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Head-to-head and tail-to-tail 180◦ domain walls in a finite isolated ferroelectric sample are theoretically studied
using Landau theory. The full set of equations, suitable for numerical calculations, is developed. The explicit
expressions for the polarization profile across the walls are derived for several limiting cases and wall widths
are estimated. It is shown analytically that different regimes of screening and different dependences for the
width of charged domain walls on the temperature and parameters of the system are possible, depending on
spontaneous polarization and concentration of carriers in the material. It is shown that the half-width of charged
domain walls in typical perovskites is about the nonlinear Thomas-Fermi screening length and about one order of
magnitude larger than the half-width of neutral domain walls. The formation energies of head-to-head walls under
different regimes of screening are obtained, neglecting the poling ability of the surface. In the nonlinear regimes
of screening, this energy is equal to the energy necessary for the creation of electron-hole pairs in the amount
sufficient to screen the spontaneous polarization, which is proportional to the band gap of the ferroelectric. It is
shown that either head-to-head or tail-to-tail configurations can be energetically favorable in comparison with
the monodomain state of the ferroelectric if the poling ability of the surface is large enough. If this is not the case,
the existence of charged domain walls in bulk ferroelectrics is merely a result of the domain-growth kinetics.
Formation energies of the other possible states, i.e., the multidomain state with antiparallel domains separated by
neutral walls and the state with the zero polarization, were compared with the formation energy of the charged
domain wall. It was shown that, at large enough sample thicknesses, a charged domain wall can be energetically
favorable in comparison with the states mentioned above. This size effect could explain why charged domain
walls were observed experimentally in bulk lead titanate but not in barium titanate. The results obtained for the
case of an isolated ferroelectric sample were compared with the results for an electroded sample. It was shown that
a charged domain wall in an electroded sample can be either metastable or stable, depending on the work-function
difference between electrodes and ferroelectrics and the poling ability of the electrode-ferroelectric interface.

DOI: 10.1103/PhysRevB.83.184104 PACS number(s): 77.80.Dj, 72.20.Jv

I. INTRODUCTION

Ferroelectric materials are widely used today in memories,
piezoelectric transducers, pyroelectric detectors, and thin-film
capacitors.1,2 The structural and functional properties of do-
main walls can substantially influence poling and polarization
switching, the two most important processes in ferroelectrics
and their applications.

Three qualitatively different configurations are possible for
180◦ domains (Fig. 1). In the first case, the domain wall is
parallel to the direction of the spontaneous polarization inside
the adjacent domains. In this configuration, there is no bound
charge on the wall. This case is well studied and described in
details (see e.g., the book by Strukov and Levanyuk3). In the
other two configurations, the domain wall is not parallel to the
direction of the spontaneous polarization. The polarization can
be directed either toward the domain wall (“head-to-head”) or
from the domain wall (“tail-to-tail”) so that positive or negative
bound charges are present on the domain wall, respectively.

Although neutral domain walls are much more common,
charged domain walls were observed in various ferroelectrics,
for example, in PbTiO3 crystals,4–6 Pb[ZrxTi1−x]O3 (PZT)
ceramics,7 BiFeO3,8 and PZT thin films.9 The properties of
charged domain walls can be quite different from the properties
of neutral domain walls. For example, Mokry, Tagantsev, and
Fousek10 showed that the compensation of the polarization
charge by free carriers reduces the pressure exerted on the
wall when an external electric field is applied. This leads to
a reduction in the mobility of the wall and an increase in

switching voltage, even when the mobility of the compensating
free charge is high. This effect was experimentally observed
by Balke et al.11 in BiFeO3 thin film.

In a perfect insulator, the unscreened bound charge on the
charged domain wall typically creates a very large electric
field, which effectively shifts down the Curie temperature (for
the wall perpendicular to the direction of polarization in barium
titanate, this shift is about 24 000 K.) Therefore, except for
a very small spontaneous polarization and a very small angle
between the vector of spontaneous polarization and the domain
wall, for charged walls to exist, their bound charge should
be almost completely screened by free charges. These free
charges should be taken into consideration in the theory for
charged domain walls. It is this situation that will be addressed
in the paper. If it is not mentioned specifically, we will consider
“normal” ferroelectrics, with high permittivity εf � εb, where
εb is the background permittivity. The model considered is
suitable only for the case of the big angle between the domain
wall and the vector of spontaneous polarization.

Head-to-head and tail-to-tail domain walls in a sample with
metallic electrodes were considered in a series of works by
Ivanchik, Guro, and Chenskii et al.12–15 It was argued that such
domain walls can be stable depending on the work-function
difference between the metal electrode and the ferroelectric.

Below, we apply the Landau theory to address the problem
of charged domain walls in an isolated ferroelectric. Some
models of head-to-head and tail-to-tail domain walls in an
isolated sample were considered in the past, where the
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Neutral “Head-to-head” “Tail-to-tail” 

FIG. 1. Neutral and two types of charged domain walls, with the
polarization normal to the wall surface. Orientation of spontaneous
polarization with respect to the wall is shown with arrows.

wall was stabilized by an inhomogeneous distribution of a
dopant.16,17 We will consider the case of a homogeneous
material. The results obtained below for the internal structure
and characteristic scales of domain walls can also be directly
applied to the case of an electroded sample as well. We will
revisit the problem of domain-wall width because several
different scales were obtained in the past by different authors.
For example, according to the classical book on ferroelectric
semiconductors by Fridkin,18 domain-wall formation in head-
to-head configuration is controlled by Debye screening with
free carriers, and the wall thickness should be about the Debye
screening length. Another scale was found by Krapivin and
Chenskii.12 We also compare the results obtained for the
isolated ferroelectric with the results obtained in the past for
the electroded samples.12,14,15

This paper is organized as follows. First, we formulate
the problem in a way suitable for numerical calculations
(Sec. II). In Sec. III A, we discuss characteristic scales of
the polarization variation and limits of applicability of the
continuous theory. In Sec. III B, the problem is formulated in a
way suitable for an analytical treatment. We obtain analytical
solutions and evaluate domain-wall widths corresponding to
the different regimes of polarization screening by free carriers
(Secs. III C and III D). The correspondence between the
regimes of screening and parameters of the ferroelectric is
discussed in Sec. III E.

In Sec. IV, we evaluate the energies of isolated samples
with head-to-head and tail-to-tail domain walls. Different
configurations that can be energetically favorable depending
on the thickness of the ferroelectric and size effects are
considered in Sec. V. An analysis is presented in Sec. VI, where
the situation in an isolated ferroelectric sample is compared
with that in an electroded sample. Numerical estimates and
comparison of the prediction of the theory with experimental
data are presented in Sec. VII.

II. GENERAL FORMULATION OF THE PROBLEM

We consider head-to-head and tail-to-tail domain walls
perpendicular to the direction of polarization (as shown in
Fig. 1) in an isolated sample. If the ferroelectric material is
an ideal insulator, a huge depolarizing field will appear, which
will suppress ferroelectricity in the sample. As a model, we
will consider an infinite plate with thickness L. We consider a
single component system, where all the variables depend only
on one x coordinate, where the x axis is perpendicular to the
plate surface.

First, we obtain the system of equations for the isolated
ferroelectric element using the Landau theory, taking into
account the screening charges. For simplicity, we consider
ferroelectrics with a second-order phase transition. However,

most of the results obtained below are valid for ferroelectrics
with a first-order phase transition as well. The equation of state
for ferroelectrics with a second-order phase transition has the
form (see e.g., Ref. 19)

E = αP + βP 3 − κ

(
∂2P

∂x2

)
, (1)

where α < 0 in the ferroelectric state, β > 0, κ is the
coefficient of the gradient term in the free energy, E is the
electric field, and P is the ferroelectric part of the polarization.

The electrical field and potential ϕ are connected by the
relation

E = −∂ϕ

∂x
. (2)

The Poisson equation for the one-dimensional case has the
form

∂D

∂x
= 4πρ, (3)

where ρ is the free charge density, D is the electrical
displacement, defined as

D = εbE + 4πP, (4)

and εb is the background permittivity.
In the model of electron gas with parabolic spectrum,

the free charge density ρ depends on the potential ϕ as
follows:20–22

ρ = −qNCF1/2

(
EF − EC + qϕ

kT

)

+ qNVF1/2

(
EV − EF − qϕ

kT

)
+ qzdNdtd(ϕ) − qzaNata(ϕ), (5)

where NC and NV are the effective density of states in the
conductive and valence bands, respectively, EV is the top of
the valence band and EC is the bottom of the conduction band,
EF is the Fermi level, q is the absolute value of the electron
charge, T is the absolute temperature, k is the Boltzmann
constant, and F1/2 is the Dirac-Fermi integral, defined as

F1/2(σ ) = 2√
π

∫ ∞

0

ξ 1/2dξ

1 + exp(ξ − σ )
, (6)

za and zd are the acceptor and donor valences, td and ta are the
fraction of ionized donors and acceptors, respectively, given
by

td(ϕ) = 1 − 1

1 + 1
gd

exp
(

Ed−EF−qϕ

kT

) , (7)

ta(ϕ) = 1

1 + ga exp
(

Ea−EF−qϕ

kT

) , (8)

where Ed and Ea are the donor and acceptor level, respectively,
gd is the ground-state degeneracy of the donor impurity level,
and ga is the degeneracy of acceptor level. As we will show
later, the carrier concentration in a charged domain wall is
much smaller than the half-band filling one, so the use of the
parabolic approximation is justified.
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The isolated ferroelectric element is electrically neutral.
There is no electric field outside the sample, thus, the boundary
conditions can be formulated as follows:

D|x=−L/2 = D|x=L/2 = 0. (9)

The other pair of boundary conditions given as (see e.g.,
Ref. 23) (

κ
∂P

∂x
+ ζ ∓ ηP

)∣∣∣∣
x=±L/2

= 0, (10)

where ζ and η are coefficients in the surface free energy
expansion with respect to P .

Equations (1)–(5) constitute the full set of equations for the
problem. This set of equations with boundary conditions (9)
and (10) and additional conditions{

P > 0 if − L/2 < x < 0,

P < 0 if 0 < x < L/2,
(11){

P < 0 if − L/2 < x < 0,

P > 0 if 0 < x < L/2 (12)

can be solved numerically to obtain the polarization distri-
bution in the sample with the head-to-head and tail-to-tail
domain wall, respectively. Due to the symmetry of the problem,
boundary conditions can be also redefined as P (0) = 0,
D(0) = 0, and Eqs. (9) and (10) at x = L/2.

