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Lasing, trapping states, and multistability in a circuit quantum electrodynamical analog of a
single-atom injection maser
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We study a superconducting single-electron transistor (SSET) which is coupled to a LC oscillator via the
phase difference across one of the Josephson junctions. This leads to a strongly anharmonic coupling between
the SSET and the oscillator. The coupling can oscillate with the number of photons, which makes this system
very similar to the single-atom injection maser. However, the advantage of a design based on superconducting
circuits is the strong coupling and existence of standard methods to measure the radiation field in the oscillator.
This makes it possible to study many effects that have been predicted for the single-atom injection maser in a
circuit quantum electrodynamics setup.
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Introduction. The ability to fabricate and control super-
conducting quantum circuits has given birth to the field of
circuit quantum electrodynamics (circuit QED). Within these
circuits, quantized charge, superconducting phase difference,
and even individual microwave photons can be controlled
and manipulated, introducing the idea of “artificial” atom-
photon physics. Such circuits have been used to reach the
strong-coupling regime,1,2 observe heating and cooling,3,4

realize a three-level-laser,5–7 and make great strides for-
ward in creating highly tunable “artificial” atoms coupled
to an oscillator.8 A number of proposals9,10 and ultimately
experiments4,7 have realized the idea of a linearly coupled
single “artificial-atom” laser (or more precisely maser). Such
work strives toward a circuit analogy of the experimental
generation of coherent microwave radiation using single-atom
masers.11–13

Despite much progress, several important physical effects
that have been painstakingly studied in single-atom injection
masers have yet to be realized in circuit QED. These effects
include multistability of the cavity field14 and trapped photon
numbers states.15 In all these experiments, the state of the
system is inferred via measurement of the excited state
occupancy of Rydberg atoms as they drop through a microwave
cavity.

In this Rapid Coummincation we will investigate a
superconducting single-electron transistor (SSET) coupled to
a LC oscillator via the phase difference across the SSET’s
right-hand Josephson junction (JJ). In doing so, we show that
this device allows one to reach a regime of strongly nonlinear
coupling. It displays multistability and trapping states, as well
as possesses an operating point which reduces noise from low-
frequency charge fluctuations. As such, this device provides
a close analogy to the single-atom injection experiments of
cavity QED. However, in contrast to previous experiments, a
circuit-QED setup allows the direct detection of the photon
state of the resonator via time-resolved measurements of the
emitted microwave radiation.

The system. One realization of our desired circuit is the
series coupling of the oscillator with the SSET [Fig. 1(a)].
Another option is the more conventional inductive coupling
scheme4 [Fig. 1(b)]. We divide the coherent Hamiltonian into

three parts, describing the artificial atom, the photon mode,
and the interaction between them:

H0 = Hatom + Hint + Hphoton. (1)

In both realizations the artificial atom, which forms the basis of
the micromaser, is provided by the charge on the SSET island
and Cooper-pair tunneling across the left JJ and is described
by the Hamiltonian

Hatom = 4EC(N − NG)2 − EJL cos(φL). (2)

Here EJL is the corresponding Josephson coupling and the
charge on the island, 2eN , and the phase difference φL

across the left JJ satisfy the periodic commutation relation
[N,e±iφL ] = ±e±iφL . The explicit forms of the gate charge NG

and the charging energy EC depend on the realization and are
given below explicitly for the series coupling. The gate voltage
U is used to bias the system such that single-Cooper-pair
tunneling is resonant across the left JJ. The quantized mode
can always be described as a harmonic oscillator (h̄ = 1),
Hphoton = ω0a

†a.
For the series coupling scheme the interaction Hamiltonian

between the atom and the cavity has the form

Hint = −EJR{cos(2eV t + φL) cos[G(a + a†)] (3)

− sin(2eV t + φL) sin[G(a + a†)]} + Hcc,

where EJR is the Josephson coupling across the right-hand
JJ and we have used the condition that the phase difference
across the SSET and the oscillator is fixed by the transport
voltage V , similar to the approach used in Ref. 16. As we will
discuss in more detail later the coupling term sin[G(a† + a)]
will provide the anharmonic coupling that makes our system
similar to the single-atom injection maser. Additionally, we
have a capacitive coupling term,

