutions. Using DFT
calculations we obtain the input parameters for the description
of the long-ranged interactions between the impurities within
the MET. The consistent, ab initio based description of
strain-induced and chemical interactions allowed us to predict
the low impurity concentration part of the Fe-C, Fe-N, Fe-O,
Fe-C-N, and Fe-B phase diagrams.

Despite the limited accuracy of the description of the elastic
properties of Fe using DFT, our results provide valuable
insight into the relative martensite formation propensity of
the different systems, given that they have all been treated
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on an equal footing. In particular, the fundamental driving
force for the formation of the tetragonally distorted martensitic
phases of bce Fe-based solid solutions involving interstitials in
octahedral interstices was shown to be the repulsive impurity-
impurity interaction in the first two coordination shells. Hence,
the lack of tetragonally distorted Fe-B solid solutions could
be explained in terms of attractive B-B interactions in the
first two nearest-neighbor interaction shells. Conversely, the
martensite formation in the presence of C, N, O, and C+N
impurities originates from a configurational ordering induced
by repulsive interactions in these coordinational shells.

Moreover, the predicted phase diagram suggests an expla-
nation for the scarcity of martensitic phases in dilute Fe-based
interstitial solid solutions. In particular, at low concentrations
a diffusion-based transformation mechanism is proposed. In
this regime the quenching of the fcc austenite to bec ferrite
has to be slow enough to allow the diffusional orientational
ordering of impurity atoms, which results in the tetragonality
of the Fe host matrix. In contrast, during fast quenching,
impurity atoms remain randomly distributed within the cubic
Fe matrix. This diffusive transformation mechanism is limited
by a lower critical temperature (concentration), below which
no martensite formation is expected due to the slow kinetics
of the impurity rearrangement.

The concentration boundaries derived for the phase diagram
(Fig. 13) agree well with established characteristics of steels.
For instance, so called mild steels exhibit a low alloying
element content (Iess than ~0.2 wt % or 0.93 at. % for carbon),
are malleable, ductile, and weldable (see, e.g., Ref. 53), and
are thus suitable for many applications. As the concentration
of the alloying element rises, the hardness and stiffness of
steels increases, but their plasticity decreases. Such a change
in the properties is attributed to the appearance of martensitic
inclusions in the ferritic matrix and is in line with our
predictions.

The approach developed in this study is general and can
be easily extended to other interstitial or substitutional solid
solutions with parameters, obtained solely atomistically or in
combination with experimentally measured data.
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