We define the domain-wall formation energy as

W =
∫ L/2

−L/2
[�(x) − �0(x)]dx + �surf, (13)

where �(x) is the free energy density of a system with the
domain wall and �0(x) = α

2 P 2
0 + β

4 P 4
0 + �eg(n0) = α

4 P 2
0 +

�eg(n0), P0 = √−α/β, �eg(n0) is the electron-gas free energy
at equilibrium concentration of carriers in the homogeneous
material. Hereafter, we will use a shorthand “homogeneous
concentration” for the carrier concentration defined in this way.
The integration is done over the thickness of the sample. The
�surf is the surface energy per unit area, given as follows:24,25

�surf = ζP |x=−L/2 − ζP |x=L/2 + η

2
P 2|x=−L/2 + η

2
P 2|x=L/2.

(14)

The free energy density of the system consists of the free
energy of the lattice, the electrostatic energy, and the free
kinetic energy density of the electron gas �eg:

� = α

2
P 2 + β

4
P 4 + κ

2

(
∂P

∂x

)2

+ εbE
2

8π
+ �eg. (15)

The free energy density of the electron gas can be defined
as

�eg = Eeg − T Seg, (16)

where Eeg is the kinetic energy density of the electron gas and
Seg is its entropy density. The kinetic energy can be found
by integration over the valence and conduction bands and
impurities:

Eeg =
∫ EV

−∞
ENV(E)f (E)dE +

∫ ∞

EC

ENC(E)f (E)dE

+ zaNata(ϕ)Ea + zdNd[1 − td(ϕ)]Ed, (17)

where NV(E) and NC(E) are the density of states in valence
and conduction bands, respectively, and f (E) is the Fermi
function. For the case of the parabolic spectrum, this relation
can be transformed to the form

Eeg = nEV + nCEg + NCF3/2

(
EF − EC + qϕ

kT

)

−NVF3/2

(
EV − EF − qϕ

kT

)
+ zaNata(ϕ)Ea − zdNdtd(ϕ)Ed, (18)

where Eg is the band gap and F3/2 is defined as

F3/2(σ ) = 2√
π

∫ ∞

0

ξ 3/2dξ

1 + exp(ξ − σ )
. (19)

The entropy density for Fermi gas26 can be found as follows:

Seg = −k
∑

i

[fi ln fi + (1 − fi) ln (1 − fi)] , (20)

where summation is done over all possible electronic states,
and fi is the occupation probability for the ith state.

III. LIMITS OF APPLICABILITY OF THE CONTINUOUS
THEORY AND ANALYTICAL SOLUTIONS IN A

LARGE CRYSTAL

A. Characteristic scales and limits of applicability of the
continuous theory

In the previous section, we derived the full set of equations,
which can be solved numerically to obtain the exact solution
of the problem. There exist a number of situations where
approximate analytical solutions to this set can be obtained.
Below, we will introduce some approximations to within a
small parameter εb/εf , where εf = 2π/|α| is the contribution
of the ferroelectric subsystem to the permittivity of the
material, which enables us to get these solutions.

Using Eq. (4), the Poisson equation can be presented as

εb
∂E

∂x
+ 4π

∂P

∂x
= 4πρ. (21)

After differentiation of Eq. (21) and using Eq. (2), one can
get

∂2E

∂x2
+ 4π

εb

∂ρ

∂ϕ
E = −4π

εb

∂2P

∂x2
. (22)

Equation (22) can be rewritten as

∂2E

∂x2
+ 1

l2
0

E = −4π

εb

∂2P

∂x2
, (23)

where

l0 =
√

− εb

4π (∂ρ/∂ϕ)
. (24)

This equation contains two self-consistent characteristic scales
for the spatial variation of the polarization. The big one
corresponds to the case where the first term in Eq. (23) can be
neglected, and this equation can be presented as

∂ρ

∂ϕ
E = ∂2P

∂x2
. (25)
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Substituting equation of state (1) into Eq. (25), one can get

∂ρ

∂ϕ

[
αP + βP 3 − κ

(
∂2P

∂x2

)]
= ∂2P

∂x2
. (26)

The characteristic scale δ can be estimated from Eq. (26) as

δ2 ≈ −1

2|α|(∂ρ/∂ϕ)
+ r2

c , (27)

where rc is the correlation radius, defined as

rc =
√

κ

2|α| . (28)

Hereafter, in the estimates, ∂ρ/∂ϕ means typical value of
∂ρ/∂ϕ inside the region with pronounced variation of polar-
ization (e.g., domain wall).

As we will see later, for any realistic situation δ � rc, thus,
from Eq. (27) one can get

δ ≈
√

−1

2|α|(∂ρ/∂ϕ)
. (29)

To check the self-consistency of this scale, we should show
that, when the spatial variations of the polarization is controlled
by this scale, the first term in Eq. (23) is small in comparison
with the second one, i.e., δ � l0. From Eqs. (24) and (29), we
can estimate the ratio of these terms to be about

δ2

l2
0

≈ εf

εb
� 1. (30)

Thus, our assumption δ � l0 is self-consistent. This result is
also supported by more rigorous calculations as demonstrated
in Appendix A, using the exact solutions to Eq. (26).

As the result of the simplification, we have passed from a
set of the equations equivalent to a fourth-order differential
equation to one second-order equation [Eq. (26)]. At the same
time, we still have four boundary conditions [Eqs. (9) and
(10)]. Thus, we have an excess of the boundary conditions.
A problem of this kind is a known in theoretical physics, for
example, in hydrodynamics of liquid flowing in a tube.27 In
that case, the problem was solved by introducing the boundary
layer, the description of which goes beyond the simplified
theory. We adapt a similar approach by assuming that there
exists a thin layer near the surface where our simplified
scheme does not work and where the charge density is small
in comparison with the ∂P/∂x. In this case, Eq. (21) together
with Eq. (9) leads to the following equation:

εbE + 4πP = 0. (31)

Using equation of state (1), one can rewrite it as

κ
∂2P

∂x2
+ αP + βP 3 + 4π

εb
P = 0. (32)

Neglecting terms about εb/εf , the characteristic thickness of
the boundary layer can be found from Eq. (32) as follows:

l =
√

εbκ

4π
=

√
εb

εf
rc. (33)

We can shift boundary condition D = 0 on a distance l from
the surface, and the polarization changes on this scale to
satisfy the second boundary condition. The condition D = 0

P/P
0

0

0.2

0.4

0.6

0.8

1

5 201510 25 30x/r
c

FIG. 2. Numerical solution with boundary conditions (10), (9),
and P (0) = 0, D(0) = 0. The small parameter εb/εf = 0.01, δ/rc =
4. The dimensionless surface energy coefficients ηrc/κ = 5000,
ζ rc/(κP0) = 5000.

means that we neglect the charge in the surface layer, which
is exactly the assumption we made to obtain scale l, thus, the
solution with scale l is self-consistent. Such an approach can be
supported by numerical calculations. The numerical solution
obtained for the case of linear screening with classical gas
with exact boundary conditions is shown in Fig. 2. Here, the
deep minimum is seen, which corresponds to the border of the
surface boundary layer.

For typical perovskites, Eq. (33) implies l ≈ √
κ ≈ a,

where a is the lattice constant. Thus, the continuous theory
is not applicable inside this surface layer. This means that the
result of l obtained above can be considered as an indication
that l is atomically small. The numerical solutions obtained
for the full set of equations with full boundary conditions
will also contain the scale smaller than the lattice constant,
thus, this solution near the surface will be outside of the
applicability of the continuous theory. Only the solutions
with the big scale and shifted boundary condition can be
used. The consideration of the properties of the surface layer
requires an ab initio approach. For some materials, such as
weak ferroelectrics28 or ferroelectrics of order-disorder type,
far from the phase transition εb/εf can readily be of the
order of one or larger. In this case, the inequality (30) is
not valid anymore, and the approximation of the boundary
layer becomes not self-consistent. However, at the same time,
the small scale l becomes macroscopic, of the order of the
correlation radius; thus, the solution can be found by solving
the full system with exact boundary conditions without leaving
the range of applicability of the continuous theory.

Below, we will consider normal ferroelectrics (with
εb/εf � 1). We will not consider the structure of the surface
layer and will use macroscopic boundary condition D = 0.

B. Problem formulation for analytical solutions

Now that the boundary conditions are defined, we can cal-
culate the polarization distribution in the sample. Equation (26)
can be rewritten as

αP + βP 3 = [κ − (∂ρ/∂ϕ)−1]
∂2P

∂x2
. (34)
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This is an equation with respect to P , and it is convenient to
reformulate the boundary conditions with respect to P instead
of D. From Eq. (27), it immediately follows that δ � rc. With
Eqs. (1) and (4), one can get

D = εb

(
αP + βP 3 + κ

∂2P

∂x2

)
+ 4πP. (35)

In our problem, |P | � |P0|, which leads to |βP 3| � |αP |, the
gradient term |κ(∂2P/∂x2)| � |κ(P/r2

c )| ≈ |αP |; thus, in the
lowest approximation with respect to εb/εf � 1, Eq. (35) can
be rewritten as

D = 4πP. (36)

So, boundary condition (44) can be presented as

P |x=±L/2 = 0. (37)

The Poisson equation [Eq. (3)] in this case can be rewritten as

∂P

∂x
= ρ. (38)

Let us first consider a head-to-head domain wall in a large
sample so that the polarization inside the domain is close
to the spontaneous polarization. Thus, neglecting the thin
surface layer, the polarization distribution can be schematically
presented, as shown in Fig. 3. We define the electrical
potential as equal to zero in some point inside the domains
(region 2, Fig. 3) where the electron concentration is equal
to the homogeneous one. For the head-to-head domain wall
[region 3, Fig. 3(a)] for the situation addressed, the problem
can be formulated as the search of a solution to the set of
equations (1)–(5) with the boundary conditions

P |−∞ = P0, P |∞ = −P0. (39)

The polarization distribution in the surface adjacent region
[region 1, Fig. 3(a)] can be found from the same equations
with the following boundary conditions:

P |−∞ = −P0, P |L/2 = 0, (40)

P |∞ = P0, P |−L/2 = 0. (41)

This problem is equivalent to the problem for the tail-to-tail
domain wall [region 3, Fig. 3(b)], which can be found as the
solution to Eq. (45) with boundary conditions

P |−∞ = −P0, P |∞ = P0. (42)

x

P

P
0

-P
0

x

P
P

0

-P
0

-L/2 -L/2L/2 L/2

(a) (b)

1 12 23 1 12 23

FIG. 3. (Color online) Schematic polarization distribution in the
case of (a) head-to-head and (b) tail-to-tail domain walls. Three
different regions are marked for each configuration: 1, surface
adjacent region; 2, internal domain region; and 3, domain wall.