Hcc = −2iEcc

G N (a† − a). (4)

The important coupling constant is G = (2εC/EL)1/4,
where εC = e2C̄�/2C2

� , C̄� = CG + CL + CR , C2
� = (CG +

CL)CR + CC̄� , and EL is the magnetic energy of the
inductor (with capacitances defined in Fig. 1). The fact
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FIG. 1. (Color online) (a) The superconducting single-electron
transistor (SSET) in series with the LC oscillator. The SSET consists
of two Josephson junctions (crossed boxes) with a capacitively
connected gate on the small island in between. (b) Illustration of
the inductive coupling scheme, where a SQUID forms an effective
right-hand JJ and is thread by the bias flux φ0 and the oscillator flux
iG(a† − a). (c) The photon number 〈n〉 in the oscillator [setup (a)] as
a function of the gate charge NG ∝ U and the transport voltage V . A
symmetry point of particular interest is circled. For our discussion of
the regime of strongly nonlinear coupling, we restrict ourselves to this
symmetry point. The parameters of the simulation are EJL = EJR =
30 μeV, ω0 = 24 GHz, CL = CR = 40CG = C/1250 = 0.4 fF (G =
0.08), T = 50 mK, and RU = RV = 100 �, and the oscillator has a
decay rate of κ = 12 MHz.

that it is possible to construct circuits where the cou-
pling constant G can be rather big, G � 1, is the cru-
cial ingredient in reaching the strongly nonlinear coupling
limit. The charging energy of the SSET island is EC =
(C + CR)e2/2C2

� , the strength of the capacitive coupling is
characterized by Ecc = e2CR/C2

� , and the gate charge has
the form NG = {V [CR/(C + CR)][C + CR(CG + C)/C̄�] −
U [CG − C2

RCG/((C + CR)C̄�)]}/2e. The inductive coupling
provides the same anharmonic coupling as given by Eq. (3).
However, the coupling strength G depends on the geometry of
the system and in most cases remains small (G � 1). Finally,
the frequency of the oscillator is ω0 = √

8εCEL.
Directionality of our lasing cycle is created through the

standard 100 ohm noise in the voltages. It effectively leads
to fluctuations V → V + Vf and U → U + Uf described
by the Hamiltonian HEE and characterized by equilibrium
correlations of the form

〈Uf (t)Uf (0)〉 = RU

π

∫ ∞

−∞
dω

ω

1 + (
ω
ωc

)2

e−iωt

1 − e−βω
, (5)

where RU is the resistance in the gate line and the cutoff ωc =
1/RUCU 	 ω0. At the relevant frequencies (ω 	 kBT ) the
noise is asymmetric with respect to absorption and emission
of energy. The Hamiltonian of the total system is17 HT =

H0 + 2eNV Vf + 2eNUUf + HEE, where the coupling of the
voltage fluctuations to SSET and oscillator is mediated by
the operators NV and NU . For the series LC oscillator one
obtains

NU =− i

2

CGCR

C2
�

a† − a

G +
[
CG(C + CR)

C2
�

− C2
RCG

C2
�C̄�

]
N.

Similar relations apply for transport voltage fluctuations Vf

and the interaction operator NV . As one can see for series
coupling we create additional noise in the oscillator as well.
We will always include this effect by using an oscillator decay
rate which will be larger than the decay induced only by the
voltage fluctuations to allow for additional internal or external
loss.

For the remainder of this Rapid Communication, we focus
on the series coupling scheme [Fig. 1(a)] as this allows a
stronger nonlinear coupling between qubit and oscillator, but
our results apply to both schemes. To be able to study the
system in all generality we extend the complete model of
the SSET as discussed in Ref. 17 to include the photon
number states of the oscillator. We diagonalize the Hamiltonian
(1) using the Floquet expansion of the eigenstates, |ψ〉 =∑

n,n′,N cnn′Ne2in′eV t |n〉|N〉, where |n〉 are the photon number
states of the oscillator and |N〉 are the charge states of the
island. We then treat the voltage fluctuations perturbatively by
expanding the time evolution of the resulting density matrix in
orders of the coupling to the reservoirs. After tracing out the
reservoir degrees of freedom we arrive at the Bloch-Redfield
equation for the reduced density matrix ρ of the system.

Cascade resonance. In Fig. 1(c) we plot the average photon
number as a function of the gate charge NG and transport
voltage V for our device, obtained using a full density-matrix
simulation of the SSET and oscillator. Several resonances
appear at different regions in the V -NG plane shown in
Fig. 1(c). These points correspond to a resonance condition
between levels of the SSET and the oscillator. We focus our
further discussion on the symmetry point at NG = 1/2, where
the charge states |N = 0〉 and |N = 1〉 are degenerate. At this
symmetry point we are able to qualitatively describe features
of the system by a simplified master equation. We will now
discuss the relevant terms in this equation and explain how a
lasing cycle can be achieved.

The eigenstates of the effective atom are given by the
qubit states: symmetric and antisymmetric superposition of
the degenerate charge states | ↓〉 and | ↑〉, respectively. The
energy splitting is given by �E = EJL. Close to the symmetry
point the energy changes with (NG − 1/2)2 and is therefore
protected to the first order from low-frequency charge noise.18

After we perform the transformation U = exp[−i2eV a†a t]
and the rotating-wave approximation, our Hamiltonian be-
comes

HU = 1

2
�Eσz − ωeffa

†a + i EJR

2
[σ+s+ − σ−s−], (6)

with an effective oscillator frequency ωeff = 2eV − ω0 and the
operators s+ = ∑

n〈n + 1| sin[G(a† + a)]|n〉|n + 1〉〈n| and
s− = s

†
+. At the symmetry point that is circled in Fig. 1(c)

we have 2eV > ω0. This means that in our rotating frame
each photon that is created effectively decreases the energy of
the system.
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Charge noise allows decay from the qubit state | ↑〉 to the
qubit ground state | ↓〉. This in turn creates a higher population
in the state | ↓〉. If the resonance condition ω0 = 2eV − �E

(�E = ωeff) is fulfilled there is a coherent transition between
| ↓〉|n〉 and | ↑〉|n + 1〉. Through this mechanism photons are
created in a cascade of energy decay and absorption of voltage
quanta [see schematic in Fig. 1(c)].

At the symmetry point we can write the master equation in
a simplified Lindblad form,

ρ̇ = −i[HU,ρ] + Lchρ + Ldissρ, (7)

with the standard Lindblad operator for the oscillator decay
with rate κ and qubit decay,

Lchρ = γ (σ−ρσ+ − [σ+σ−,ρ]+/2), (8)

where [,]+ is the anticommutator, and the decay rate is given
by

γ =
∑

k=U,V

|〈↓ |2eNk| ↑〉|2
∫ ∞

−∞
dt〈kf (t)kf (0)〉ei�E t . (9)

This decay rate corresponds to 1/T1 in a charge qubit. The
overall form of our master equation is now significantly
simplified and similar to the master equation of a single-atom
injection maser. In the rotating-wave approximation used
to derive the Hamiltonian (6) we neglected many matrix
elements connecting different photon number states. However,
comparison to our full solution shows that all qualitative
features of the system are well described by Eq. (7).

Anharmonic coupling. The key difference between this
circuit and existing circuit-QED setups is the anharmonic
coupling term, sin[G(a† + a)]. To understand the effects of
this term, we consider three different regimes. Expanding the
anharmonic term for weak coupling G � 1, we obtain a linear
coupling s+ ≈ Ga†, resulting in the usual single-qubit lasing
results.3,5,6 In this case we find the photon number at resonance,
ωeff = �E = EJL, to be19 〈n〉0 = γ /2κ − γ 2/2(EJRG)2 for
〈n〉0 	 1. This expression for the photon number in the linear
coupling limit will prove to be useful in understanding the
other regimes that we can reach using this device.