Specifically, the polarization profile near the surface of the
sample with the head-to-head domain wall will be half of the
polarization profile in the tail-to-tail domain wall. In turn,
the solution for the tail-to-tail domain wall is equivalent to
the solutions for the head-to-head wall, but the screening is
provided by holes instead of electrons. To get the results to the
tail-to-tail domain wall, the effective mass and homogeneous
concentration of the electrons in the results for the head-to-
head wall should be replaced by the mass and homogeneous
concentration of holes and vice versa. In this section, we will
further consider the specific case of a head-to-head domain
wall.

We will consider the limiting cases where analytical
solutions are possible. For the case κ � |∂ρ/∂ϕ|−1, one can
rewrite Eq. (34) as

αP + βP 3 = κ
∂2P

∂x2
. (43)

This is the same equation as the well-known equation for the
neutral domain wall. The coefficient κ is different for the cases
wherein the polarization gradient is parallel and perpendicular
to the direction of polarization, but typically this coefficient is
of the same order. The corresponding solution for the head-to-
head wall is

P = −P0 tanh

(
x

2rc

)
. (44)

In the opposite case κ � |∂ρ/∂ϕ|−1, i.e., δ � rc, this equation
can be simplified as

∂ρ

∂ϕ
(αP + βP 3) = −∂2P

∂x2
. (45)

We will address four qualitatively different limit situations,
where analytical dependence ρ(ϕ) can be obtained and used in
getting the explicit form of ∂ρ/∂ϕ. First of all, depending on
the spontaneous polarization and the homogeneous concen-
tration of electrons, the electron gas in the conduction band
inside the domain wall can be degenerate or nondegenerate.
In addition, linear and nonlinear regimes of screening are
possible. We should mention that the gas inside the wall can
be degenerate, even if the electron gas in the conduction band
in the homogeneous ferroelectric is nondegenerate. We will
consider the cases of intrinsic semiconductor or fully ionized
doping impurities.

C. Screening with classical electron gas

In the case of nondegenerate electron gas, which obeys
classical statistics, Eq. (5) can be rewritten in the form

ρ = q
( − ne0e

qϕ

kT + nh0e
− qϕ

kT + ne0 − nh0
)
, (46)

where ne0 and nh0 are the homogeneous concentration of
electrons and holes, respectively. This leads directly to

∂ρ

∂ϕ
= − q2

kT

(
ne0e

qϕ

kT + nh0e
− qϕ

kT

)
. (47)

Together with Eq. (45), this leads to

q2

kT

(
ne0e

qϕ

kT + nh0e
− qϕ

kT

)
(αP + βP 3) = ∂2P

∂x2
. (48)
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Substituting Eq. (46) into (38), the Poisson equation for
classical gas reads as

∂P

∂x
= −q

(
ne0e

qϕ

kT − nh0e
− qϕ

kT − ne0 + nh0
)
. (49)

This is a quadratic equation with respect to e
qϕ

kT . It has only
one positive solution:

e
qϕ

kT =
ne0 − nh0 − 1

q
∂P
∂x

+
√(

ne0 − nh0 − 1
q

∂P
∂x

)2 + 4ne0nh0

2ne0
,

(50)

and, together with Eq. (48), it leads to the following equation:

αP + βP 3 = kT

q2

∂2P/∂x2√(− 1
q

∂P
∂x

− ne0 + nh0
)2 + 4nh0ne0

. (51)

Such an equation in the context of the problem of polarization
screening was obtained by Guro et al.13 In the case of linear
screening, the term ∂P

∂x
in Eq. (51) can be neglected in

comparison with ne0 + nh0, and Eq. (51) can be rewritten in
the form

αP + βP 3 − kT

q2(ne0 + nh0)

∂2P

∂x2
= 0. (52)

The exact solution to this equation reads as

P = −P0 tanh

(
x

δcl

)
, (53)

where

δcl =
√

2kT

q2(ne0 + nh0)|α| . (54)

In the case of a doped material, the concentration of minor
carriers can be neglected, for example, in the case of donor
doping, Eq. (54) can be rewritten as

δcl =
√

2kT

q2ne0|α| . (55)

This spatial scale is about the Debye screening length for
a linear media with a permittivity about εf ≈ 2π/|α|. If the
concentration of electrons inside the domain wall is much
larger than the homogeneous electron and hole concentrations
inside the domain, Eq. (51) can be rewritten in the form

αP + βP 3 = −kT

q

∂2P/∂x2

∂P/∂x
. (56)

Changing variables P = P0p, x = δnl
cl y, where

δnl
cl = 2kT

q|α|P0
. (57)

Equation (56) can be presented in a dimensionless form

(p − p3)
∂p

∂y
= 1

2

∂2p

∂y2
. (58)

The same characteristic scale δnl
cl was obtained by Krapivin and

Chenskii.12 It corresponds to the nonlinear Debye screening
length in linear media with permittivity about 2π/|α|, which
is the typical length of charge screening in the case of

x/δ
deg

P/P
0

nl
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FIG. 4. (Color online) Exact polarization profile Eq. (59) (solid
line), approximation p = − tanh 2y (dashed line), and approximation
p = −(2/π ) arctan 4y (dotted line).

classical statistics wherein homogeneous electron concentra-
tion is small in comparison with electron concentration in
the screening area. The exact solution to this equation with
boundary conditions p(−∞) = 1, p(∞) = −1, can be written
as

y = − p

4(1 − p2)
+ 1

8
ln

(
1 − p

1 + p

)
. (59)

The solution is presented in Fig. 4. It can be approximated
with the function p = −(2/π ) arctan 4y. The function p =
− tanh 2y is given for comparison.

This solution describes properly only the part of the domain
wall where concentration is much larger than the homogeneous
concentration. Thus, the polarization profile given by Eq. (59)
is applicable to the case where the screening regime is
nonlinear in most parts of the domain wall.

D. Screening with degenerate electron gas

The density of states in valence and conduction bands for
degenerate gas with parabolic spectrum can be obtained from
the effective electron and hole masses as follows:20

NC = 2

(
mekT

2πh̄2

)3/2

, (60)

NV = 2

(
mhkT

2πh̄2

)3/2

, (61)

where me is the effective electron mass and mh is the effective
hole mass. Below, we neglect the difference in the densities
of state in the valence and the conduction bands and between
electron and hole effective masses. For numerical calculations,
we use the free electron mass m.

For a degenerate gas, the Fermi functions can be approx-
imated by a step function, and the Dirac-Fermi integral in
Eq. (5) can be presented as

F1/2(z) = 4

3
√

π
z3/2. (62)

Two cases are possible in this approximation. Either the
valence band is fully occupied and there are electrons in the
conduction band or there are holes in the valence band and
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the conduction band is empty. In the first case, using Eqs. (60),
(62), and (5) can be rewritten as

ρ = −q

(
[2m(qϕ + EF − EC)]3/2

3π2h̄3 − ne0

)
. (63)

In the second case, using Eqs. (61), (62) and (5), the charge
density can be found as follows:

ρ = q

(
[2m(−qϕ + EV − EF)]3/2

3π2h̄3 − nh0

)
. (64)

Both Eqs. (63) and (64) lead to the following result for ∂ρ/∂ϕ:

∂ρ

∂ϕ
= − 3mq2

(3π2)2/3h̄2

( |ρ|
q

+ n0

)1/3

, (65)

where n0 is the homogeneous concentration of the majority
carriers.

Together with (45) and (38), this leads to an equation for
the polarization inside the domain wall in the following form:

3mq2

(3π2)2/3h̄2

(
1

q

∣∣∣∣∂P

∂x

∣∣∣∣ + n0

)1/3

(αP + βP 3) = ∂2P

∂x2
. (66)

In the case of linear screening, when the concentration of
electrons is just slightly changed in comparison with their
homogeneous concentration in the conduction band, or the
concentration of holes is slightly changed in comparison with
the homogeneous hole’s concentration in the valence band,
Eq. (66) can be rewritten in the form

αP + βP 3 − (3π2)2/3h̄2

3mq2n
1/3
0

∂2P

∂x2
= 0. (67)

This equation can be solved analytically, with the boundary
conditions P (−∞) = P0, P (∞) = −P0, as in the case of the
uncharged wall domain, and the polarization can be found as
follows:

P = −P0 tanh

(
x

δdeg

)
, (68)

where

δdeg =
√

2(3π2)2/3h̄2

3mq2n
1/3
0 |α|

(69)

is the typical half-width of a domain wall. This scale is the
Thomas-Fermi screening length in linear media where the
permittivity ε is about 2π/|α|:

λTF = 1

2

√
π1/3h̄2ε

31/3mq2n
1/3
0

. (70)

In the case of nonlinear screening, where the electron
concentration in the conduction band inside the wall is much
larger than the homogeneous concentration, Eq. (66) can be
rewritten in the form

αP + βP 3 + (3π2)2/3h̄2

3mq5/3

∂2P/∂x2

(∂P/∂x)1/3
= 0. (71)

Changing variables,

P = P0p, (72)

x = δnl
degy, (73)

where

δnl
deg =

(
9π4h̄6

q5m3|α|3P0

)1/5

, (74)

and Eq. (71) can be transformed to a dimensionless form

p − p3 − 1

3

∂2p/∂y2

(∂p/∂y)1/3 = 0. (75)

Thus, the characteristic scale for the domain-wall half-width in
this case is about δnl

deg, which is of the order of the characteristic
scale for the nonlinear Thomas-Fermi screening for linear
dielectrics with a permittivity of about 2π/|α|, i.e., the typical
screening scale in the case where the electron gas in the
screening area is degenerate with the concentration much
larger than the homogeneous concentration. The same scale (to
within a factor of the order of unity) was obtained by Ivanchik29

for the case of internal screening in the monodomain state in
a ferroelectric, which is an intrinsic semiconductor.

The exact solution of Eq. (75) can be obtained in the
following form:

y = −
(

4

5

)3/5 ∫ p

0

1

(1 − ξ 2)6/5
dξ. (76)

The solution is presented in Fig. 5. It can be approximated
with the function p = − tanh y.

Similar to the case of nonlinear screening with classical
electron gas, the polarization profile obtained here applies to
the case where the screening regime is nonlinear in most parts
of the domain wall. It is clear that the solution obtained above
can be used also in the case of nondegenerate electron gas in
the bulk of the domains, whereas, inside the domain wall, the
gas is degenerate.

E. Charged domain wall in a large sample: Applicability
for different cases

Now that the domain wall width for all regimes of screening
is known, we can determine the conditions of applicability
for each case. The electron concentration in the center of the
head-to-head domain wall can be estimated as

nc = P0

qδ
+ n0, (77)

where δ is the domain-wall half-width.
There are three main conditions, which subdivide the

different regimes for domain-wall screening. The condition

x/δ
deg

P/P
0

nl

-2-4 42
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0.5

1

FIG. 5. (Color online) Exact polarization profile Eq. (76) (solid
line) and approximation p = − tanh y (dashed line).
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of applicability of the formula for a strongly degenerate Fermi
gas requires a small temperature in comparison to the Fermi
temperature,26 i.e.,

kT � (3π2)2/3h̄2

2m
n2/3

c . (78)

In the opposite case, the gas is classical. The condition for the
linear regime of screening has the form

n − n0 = P0/qδ � n0. (79)

Hereafter, n0 = max(ne,nh). If the obtained half-width

δ < δneutral, (80)

the gradient term plays a decisive role and the domain-wall
half-width will be about the δneutral = 2rc.

The diagram presented in Fig. 6 was obtained with condi-
tions (78)–(80). It is instructive to plot it in the coordinates
of fully ionized dopants concentration instead of n0. The zero
doping corresponds to n0 = 2ni, where ni is the intrinsic carrier
concentration. For a nondegenerate gas, the line separating
linear and nonlinear screening (lines 1 and 2 in Fig. 6) can be
described by the equation

n0 = |α|P 2
0

kT
. (81)

For the degenerate gas, the regions corresponding to the linear
and nonlinear screening are separated by the lines 3 and 4 in
Fig. 6 and can be described by the equation

n0 =
( |α|P 2

0 m

h̄2

)3/5

. (82)

Lines 5, 6, and 7 in Fig. 6 separate the cases of screening
by degenerate and classical gases and can be described by
equations

n0 = ndeg = 1

3π2

(
2kT m

h̄2

)3/2

(83)

and

|α|P 2
0 = 1

3π2

(2kT )5/2 m3/2

h̄3 , (84)

respectively. Lines 8, 9, and 10 in Fig. 6 separate the regions
where the gradient term is important and can be described by
the equations

n0 =
(

(3π2)2/3h̄2

3mq2κ

)3

= π4

3

(
a0

κ

)3

. (85)

|α|P 2
0 = (3π2)4

25

h̄12

m6q10κ5
=

(
9π4a3

0q
)2

(2κ)5
, (86)

where a0 = h̄2/mq2 is the Bohr radius.
The regimes of screening presented in this diagram work

in extreme cases far from the borders of the corresponding
regions. Near the borders, these regimes of screening will show
a crossover behavior. Lines 2 and 4 on this diagram correspond
to the full depletion. On these lines, the characteristic scales
for linear and nonlinear screening can be matched, and the
domain-wall half-width will be about the depletion width for

P
0
2|α|

N
d

n
deg

Degenerate
Linear

ND

Linear
Degenerate
Nonlinear

2rc

N
a

1

2

3

4

5

6

7

n
deg

ND
Nonlinear

8

9

10

0

2rc

2rc

FIG. 6. (Color online) A diagram presenting areas that corre-
spond to the different regimes of screening in a head-to-head domain
wall in a large ferroelectric crystal, depending on the ferroelectric
energy density |α|P 2

0 and the concentration of the fully ionized
dopant. Here, Nd and Na are the donor and acceptor dopant concen-
trations, respectively. Inside the region separated by the dashed line,
the domain-wall half-width corresponds to one of the scales obtained
in Sec. III. Outside this region, the gradient term becomes important
and the domain-wall half-width is about the correlation radius rc.

the holes:

δdep = P0

qna
. (87)

For the case of typical perovskites such as BaTiO3 and PbTiO3

at room temperature, the domain wall corresponds to the
regime of nonlinear screening by degenerate gas (see Sec. VII).

IV. FORMATION ENERGY OF A CHARGED
DOMAIN WALL

Now that the polarization profile is known, we can calculate
the energy per unit area of the isolated sample with charged
domain wall, defined by Eq. (13). First, we will neglect the
energy associated with the surface boundary layer with atomic
thickness. In this case, the energy of the sample with charged
domain wall is the same for both head-to-head and tail-to-tail
configurations. If the sample is large enough, the impact on
the energy of the states with the domain wall can be calculated
separately for the domain wall and the surface adjacent regions
of the sample for both configurations shown in Fig. 3. Then,
the formation energy of the charged domain wall [Eq. (13)]
can be rewritten as follows:

W =
∫ ∞

−∞
[�h-h(x) − �0(x)]dx +

∫ ∞

−∞
[�t-t(x) − �0(x)]dx,

(88)
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where �h-h(x) and �t-t(x) are the free energies per unit
area for the polarization profiles calculated with boundary
conditions (39) and (42), respectively.

By using Eq. (1), the free energy density [Eq. (15)] can be
rewritten as

� = α

2
P 2 + β

4
P 4 + κ

2

(
∂P

∂x

)2

+ εb

8π

[
αP + βP 3 − κ

(
∂2P

∂x2

)]2

+ �eg. (89)

We can neglect the electrostatic contribution in free energy in
comparison with the ferroelectric one with respect to the small
parameter εb/εf . In our problem, |P | � |P0| leads to |βP 3| �
|αP |, |κ(∂2P/∂x2)| � |κP/r2

c | = |2αP |, and the electrostatic
term can be estimated as∣∣∣∣ εb

8π

[
αP + βP 3 − κ

(
∂2P

∂x2

)]2∣∣∣∣ � εb

2π
|α|2P 2 = εb

εf
|α|P 2,

(90)

and we can neglect it in comparison with αP 2. Using δ � rc,
we can also neglect gradient term κ

2 ( ∂P
∂x

)2 in comparison with
αP 2. Finally, Eq. (89) can be rewritten as

� = α

2
P 2 + β

4
P 4 + �eg. (91)

For the case of a classical gas, the free energy density may be
written as (see Appendix B)

�(x) − �0 =
(

α

2
P 2 + β

4
P 4 − α

4
P 2

0

)
+ [qϕ(ne − nh)

− kT (ne + nh − ne0 − nh0)]. (92)

Here, the first term corresponds to the lattice energy and the
second one to the free kinetic energy of the electron gas.

As shown in Appendix C, the energy of the charged wall
linearly screened by classical electron gas can be obtained
from Eqs. (88) and (92) using solution (53) in the form

Wcl = 4

3
|α|P 2

0 δcl. (93)

For the case of nonlinear screening by classical gas, using
Eqs. (56) and (92), the charged domain-wall energy can be
presented in the form (see Appendix C)

W nl
cl = 2P0

q

[
Eg + 2kT ln

(
4|α|P 2

0

kT N
− 8kT

)]
, (94)

where N is the density of states in the valence and the
conduction bands. It can be shown (see Appendix C) that, for
Eg � kT , the second term in the parentheses can be neglected
in comparison with the first one, and the W nl

cl is given by

W nl
cl = 2P0

q
Eg. (95)

For the case of a degenerate gas, the free energy density
can be presented in the following form (see Appendix B):

�(x) =
(

αP 2

2
+ βP 4

4
− αP 2

0

4

)
+

(
(ne − ne0)Eg

+ 3h̄2(3π2)2/3

10m

(
n5/3

e + n
5/3
h − n

5/3
e0 − n

5/3
h0

))
. (96)

As shown in Appendix C, the charged domain-wall energy in
the case of linear screening by degenerate gas can be expressed
in the form

Wdeg = 4
3 |α|P 2

0 δdeg, (97)

and in the case of nonlinear screening,

W nl
deg = 0.77|α|P 2

0 δnl
deg + 2P0

q
Eg. (98)

It can be shown (see Appendix C) that, for realistic values
of spontaneous polarization and band gap (for Eg = 3 eV,
P0 < 300 μC/cm2), the first term in Eq. (98) can be neglected
in comparison with the second one, and the energy reads as

W nl
deg = 2P0

q
Eg. (99)

This relation is universal in the case of nonlinear screening
for degenerate and classical gas. This is the energy needed in
order to create sufficient electron-hole pairs for polarization
screening. Although this result was strictly obtained for the
case of a second-order phase transition, one can show it is
also valid for materials with a first-order phase transition. One
should note that, if we neglect the surface energy, the energies
of configurations with charged domain wall are the same for
head-to-head and tail-to-tail walls (see Fig. 3).