An advantage of this circuit is that we are not limited to
the linear coupling regime. As the strength of the effective
coupling term is roughly sinusoidal withG and photon number,
we see a number of new effects. Ironically, when operating in
this mode, our micromaser behaves in a very similar fashion
to a single-atom injection maser,11,14,15 where our oscillatory
coupling provides a direct analog to the spatially dependent
atom-field coupling in injection masers. In Fig. 2 one can see
the probability distribution of the photon number states, ρn =
〈n| Tr↑/↓[ρ] |n〉, in the stationary limit ρ̇ = 0, as a function
of the coupling strength G. As discussed above, for small
coupling (marked by I ) we simply get the Poisson distribution
we would expect for a laser.19

For slightly larger coupling (or photon number) we obtained
a squeezed number distribution within the oscillator. This
regime (II ) is reached when π/2 � G

√〈n〉0 � π . If this con-
dition is fulfilled, as the photon number approaches the upper
limit (G

√〈n〉0 → π ), the matrix element s+ is effectively cut
off, resulting in the usual squeezed state physics.9,10 This can
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FIG. 2. (Color online) The photon distribution ρn as a function of
the coupling strength G, where we keep the linear coupling strength
EJRG constant. We see three major types of behavior, each of which
we show in the inset: a Poisson distribution for small coupling
(black, I ) and for increasing G a squeezed distribution (blue, II ) and
multistability (green line, III ). We used the parameters κ/γ = 0.027
and GEJR/γ = 6.7.

be seen in the asymmetric character of the photon number
distribution (the blue curve) in the inset to Fig. 2.

Increasing the coupling further (G
√〈n〉0 > π ), we reach

a regime of multistability (III ). In this regime, the system
can occupy either the original squeezed state, restricted by the
first zero crossing of sin[G(a† + a)], or a new squeezed state
associated with the second or subsequent zeros in the sine
function. Which of these states are occupied depends on which
matrix elements are small, resulting in “hot spots” where the
system (as a function of G) suddenly jumps from one squeezed
state to another, as can be seen in the bright regions of Fig. 2.
Near the crossover between these states, the system displays
bistability (and at higher G multistability) where the oscillator
is in a statistical mixture of two squeezed states with distinct
photon number distributions (the green curve in the inset of
Fig. 2).

Measurement. A great advantage of the circuit-QED
realization of a micromaser is that it is possible to make
a time-resolved measurement of the microwave radiation
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FIG. 3. (Color online) The amplitude Cn and the phase correlation
function Cϕ as a function of time, calculated from a numerical
solution of the time evolution of the master equation (7). The
different lines correspond to the different operating regimes shown
in Fig. 2: black line I for G = 0.37, blue line II for G = 0.93, and
green line III for G = 0.968. We used the parameters κ/γ = 0.027
and GEJR/γ = 6.7.
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emitted from the LC oscillator. Measuring the phase and
the amplitude fluctuations makes it possible to distinguish
among the different states of radiation in the cavity. Ampli-
tude fluctuations are described by the amplitude correlation
function,

Cn(t) = 〈a†(t)a(t)a†(0)a(0)〉 − 〈a†a〉2

〈(a†a)2〉 − 〈a†a〉2
, (10)

while phase fluctuations are given by the phase correlation
function Cϕ(t) = 〈a†(t)a(0)〉/〈a†a〉. Both correlators have
been normalized such that Ci(0) = 1 and they approach zero
for long times, Ci(t → ∞) → 0. With this normalization,
each correlator is fully characterized by a single decay rate,
Ci(t) ∝ e−κi t . In Fig. 3 we show the amplitude and the phase
correlation function for the LC oscillator in the various
operating regimes. To calculate the phase correlator we solve
Eq. (7) with the initial condition ρϕ(0) = a†ρst, where ρst is the
stationary solution to Eq. (7). Similarly we find the amplitude
correlator.

The two operating regimes II and III can be clearly
distinguished in the amplitude correlation function. For a
squeezed distribution (II ), the amplitude is very similar at all
times and therefore the amplitude decays very fast to its long-
time limit. In contrast to this for a multistable distribution the
field is fluctuating between two favored photon number states
that are only connected by a small matrix element. Therefore
it takes a long time until the amplitude correlator decays to its

stationary value. The decay rates of the amplitude correlation
function are therefore ordered such that κIII

n < κI
n < κII

n .
The decay rate of the coherent state lies between the two
other decay rates as it is given approximately by the oscillator
decay rate κI

n ≈ κ . The coherent state can be distinguished
through its very small phase correlation decay rate κϕ ∝
1/〈n〉.

Conclusion. We have presented a circuit design for creating
nontrivial microwave photon distributions using a SSET
strongly coupled to a strip-line or LC resonator. Using a
combination of Cooper-pair tunneling and coupling to voltage
fluctuation noise, a lasing cycle can be established. As this can
be achieved while operating at a charge degeneracy point, the
system is also better protected against low-frequency charge
noise.

Realizing the strongly nonlinear coupling regime requires
an oscillator with a large ratio of charging energy to inductive
energy, G = (2εC/EL)1/4. Such an oscillator has been demon-
strated in Ref. 20. A superconducting quantum interference
device array was used as an effective resonator, which has the
additional advantage of allowing for a tunable G, such that all
regimes discussed in this paper can be accessed in a single
experiment. Another possible realization is to use a tunable
right-hand (or left-hand) Josephson junction. This would allow
one to change the photon number of the linear limit 〈n〉0. An
increase of the photon number would allow the measurement
of all three regimes as well.
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6S. André, P.-Q. Jin, V. Brosco, J. H. Cole, A. Romito, A. Shnirman,
and G. Schön, Phys. Rev. A 82, 053802 (2010).

7D. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Yu. A.
Pashkin, Y. Nakamura, and J. S. Tsai, Nature (London) 449, 588
(2007).

8M. Hofheinz et al., Nature (London) 459, 546 (2009).
9K. Moon and S. M. Girvin, Phys. Rev. Lett. 95, 140504 (2005).

10M. Marthaler, G. Schön, and A. Shnirman, Phys. Rev. Lett. 101,
147001 (2008).

11P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A 34, 3077
(1986).

12W. E. Lamb, W. P. Schleich, M. O. Scully, and C. H. Townes, Rev.
Mod. Phys. 71, S263 (1999).

13H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Beckert, Rep.
Prog. Phys. 69, 1325 (2006).

14O. Benson, G. Raithel, and H. Walther, Phys. Rev. Lett. 72, 3506
(1994).

15M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther, Phys.
Rev. Lett. 82, 3795 (1999).

16A. Maassen van den Brink, G. Schön, and L. J. Geerligs, Phys. Rev.
Lett. 67, 3030 (1991).

17J. Leppakangas and E. Thuneberg, Phys. Rev. B 78, 144518
(2008).

18Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357
(2001).

19M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1997).

20M. A. Castellanos-Beltran and K. W. Lehnert, Appl. Phys. Lett. 91,
083509 (2007).

180505-4

http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1103/PhysRevLett.100.037003
http://dx.doi.org/10.1103/PhysRevLett.100.037003
http://dx.doi.org/10.1038/nphys1019
http://dx.doi.org/10.1038/nphys1019
http://dx.doi.org/10.1103/PhysRevLett.98.067204
http://dx.doi.org/10.1103/PhysRevLett.98.067204
http://dx.doi.org/10.1103/PhysRevA.82.053802
http://dx.doi.org/10.1038/nature06141
http://dx.doi.org/10.1038/nature06141
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1103/PhysRevLett.95.140504
http://dx.doi.org/10.1103/PhysRevLett.101.147001
http://dx.doi.org/10.1103/PhysRevLett.101.147001
http://dx.doi.org/10.1103/PhysRevA.34.3077
http://dx.doi.org/10.1103/PhysRevA.34.3077
http://dx.doi.org/10.1103/RevModPhys.71.S263
http://dx.doi.org/10.1103/RevModPhys.71.S263
http://dx.doi.org/10.1088/0034-4885/69/5/R02
http://dx.doi.org/10.1088/0034-4885/69/5/R02
http://dx.doi.org/10.1103/PhysRevLett.72.3506
http://dx.doi.org/10.1103/PhysRevLett.72.3506
http://dx.doi.org/10.1103/PhysRevLett.82.3795
http://dx.doi.org/10.1103/PhysRevLett.82.3795
http://dx.doi.org/10.1103/PhysRevLett.67.3030
http://dx.doi.org/10.1103/PhysRevLett.67.3030
http://dx.doi.org/10.1103/PhysRevB.78.144518
http://dx.doi.org/10.1103/PhysRevB.78.144518
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1063/1.2773988
http://dx.doi.org/10.1063/1.2773988