In the frame of the continuous theory, the energy of the
thin boundary layer can be taken into account introducing a
phenomenological term 2ζ1 	Pd	n in the formation energy of the
domain wall, where 	Pd is the polarization inside the domain,
	n is the normal to the surface directed toward the sample, and
ζ1 is the effective coefficient in the surface energy (here we
restricted our consideration with linear term only). To obtain
this coefficient, the microscopical consideration is required.
The difference between the energy of head-to-head and
tail-to-tail domain wall is 4ζ1 	P0	n. In the case of nonlinear
screening, the surface energy can be taken into account,
introducing the effective changing of the band gap

Eeff
g = Eg ± qζ1 (100)

for head-to-head and tail-to-tail walls, respectively. The for-
mation energy of the charged domain wall with such notation
has the form

W nl = 2P0

q
Eeff

g . (101)

V. SIZE EFFECT

We will now address the question of the conditions for
which the head-to-head configuration is energetically favor-
able. Three other possible configurations, i.e., single-domain
state, configuration with polarization equal to zero, and mul-
tidomain state with antiparallel domains separated by neutral
domain walls (see Fig. 7), will be considered as competing
scenarios. Hereafter, we will be considering the case of
practical importance where the charged domain wall is in the
nonlinear screening regime. Let us start from the competition
between the head-to-head (tail-to-tail) configuration and the
paraelectric state by comparing the corresponding energies.
We will take into account that, for the sample with finite
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thickness L, the polarization can be different from the spon-
taneous one, due to the depolarizing effect. While Eq. (101)
was obtained for the polarization equal to the spontaneous one
inside the domain, it can be modified for the case of arbitrary
polarization inside the domain (if the screening regime, in this
case, is also nonlinear). In this case, the ferroelectric energy
inside the domain should be taken into account. So, the sample
that is much thicker than the domain-wall width formation
energy of the charged domain wall can be estimated as

W = L

(
α

2
P 2

d + β

4
P 4

d − α

4
P 2

0

)
+ 2|Pd|

q
Eeff

g , (102)

where Pd is the polarization inside the domain. (Note that,
in discussing the energy of a sample, we apply the term
energy to the difference between the energy of the sample
and the energy density of the material in the single-domain
ferroelectric state times the volume of the sample.) It can
be found as a polarization corresponding to the minimum
of the energy, Eq. (102). If Eeff

g > 0, the polarization in the
sample with charged domain wall Pd < P0. If Eeff

g < 0, (this
is possible either for tail-to-tail or head-to-head configuration
at high poling effect of the surface) Pd > P0. In a sample,
which is thinner than some critical thickness that we will
find below, ferroelectricity can be completely suppressed
due to the depolarizing field, and the configuration of zero
polarization is energetically favorable. The energy (in the
meaning specified above) of this paraelectric state reads as

W = −L
α

4
P 2

0 . (103)

Thus, from Eqs. (13) and (103), the energy difference per
unit area between the state with charged domain wall and
paraelectric state can be written as

�W = L

(
α

2
P 2

d + β

4
P 4

d

)
+ 2|Pd|

q
Eeff

g . (104)

The state with charged domain wall is energetically favorable
if, for some polarization Pd, the difference �W < 0. This
inequality has a solution if the sample is thicker than the
critical value Lpar defined as

Lpar = 3
√

6Eeff
g

q|α|P0
≈ 7.3 × Eeff

g

q|α|P0
. (105)

Thus, for sample thickness larger than Lpar, the head-to-head
configuration is more energetically favorable than the
paraelectric state, otherwise, the latter is favorable.

P=0

(a) (b)

(c) (d)

FIG. 7. (Color online) Schematics of polarization distribution for
a state with (a) charged wall, (b) monodomain state, (c) state with zero
polarization, and (d) the multidomain state with antiparallel domains
separated by neutral domain walls.

(a)

(b) (c)

FIG. 8. (Color online) Schematics of possible domain-growth
processes. (a) Domains growing in the form of elongated precursors,
and two possible results of such growing: (b) head-to-head domains
and (c) multidomain state with neutral domain walls.

It is worth noting that such critical thickness is
√

2 times
larger than that which can be obtained from the condition

Eth > Eeff
g /(qL), (106)

where Eth is the thermodynamic coercive electric field. Such a
condition, written with the neglect of the surface poling effect,
was offered by Ivanchik29 for the stability of a ferroelectric
state with internal screening.

Next, we discuss the competition between the head-to-head
(tail-to-tail) configuration and the internally screened single-
domain state. In the single-domain configuration, the linear
terms in surface energy are canceled out and the energy of
the internally screened single-domain state equals a half of
the energy of the configuration with the charged wall, without
surface energy term. In the case of nonlinear screening, one
can find it as follows:

Wmon = P0

q
Eg. (107)

[In writing this equation, and further in the paper we cover only
the situation in samples with the thickness L � Lpar where we
can neglect difference between Pd and P0, thus, we will use the
energy given by Eq. (101).] This energy has the same meaning
as Eq. (99), i.e., this is the energy that is necessary for the
creation of sufficient electron-hole pairs for the polarization
screening. Here, an important remark should be made. In
their treatment of the problem of monodomain-state screening,
Ivanchik29 and Watanabe30 did not take into account the energy
needed for the creation of electron-hole pairs. Therefore, they
obtained a much smaller energy for the internally screened
monodomain state, leading to a much milder condition for
the internally screened domains to be favorable in comparison
with the domain screened by the charge in the electrodes.

Comparing Eqs. (107) and (101), one can find that one of the
configurations with charged domain wall is energetically fa-
vorable if 2Eeff

g < Eg, i.e., |ζ1| > Eg. If the surface polarizing
effect is not big enough, the energy of the monodomain state is
always smaller than the energy of the state with charged walls,
thus, the configuration with a charged wall is metastable, and
charged walls might occur only as a result of growth kinetic
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of domains with elongated precursors (Fig. 8). As a result
of such growth, either a charged domain wall [Fig. 8(b)] or
a lamella pattern with neutral domain walls [Fig. 8(c)] can
be formed. Now let us discuss the competition between the
head-to-head (tail-to-tail) configuration and lamella pattern
with neutral domain walls. In the case of a lamella pattern
with neutral domain walls, the surface energy contributions
cancel out. The energy of the sample per unit area for this
configuration is proportional to

√
L, and, for both first- and

second-order phase transitions, it reads19 as

Wd = 2

(
4π × 0.26 × Wneutral√

εaεc

)1/2

P0

√
L, (108)

where εa and εc are the lattice permittivity measured perpen-
dicular and along the polarization, respectively, and Wneutral is
the energy per unit area of the neutral domain wall. Comparing
energies given in Eqs. (108) and (101), for Eeff

g > 0, one can
find that the multidomain state with neutral walls is more
energetically favorable than the head-to-head configuration if
L is smaller than

Lmd =
(

Eeff
g

q

)2 √
εaεc

4π × 0.26 × Wneutral
. (109)

For a second-order phase transition and near the transition
temperature TC, the neutral-wall surface energy tends to zero
according to the laws3 Wneutral ∝ (TC − T )3/2 and εc ∝ (TC −
T )−1, εa is constant for uniaxial ferroelectrics, and εa ∝ (TC −
T )−1 for cubic ferroelectrics. 3 Thus, Lmd tends to infinity and
the multidomain state with neutral walls is always preferable.
The situation is different for materials with first-order phase
transition, where close to the transition temperature, Lmd is
finite. Here, depending on the sample thickness, either head-
to-head domains or the multidomain state with neutral walls
is energetically preferable. Once one of these configurations is
formed passing the phase transition, the spontaneous switching
between them, which is related with charge transfer, does not
look very probable.

VI. ISOLATED SAMPLE VERSUS SAMPLE WITH
ELECTRODES

The problem of the charged domain-wall creation in the
presence of metal electrodes was considered in a series of
works by Ivanchik, Guro, Vul, and Kovtonyuk14,15 and by
Krapivin and Chenskii.12 After the mentioned authors, we will
first neglect the surface energy effects and will consider it
separately. Below, we show how some estimates for a sample
with electrodes can be obtained based on the results of the
charged wall in the isolated sample. We will analyze the
difference between these cases.

We discuss the practically important case of nonlinear
screening. In this case, the energy of the charged domain wall
is equal to the energy, which is necessary to create enough
electrons and holes for screening. In the isolated sample, the
only source of screening electrons is the valence band, and the
creation of each electron-hole pair increases the free energy
by Eg. In a sample with metal electrodes, a charge carrier
exchange between the ferroelectric and the metal is possible,
and the metal can serve as the source of the screening electrons

(a) (b)

(c)

Ae

EF

Af
EC

EV

(d)

Ae

EF

Af

EC

EV

Ae
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Af
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Vacuum

Ae

EF
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EV

FIG. 9. Band diagrams for different work-function differences
between a ferroelectric and a metal when ferroelectric and metal are
not in a physical contact. When the electrode and the ferroelectric
are separated, the shift between the Fermi levels of the materials is
defined by the work-function difference. The energy necessary for the
creation of a unit free charge is shown with the bold arrow. This energy
can be negative for (b) head-to-head or (d) tail-to-tail configuration,
and the domain wall is energetically preferable in this case.

or holes. The charge that will be created at the electrodes due
to the electron transfer will screen the bound charge near the
surface.

To find the energy necessary for electron transfer, we
should take into consideration the chemical potential μ and
the work-function difference between the ferroelectric and the
electrodes. For each electron that comes from the metal, the
energy EC − μ + Ae − Af , where Ae and Af are the work
functions for the electrode and ferroelectric, respectively,
should be added to the free energy of the system. The chemical
potential for electrons is the Fermi level, and the energy of
head-to-head domain wall can be estimated as

W = 2P0

q
(EC − EF + Ae − Af ). (110)

This relation can be clearly demonstrated with the band
diagram from Figs. 9(a) and 9(b). When the Fermi level in
metal is inside the band gap of the ferroelectric [Fig. 9(a)], the
energy [Eq. (110)] is positive, but it can be much smaller than in
the case of the isolated sample. In this case, the charged domain
wall is metastable, but with the energy smaller than in the case
of the isolated sample. If the Fermi level in metal is above the
bottom of the conduction band in the ferroelectric [Fig. 9(b)],
the energy [Eq. (110)] is negative. The negative domain-wall
energy means that the configuration with the head-to-head
wall is stable, while in the case of the isolated particle, it is
metastable. The same result with some additional small terms
for the sample with electrodes was obtained by Ivanchik and
Chenskii et al.12,14

In the case of the tail-to-tail wall, to provide screening, the
electrons should move from the ferroelectric into the metal,
and the analog of Eq. (110) can be written as

W = 2P0

q
(EF − EV + Af − Ae). (111)
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When the Fermi level in metal is inside the band gap of the
ferroelectric [Fig. 9(c)], the energy [Eq. (111)] is positive, and
the charged domain wall is metastable. If the Fermi level in
metal is below the top of the valence band in the ferroelectric
[Fig. 9(d)], the energy [Eq. (111)] is negative and the tail-to-tail
domain wall is stable.

The preferable domain-wall configuration (head-to-head or
tail-to-tail) is defined by the direction of the electron transfer,
which depends on the work-function difference between the
electrode and the ferroelectric. This result is quite different
from the case of an isolated sample, where head-to-head and
tail-to-tail configurations have the same energy.

To take into account the surface energy term, we should
change Eg to Eeff

g in Eqs. (110) and (111), and the result will
depend not only on the electron-affinity difference, but also on
the surface-energy coefficient. Depending on the sign of the
electron-affinity difference and the surface-energy coefficient,
this effect can reinforce or work against each other.

VII. NUMERICAL ESTIMATES AND COMPARISON WITH
EXPERIMENTAL DATA

Let us compare the results obtained with experimental
data. First, let us find which regime of screening corresponds
to the typical perovskite materials at room temperature. For
BaTiO3,31 with P0 = 0.26 C/m2 ≈ 7.8 × 104 cgse and |α| =
3.6 × 10−3, the ferroelectric energy density |α|P 2

0 = 2.2 ×
107 erg/cm3. For PbTiO3,4 with P0 = 0.75 C/m2 ≈ 2.2 ×
105 cgse and |α| = 0.05, one can calculate |α|P 2

0 = 2.6 ×
109 erg/cm3. Both of these values are more than
the critical value from Eq. (84) for room temperature
(2kT )5/2 m3/2/(3π2h̄3) = 1.8 × 106 erg/cm3. This means that
the gas inside the domain wall is degenerate. Typically, the
homogeneous carrier concentrations are nondegenerate. Thus,
for typical perovskites, screening is provided by the degenerate
gas in the nonlinear regime. The domain-wall half-width can be
found from Eq. (74) and δnl

deg = 16 nm for BaTiO3 and δnl
deg =

2.7 nm for PbTiO3. The corresponding typical concentration in
the domain wall nc ≈ 1020 cm−3 for BaTiO3 and nc ≈ 1.7 ×
1021 cm−3 for PbTiO3. These concentrations are still two
to three orders smaller than the half-band-fill concentration
and consistent with the assumption that we made to use the
parabolic approximation. At such concentrations, the domain
walls should have metallic conductivity.15 Interestingly, no
experimental data of enhanced conductivity in the head-to-
head domain wall are available. In contrast, in the recent
experiment by Seidel et al.,8 the neutral domain wall shows
enhanced conductivity, while the charged domain wall in the
same sample does not.

We can also check which conditions correspond to different
regimes of screening. We use parameters of lead titanate6

with n0 = 1018 cm−3 and temperature about 700 K (close
to PbTiO3 phase transition) to calculate the spontaneous
polarization, corresponding to different regimes of screening.
The dotted line in Fig. 10(a) represents our material at
different spontaneous polarization, corresponding to different
temperatures. If the polarization is small enough, i.e., the
corresponding point is on the left from the point 1 in Fig. 10(a),
the regime of screening will be linear with classical electron
gas. From Eq. (81), we can calculate that the spontaneous

P0
2|α|

Nd

ndeg

Degenerate
Linear

ND
Linear

Degenerate
Nonlinear

2rc

2rc

1 2 3

ND
Nonlinear

0

n0

T

δ

ND
Linear

Degenerate
Nonlinear

12

ND
Nonlinear

δ (TC-T)
-0.7

δ (TC-T)
-1.5

δ (TC-T)
-0.5(a) (b)

TC

FIG. 10. (Color online) (a) A diagram presenting areas that corre-
spond to the different regimes of screening in a charged domain wall
in a large ferroelectric crystal, depending on the ferroelectric energy
density |α|P 2

0 and the concentration of the fully ionized dopant. The
dotted line corresponds to the fixed homogeneous concentration of
carriers. Approaching the ferroelectric phase transition, we can move
from right to left along the dotted line. (b) Schematic of temperature
dependence of domain-wall width for temperatures below Tc.

polarization corresponding to point 1 is about 8 μC/cm2.
Such values are possible close to the phase transition not
in a bulk but in a thin film of PbTiO3, where the transition
is expected to be of the second order.32 From Eqs. (84) and
(86), one can find that point 2 in Fig. 10(a) corresponds to
P0 = 30 μC/cm2 and point 3 to P0 = 2400 μC/cm2. The last
two values are independent of n0, and we only assume that the
homogenous concentration is not degenerate. Point 3 can not
be reached at any realistic spontaneous polarization, thus, for
typical materials, the charged domain wall is always wider than
the neutral domain wall. This fact confirms the assumption that
we made in Sec. III. The head-to-head domain wall with the
thickness about the correlation radius may be possible in a
material with metallic carrier concentration such as GeTe.33

Approaching the phase transition, we can pass through
different regimes of screening, and this will be accompanying
the domain-wall widening. The dependences of domain-wall
width from the temperature difference Tc − T are different
for different regimes of screening and can be presented as
δ ∝ (Tc − T )−n, where n = 0.7 for nonlinear screening with
degenerate gas, and n = 1.5 and 0.5 for nonlinear and linear
screening with classical gas, respectively. Schematically, this
dependence is shown in Fig. 10(b).

We can evaluate the ratio between domain-wall half-widths
of charged and neutral domain walls using Eq. (74):

δnl
deg

δneutral
≈ 3

(
a3

0q
)1/5

P
1/5
0 κ1/2|α|1/10

, (112)

where a0 is the Bohr radius. For BaTiO3, this leads to the ratio
δnl

deg/δneutral ≈ 10. Equation (112) is only slightly dependent
on the parameters of the material, so this ratio is virtually
universal: charged domain-wall width for typical perovskite
ferroelectrics not too close to the phase transition should be
about one order larger than the width of the neutral domain
wall. This result is in good agreement with the experimental
result of Jia et al.,9 where head-to-head and neutral domain-
wall widths were measured in PZT thin films, using the
negative spherical-aberration imaging technique. The width
of a head-to-head domain wall is found to be about 10 unit
cells, and the width of the neutral domain wall is about 1 unit
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TABLE I. Rough estimates for the domain-wall formation ener-
gies BaTiO3 and PbTiO3 at room temperature. The estimates for the
charge walls do not take into account the surface poling effect.

Material Neutral Charged

BaTiO3 10 1600
PbTiO3 25 5000

cell. As was already discussed, the results for the width of the
domain wall obtained in Sec. III is valid not only for isolated
samples, but also for a sample with electrodes; thus, we can
compare it with the measurements done on thin films.

We can also compare the energy of the uncharged wall and
the energy of the charged wall, neglecting polarizing effect
of the surface, in an isolated crystal at room temperature.
The typical values of domain-wall energies for different types
of domain walls in BaTiO3 and PbTiO3 are presented in
Table I. The data for uncharged walls for BaTiO3 is taken
from Zhirnov,34 Hlinka and Marton,35 and Bulaevskii.36 For
the neutral domain wall of PbTiO3, we used results of a first-
principles calculation by Poykko and Chadi37 and Meyer and
Vanderbilt38 (at 0 K, the obtained neutral domain-wall energy
is about 100 erg/cm2) extrapolated to the room temperature
using dependence Wneutral ∝ (T − Tc)3/2 (see e.g., Ref. 19). To
calculate the values for charged walls in BaTiO3, we use P0 =
0.26 C/m2 ≈ 7.8 × 104 cgse and Eg = 3.2 eV. For PbTiO3,
the spontaneous polarization P0 = 0.75 C/m2 ≈ 2.2 ×
105 cgse and Eg = 3.4 eV.

Now we can estimate the minimal thickness at which the
charged domain wall is energetically favorable in comparison
with the paraelectric state. From Eq. (105), without the poling
effect of the surface, one can find, for room temperature
for BaTiO3, Lpar = 300 nm and for PbTiO3, Lpar = 80 nm.
For the samples with thickness L < Lpar, zero polarization is
favorable. Thus, the existence of charged walls parallel to the
film surfaces in thin films with the thickness about 10 nm (as,
e.g., in Ref. 9) is possible only in the presence of injecting
electrodes or strong polarizing effect of the surfaces.

If the poling effect of the surface is small, the charged
domain wall can be formed as a result of the domain-growth
kinetic at phase transition. The competing state, which can also
occur as a result of such growing, is the lamella structure with
neutral domain walls (see Sec. V). To estimate the minimal
thickness, that multidomain lamella structure is energetically
favorable in comparison with the charged domain wall at
phase transition, we should find the energy of the neutral
domain wall near the phase transition. It was shown that,
for second-order phase transition, Wneutral ∝ P 3

0 .39 We will
use the same dependence to set a rough estimate for the
neutral domain wall energy for the case of first-order phase
transition.40 The spontaneous polarization at phase transition
is about 0.16 C/m2 for BaTiO3 (Ref. 41) and 0.4 C/m2 for
PbTiO3.6 Using domain-wall energies at room temperature
(see Table I), we estimate the neutral domain-wall energies
at phase transition Wneutral ≈ 2.5 erg/cm2 and Wneutral ≈
4 erg/cm2, respectively. By using Eq. (109) and neglecting
the poling ability of the surface, one can find for BaTiO3 at
the phase transition with Eg = 3.2 eV, εa ≈ 5000, εc ≈ 2500
(Ref. 42), and Lmd = 500 μm. For PbTiO3 at the phase

transition with Eg = 3.4 eV, εa ≈ 1500, and εc ≈ 450,43

Eq. (109) leads to much smaller values Lmd = 80 μm. This
means that, for thickness from 80 to 500 μm, the charged
domain wall is favorable in lead titanate, while in barium
titanate laminar, the domain structure with neutral domain
walls is. This estimate corroborates the experimental results
obtained by Surowiak et al.5 Indeed, the structures formed
during the phase transition in lead titanate and barium titanate
crystals with thickness about 100 μm were studied. In the case
of lead titanate, head-to-head domain walls were observed,
whereas in barium titanate, an a-c domain laminar structure
was observed, where c domains are split into 180◦ domains
with neutral walls. One should also mention that the lower
conductivity of barium titanate can be also a factor preventing
the formation of head-to-head domain walls. Although in
the case of nonlinear screening the homogeneous charge
concentration does not affect the energy of the head-to-head
configuration, the screening free carriers should be delivered
to the domain wall and the higher conductivity can assist in
the formation of the charged domain wall.

In the case of the sample with electrodes, an interesting
observation could be made, for example, for BaTiO3 with
platinum electrodes.15,29 Neglecting the poling effect of the
surface for the case of the BaTiO3 with platinum electrodes,
the formation energy of the tail-to tail domain wall is negative,
i.e., the domain wall is energetically favorable in this case.
Indeed, neglecting the poling effect of the surface, Eq. (111)
can be rewritten in a terms of band gap Eg and electron
affinity χ of ferroelectric in the form W = (2P0/q)(Eg +
χ − Ae). By using Eg = 3.2 eV, the work function for
platinum Ae = 5.2 eV, χ = 0.4 − 1.2 eV,44,45 one can find
Eg + χ − Ae = −(0.4 − 1.6) eV. This situation has not been
observed experimentally. The possible explanation for this
fact is the polarizing surface effect, which works against the
electron work-function difference. In the considered case of
the tail-to-tail wall, this means that the preferable direction of
polarization due to the surface effect is out of the surface.

VIII. CONCLUSIONS

The full set of equations suitable for numerical calculations
of a head-to-head domain wall in an isolated sample was
considered. The effective boundary conditions for the case
of the normal ferroelectrics (with εb/εf � 1) was introduced.
Depending on spontaneous polarization and carrier concen-
tration, different regimes of screening and different spatial
scales of charged domain walls are singled out. For typical
perovskites, not very close to the phase transition, this scale
is about the nonlinear Thomas-Fermi screening length. For
perovskite ferroelectrics, this scale is about one order larger
than the width of a neutral domain wall, which is in good
agreement with experimental results for PZT. Approaching the
phase transition by heating the sample, we can pass through
different regimes of screening; this will be accompanied
with an appreciable widening of charged domain wall. The
dependence of domain-wall width on the difference between
the temperature and the Curie temperature are different for
different regimes of screening.

Expressions for a domain-wall formation energy at different
regimes of screening were obtained. The information on
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TABLE II. Summary of charged domain-wall characteristics for different regimes of screening in isolated sample (without polarizing
surface effect).

Typical scale of Formation energy per
Regime domain-wall half-width unit area of domain wall Remarks

Linear classical δcl =
√

2kT

q2(ne0+nh0)|α|
4
3 |α|P 2

0 δcl Half-width is about the Debye screening length for a
linear media with εf ≈ 2π/|α|

Nonlinear classical δnl
cl = 4kT

q|α|P0

2P0
q

Eg Half-width is about the nonlinear Debye screening
length for a linear media with εf ≈ 2π/|α|

Linear degenerate δdeg =
√

2(3π2)2/3h̄2

3mq2n
1/3
0 |α|

4
3 |α|P 2

0 δdeg Half-width is about the Thomas-Fermi screening length
for a linear media with εf ≈ 2π/|α|

Nonlinear degenerate δnl
deg =

(
9π4h̄6

q5m3|α|3P0

)1/5
2P0
q

Eg Suitable for the typical perovskites at room temperature.
Half-width is about the nonlinear Thomas-Fermi
screening length for a linear media with εf ≈ 2π/|α|

the polarization profiles and domain-wall energies without
surface-energy consideration for different possible screening
regimes is summarized in Table II. In the nonlinear regimes of
screening, this energy is equal to the energy necessary to create
enough electron-hole pairs to fully screen the spontaneous
polarization, being proportional to the electronic band gap of
the ferroelectric. The results obtained are closely related to
the problem of internal screening for the monodomain state.
It was shown that the energy of this screening is much higher
than the energy obtained earlier by Ivanchik29 and Watanabe30

due to the neglect of an important contribution by the latter.
In general, the surface contribution to the formation energy of
the charged wall can be comparable with the formation energy
obtained by neglecting this effect. Either the head-to-head or
tail-to-tail domain wall can be favorable in comparison with
the internally screened monodomain state if the surface energy
is big enough. If the charged domain wall is unfavorable, the
metastable head-to-head and tail-to-tail walls can be a result
of the kinetic of domain growing. As a result of such growth,
either head-to-head domains or the multidomain state can be
obtained. Passing a second-order phase transition, the multido-
main state is always favorable, but for a first-order phase transi-
tion, the favorable state depends on the thickness of the sample.
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APPENDIX A: BOUNDARY CONDITIONS

To check the self-consistency of the scale δ, we should
check that we can neglect the first term in Eq. (21), i.e.,∣∣∣∣εb

∂E

∂x

∣∣∣∣ �
∣∣∣∣4π

∂P

∂x

∣∣∣∣ . (A1)

Using Eq. (1), this inequality can be rewritten as

∣∣∣∣(α + 3βP 2)
∂P

∂x
− κ

∂3P

∂x3

∣∣∣∣ �
∣∣∣∣4π

εb

∂P

∂x

∣∣∣∣ . (A2)

In solutions we obtained P � P0, thus, 3βP 2 � 3|α|P 2 and
using εf � εb, we can get∣∣∣∣(α + 3βP 2)

∂P

∂x

∣∣∣∣ �
∣∣∣∣4α

∂P

∂x

∣∣∣∣ =
∣∣∣∣8π

εf

∂P

∂x

∣∣∣∣ �
∣∣∣∣4π

εb

∂P

∂x

∣∣∣∣ .
(A3)

To satisfy Eq. (A1), we should also show∣∣∣∣κ ∂3P

∂x3

∣∣∣∣ �
∣∣∣∣4π

εb

∂P

∂x

∣∣∣∣ . (A4)

For the case of linear screening, using solutions P0 =
tanh(x/δ), one can get

κεb

4π

∂3P/∂x3

∂P/∂x
= κεb

2πδ2

[
2 sinh2(x/δ) − 1

1 + sinh2(x/δ)

]
. (A5)

The maximum value of the function in parentheses is 2, thus,
using δ � 2rc,

κεb

4π

∂3P/∂x3

∂P/∂x
= εb

εf

(
2rc

δ

)2

� εb

εf
� 1. (A6)

In the case of nonlinear screening with the classical gas from
solution (59),

κεb

4π

∂3P/∂x3

∂P/∂x
= 4κεb

πδ2
|(1 − p2)2(1 − 7p2)|, (A7)

where −1 < p < 1. The maximum value of the function in
modulus is 1, thus,

κεb

4π

∂3P/∂x3

∂P/∂x
� 4κεb

πδ2
= 4εb

εf

(
2rc

δ

)2

� 4εb

εf
� 1. (A8)

In the case of nonlinear screening with degenerate electron gas
using solution (76), one can find

κεb

4π

∂3P/∂x3

∂P/∂x
<

κεb

4πδ2
= εb

εf

(
rc

δ

)2

<
εb

εf
� 1. (A9)

APPENDIX B: FREE ENERGY DENSITY FOR SCREENING
BY CLASSICAL AND DEGENERATE ELECTRON GAS

In this section, we will calculate the kinetic energy
contribution in the free energy density �eg(n) − �eg(n0). In the
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case of the classical electron gas, from Eq. (20) for fC(p) � 1,
the main term in the entropy density in the conduction band
can be written in the form

SC
eg = −k

∑
i

[
f C

i ln f C
i − f C

i

]
, (B1)

where summation is done over all possible states in the
conduction band. The Fermi function for a classical gas has
the form

f C
i = exp

(
−Ei − EF − qϕ

kT

)
, (B2)

where Ei is the energy of the state. Together with Eq. (B1),
this leads to

SC
eg = k

∑
i

[(
Ei − EF − qϕ

kT
+ 1

)
f C

i

]
. (B3)

The energy density in the conduction band can be presented
as follows:

EC
eg =

∑
i

Eif
C
i . (B4)

Thus, the kinetic free energy density of classical electron gas
in the conduction band can be found as follows:

�C
eg = EC

eg − T SC
eg =

∑
i

(EF + qϕ − kT ) f C
i

= (EF + qϕ − kT ) ne. (B5)

Along the same lines, the free energy density for classical
electron gas in the valence band can be found in the form

�V
eg = − (EF + qϕ + kT ) nh (B6)

and the total kinetic free energy is equal to the sum of (B5)
and (B6) and can be presented in the form

�eg = (EF + qϕ) (ne − nh) − kT (ne + nh). (B7)

Note that Eq. (B7) presents only the kinetic part of the
free energy, and the electrostatic energy is already taken into
account separately as εbE

2/8π in Eq. (15). The Fermi level
is constant; thus, in a sample with fixed number of electrons,
Eq. (B7) can be rewritten as

�eg = qϕ(ne − nh) − kT (ne + nh). (B8)

For degenerate Fermi gas, as was mentioned in Sec. III D,
two situations are possible: either the valence band is fully
occupied and there are electrons in the conduction band, or
there are holes in the valence band and the conduction band is
empty. With parabolic approximation, the energy density can
be calculated directly from Eq. (18) in terms of concentration
in a form that is universal for both situations as follows:

Eeg = 3h̄2(3π2)2/3

10m

(
n5/3

e + n
5/3
h

) + neEg. (B9)

The main term in the entropy density of a degenerate gas
with respect to T/TF, where TF is the Fermi temperature, can
be found from Eq. (20) as follows 26 :

Seg =
(

π

3

)2/3
m

h̄2 k2T n1/3, (B10)

where n signifies either the concentration of electrons or the
concentration of holes.

The condition of applicability of the strongly degenerate
Fermi gas approximation requires the temperature to be small
in comparison to the Fermi temperature:

kT � h̄2

m
n2/3. (B11)

Thus, using Eq. (B9),

T Seg � h̄4

m2
n4/3

(
π

3

)2/3
m

h̄2 n1/3 = 3h̄2(3π2)2/3

10m
n5/3 � Eeg,

(B12)

and, in Eq. (16), we can neglect the term with entropy in
comparison with the energy term. Thus, the free energy of the
degenerate electron gas can be found from (B9) as follows:

�eg = Eeg = 3h̄2(3π2)2/3

10m

(
n5/3

e + n
5/3
h

) + neEg. (B13)

So, for the degenerate gas, we can finally get

�eg(n) − �eg(n0) = 3h̄2(3π2)2/3

10m

(
n5/3

e + n
5/3
h − n

5/3
e0 − n

5/3
h0

)
+ (ne − ne0)Eg. (B14)

APPENDIX C: CALCULATION OF THE ENERGY OF A
SAMPLE WITH HEAD-TO-HEAD DOMAIN WALLS

1. Linear screening by classical electron gas

For a classical gas, the free energy density is given by
Eq. (92). Using (46), the electron-gas part of the free energy
can be presented as a function of ∂P/∂x:

�eg(x) − �eg0 = qϕ

(
ne0 − nh0 − 1

q

∂P

∂x

)

− kT
(
ne0e

qϕ

kT + nh0e
− qϕ

kT

)
, (C1)

where the potential ϕ can be found from Eq. (50):

ϕ = kT

q
ln

{
1

2ne0

[
− 1

q

∂P

∂x
+ ne0 − nh0

+
√(

− 1

q

∂P

∂x
+ ne0 − nh0

)2

+ 4ne0nh0

]}
. (C2)

In the case of linear screening, Eq. (C1) can be presented as an
expansion with respect to a small parameter θ = 1

q(ne0+nh0)
∂P
∂x

and the second-order terms should be taken into account:

�eg(x) − �eg0 = A × θ + 1
2kT (ne0 + nh0)θ2 + O(θ2), (C3)

where A is some coefficient independent of θ , O(θ2)
designates the higher-order terms with respect to θ2.

Now we will obtain the relation between the ferroelectric
and the electron gas parts of the free energy. With the change
of variables,

t = ∂P

∂x
(C4)
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and Eq. (52) can be rewritten in the form

αP + βP 3 = kT

q2(ne0 + nh0)
t

∂t

∂P
. (C5)

Integrating this equation once in P and taking into account
that, in the center of the domain t = 0 and P = P0, we can get

αP 2

2
+ βP 4

4
− αP 2

0

4
= 1

2

kT

q2(ne0 + nh0)

(
∂P

∂x

)2

. (C6)

Using Eqs. (92), (C6), and the second-order term from
Eq. (C3) [first-order terms will give zero after integration along
the thickness of the sample with the boundary conditions,
Eq. (37)], one can obtain∫ ∞

−∞
[�h−h(x) − �0(x)]dx

= 2
∫ ∞

−∞

(
αP 2

2
+ βP 4

4
− αP 2

0

4

)
dx. (C7)

From Eq. (C6), ∂P
∂x

can be presented as follows:

∂P

∂x
=

√(
αP 2

2
+ βP 4

4
− αP 2

0

4

)
2q2(ne0 + nh0)

kT
. (C8)

With Eq. (C8), the integral in Eq. (C7) can be rewritten as an
integral over the polarization as follows:∫ ∞

−∞
[�h−h(x) − �0(x)]dx

= 2
∫ P0

−P0

√(
αP 2

2
+ βP 4

4
− αP 2

0

4

)
kT

2q2(ne0 + nh0)
dP

= 2

3
|α|P 2

0 δcl. (C9)

In the case of linear screening by classical electron gas, the
polarization distribution for head-to-head and tail-to-tail walls
are the same to within the sign, thus, both terms in Eq. (88) are
equal, and the total energy of a charged wall can be given as

Wcl = 4
3 |α|P 2

0 δcl. (C10)

2. Nonlinear screening by classical electron gas

In the case of nonlinear screening, by using Eq. (38),
and (B8) can be presented in the form

�(x) − �0 = α

2
P 2 + β

4
P 4 − α

4
P 2

0 − ϕ

(
∂P

∂x

)
− kT

q

∣∣∣∣∂P

∂x

∣∣∣∣.
(C11)

In the case of nonlinear screening by classical electron gas,
Eq. (56) [with the variable change given by Eq. (C4)] can be
rewritten in the form

αP + βP 3 = −kT

q

∂t

∂P
. (C12)

By integrating this equation once, as we did for the case of the
linear screening, we will find the ferroelectric part of the free
energy density in the form

αP 2

2
+ βP 4

4
− αP 2

0

4
= −kT

q

(
∂P

∂x

)
. (C13)

Then, the ferroelectric part of the energy of the sample,
associated with the domain-wall region, can be found as
follows:

Wfe =
∫ ∞

−∞
−kT

q

(
∂P

∂x

)
dx =

∫ −P0

P0

−kT

q
dP

= 2P0kT

q
= 1

2
|α|P 2

0 δnl
cl . (C14)

From Eq. (46), in the case of the nonlinear screening, the
potential can be presented in the form

ϕ = kT

q
ln

(
−∂P/∂x

qne0

)
(C15)

and the kinetic free energy of electron gas in Eq. (92) can be
rewritten in the form

Weg = −kT

q

∫ ∞

−∞

[
ln

(
−∂P/∂x

qne0

)
− 1

] (
∂P

∂x

)
dx

= kT

q

∫ P0

−P0

[
ln

(
−∂P/∂x

qne0

)
− 1

]
dP. (C16)

With ∂P/∂x coming from Eqs. (C13) and (C16) yields

Weg = 2kT P0

q

[
ln

(
4|α|P 2

0

kT ne0

)
− 5

]
. (C17)

Thus, the first term in (88) can be obtained as a sum of
Eqs. (C14) and (C17) as follows:

Wh-h = 2kT P0

q

[
ln

(
4|α|P 2

0

kT ne0

)
− 4

]
. (C18)

Along the same lines, for the tail-to-tail domain-wall region,
one can obtain the following energy:

Wt-t = 2kT P0

q

[
ln

(
4|α|P 2

0

kT nh0

)
− 4

]
. (C19)

The energy of the sample with the charged wall can be obtained
as a sum of Eqs. (C18) and (C19), taking into account the mass
action law n2

i = ne0nh0:

W nl
cl = 4kT P0

q

[
ln

(
4|α|P 2

0

kT ni

)
− 4

]
. (C20)

By using ni = Ne−Eg/2kT , where N = √
NCNV, Eq. (C20) can

be rewritten in the form

W nl
cl = 2P0

q
Eg + 4kT P0

q

[
ln

(
4|α|P 2

0

kT N

)
− 4

]
. (C21)

The second term in Eq. (C21) can be neglected in comparison
with the first one, and the domain-wall energy can be written
as

W nl
cl = 2P0

q
Eg. (C22)

Indeed, Eq. (C21) can be rewritten in the form

W nl
cl = 2P0

q

[
Eg + 2kT ln

(
4|α|P 2

0

kT N

)
− 8kT

]
. (C23)
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Typically, in semiconductors, Eg is about several electronvolts
and kT at room temperature is about 0.026 eV, thus, 8kT can
be neglected in comparison with Eg. Now we can estimate the
term with logarithm in Eq. (C21) in comparison with Eg. The
density of states N can be estimated as follows:20

N ≈ 2

(
mkT

2πh̄2

)3/2

. (C24)

The conditions for nonlinear screening by classical gas,
corresponding to line 7 and to lines 1 and 2 in Fig. 6, can
be written as

|α|P 2
0 � (kT )5/2m3/2

h̄3 (C25)

and

ni � n0 � |α|P 2
0

kT
, (C26)

respectively. Using Eqs. (C25) and (C26), we can find the
following estimates:

2kT ln

(
4|α|P 2

0

kT N

)
� 2kT ln(2π2) ≈ 6kT � Eg, (C27)

2kT ln

(
4|α|P 2

0

kT N

)
� −2kT ln

(
4ni

N

)
> −Eg. (C28)

Equations (C27) and (C28) imply∣∣∣∣2kT ln

(
4|α|P 2

0

kT N

)∣∣∣∣ � Eg. (C29)

3. Linear screening by degenerate electron gas

In the case of a linear screening by degenerate electron gas,
the amount of the electrons in the conduction bands remains
constant and the carriers are just redistributed inside the band
(either the valence band is fully occupied and the electrons are
redistributed into the conduction band, or the conduction band
is empty and the holes are redistributed into the valence band).
Thus, the electron gas energy can be found from Eq. (B14) as
follows:

�eg − �eg0 = 3h̄2(3π2)2/3

10m

[(
n0 + 1

q

∂P

∂x

)5/3

− n
5/3
0

]
.

(C30)

This equation can be expanded with respect to the small
parameter 1

qn0

∂P
∂x

and the linear term can be neglected because
it will give zero after integration through the sample thickness
due to the boundary conditions (37). Thus, Eq. (C30) can be
presented in the form

�eg − �eg0 = h̄2(3π2)2/3

6mn
1/3
0

(
∂P

∂x

)2

. (C31)

By integrating Eq. (67), one can calculate the local relation
between the ferroelectric part of the energy and the part
associated with the electron gas in the form

αP 2

2
+ βP 4

4
− αP 2

0

4
= h̄2(3π2)2/3

6mn
1/3
0

(
∂P

∂x

)2

. (C32)

In the linear regime of screening, the polarization distributions
for the head-to-head and tail-to-tail domain walls are the same
to within the sign and, with Eqs. (B14), (C31), and (C32), the
domain-wall energy can be found in the form

Wdeg = 4
∫ ∞

−∞

(
αP 2

2
+ βP 4

4
− αP 2

0

4

)
dx. (C33)

With Eq. (C32), the integral can be rewritten as an integral
by polarization, and the domain-wall energy can be found as
follows:

Wdeg = 4
∫ P0

−P0

√
αP 2

2
+ βP 4

4
− αP 2

0

4

√
h̄2(3π2)2/3

6mn
1/3
0

dP

= 4

3
|α|P 2

0 δdeg. (C34)

4. Nonlinear screening by degenerate electron gas

In the most important case of nonlinear screening by
degenerate gas, by integrating Eq. (71), the following relation
can be obtained:

αP 2

2
+ βP 4

4
− αP 2

0

4
= h̄2(3π2)2/3

5mq5/3

(
∂P

∂x

)5/3

. (C35)

From Eqs. (B13) and (C35), taking into account that
∫

nedx =
2P0/q, the energy of the domain wall can be found as follows:

W nl
deg = 5

∫ ∞

−∞

(
αP 2

2
+ βP 4

4
− αP 2

0

4

)
dx + 2P0

q
Eg, (C36)

where the polarization profile is obtained for the domain wall
with the boundary conditions of Eq. (39). As we did for the
other type of walls, the integral in Eq. (C36) using Eq. (C35)
can be presented as an integral by P as

∫ P0

−P0

(
αP 2

2
+ βP 4

4
− αP 2

0

4

) (
h̄2(3π2)2/3

5mq5/3

)3/5

dP

=
∫ 1

0 (1 − z2)4/5dz

42/553/5
|α|P 2

0 δnl
deg (C37)

and Eq. (C36) can be rewritten in the form

W nl
deg =

(
5

4

)2/5 ∫ 1

0
(1 − z2)4/5dz × |α|P 2

0 δnl
deg + 2P0

q
Eg

≈ 0.77 × |α|P 2
0 δnl

deg + 2P0

q
Eg. (C38)

The first term in Eq. (C40) can be neglected if

P0 � = 1√|α|E
5/4
g

(
m

h̄2

)3/4

< E5/4
g

(
m

h̄2

)3/4

≈ 106cgse ≈ 300μC/cm2, (C39)

where we supposed Eg ≈ 3 eV. Thus, the energy of the domain
wall can be written as

W nl
deg = 2P0

q
Eg. (C40)
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