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Terahertz electromagnetic radiation from intrinsic Josephson junctions
at zero magnetic field via breather-type self-oscillations
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I propose a new mechanism of intense high-frequency electromagnetic wave generation by spatially uniform
stacked Josephson junctions at zero magnetic field. The ac-Josephson effect converts the dc-bias voltage into
ac supercurrent; however, in the absence of spatial variation of the Josephson phase difference it does not
provide dc-to-ac power conversion, needed for emission of electromagnetic waves. Here I demonstrate that
at geometrical resonance conditions, spatial homogeneity of the phase can be spontaneously broken by the
appearance of breathers (bound fluxon-antifluxon pairs), facilitating effective dc-to-ac power conversion. This
leads to self-oscillations at cavity-mode frequencies, accompanied by the emission of radiation. The proposed
mechanism explains all major features of recently observed THz radiation from large-area Bi2Sr2CaCu2O8+x

mesa structures.
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I. INTRODUCTION

Self-oscillations are self-sustaining oscillations in nonlin-
ear systems with a frequency and often an amplitude inde-
pendent of the driving force. Oscillatory behavior in plasma,1

the operation of a clock, multivibrators, voice, and the sound
of musical instruments all are examples of self-oscillations.
Typically, periodic self-oscillations are excited by a constant
force. The frequency is determined either by an internal
resonance (e.g., a cavity mode) or a characteristic relaxation
time. Self-oscillations are widely used for the generation of
microwaves, for example, in magnetrons, klystrons, and Gunn
diodes.2

Recently, a significant THz emission has been reported
at zero magnetic field from large-area Bi2Sr2CaCu2O8+x

(Bi-2212) mesa structures,3–5 which represent natural stacks
of atomic-scale intrinsic Josephson junctions (IJJs). Although
the emission occurs at geometrical resonance frequencies,5

association with conventional Fiske steps6 is problematic
because their amplitude is zero at H = 0. Furthermore,
significant emission power would require a large quality factor
Q � 1 (Ref. 7). Since the Q of Fiske steps is inversely
proportional to the mesa size,6 it is not clear how it could
be sufficiently large for large mesas with high operation
temperatures due to self-heating. Therefore, the observed
radiation is quite puzzling and remains a matter of intense
discussion.5,7–14

Here I propose a new mechanism of emission from spatially
uniform stacked Josephson junctions at H = 0 via spon-
taneous breather-type self-oscillations. Breathers are bound
fluxon-antifluxon pairs with zero net flux.15 They effectively
couple ac-Josephson oscillations to the dc-bias, which allows
resonant excitation of cavity modes and leads to significant
THz emission. It is argued that breather-type self-oscillations
explain all experimental features of zero-field emission from
large Bi-2212 mesas.

Radiation from large IJJs is following the ac-Josephson
relation.3–5 Although the ac-Josephson effect converts the dc-
bias voltage into the oscillating supercurrent, this does not
ensure emission because the supercurrent is nondissipative and
cannot by itself pump energy from the dc-power supply into

radiation. Such a dc-to-ac power conversion can be achieved
via the Lorentz force,

FL = sI × B (1)

(per junction), where I is the dc-bias current and s is the
stacking periodicity (s � 1.5 nm for IJJs). Emission by means
of the ac-Josephson effect requires finite Bi(x) �= 0, which is
connected with the finite Josephson phase gradients ∇ϕi �= 0
(i is the junction index). The main unanswered question is how
B �= 0 appears at H = 0.

The paper is organized as follows. In Sec. II, different
Josephson and non-Josephson mechanisms of emission from
stacked IJJs are briefly reviewed. In Sec. III, the theoretical
formalism, used in numerical simulations, is described. To
study the radiation emission from the stack, we employ
the coupled sine-Gordon equation16 with dynamic radiative
boundary conditions.7 In Sec. IV, the main results are
presented and discussed. We also discuss the role of the quality
factor and the limiting, detrimental effect of self-heating and
estimate the emission power from Bi-2212 mesas. Finally,
we analyze the consistency of the proposed mechanism with
experimentally observed zero-field emission from large Bi-
2212 mesa structures. The supplemental material17 provides
instructions to the free demo program, which can be used for
direct analysis of various dynamic states in stacked Josephson
junctions.

II. MECHANISMS OF EMISSION FROM STACKED
JOSEPHSON JUNCTIONS

As emphasized in the Introduction, the presence of the
ac-Josephson effect is not sufficient for achieving radiation
emission from Josephson junctions. dc-to-ac power conversion
is essential. Below I briefly review known Josephson and non-
Josephson emission mechanisms at zero magnetic field.

A. Inhomogeneity and self-field effects

Structural inhomogeneity may lead to some coupling of the
dc bias to the ac-resonance field at H = 0 (Refs. 9 and 18). The
inhomogeneity can be caused by variation of the critical current
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density, nonuniform bias current distribution, or a thermal
gradient.19 In large Bi-2212 mesas the inhomogeneity can also
be induced by uneven self-heating at large bias11 and by defects
in Bi-2212 single crystals. Associated phase gradients lead
to distortion of the Fraunhofer pattern Ic(H ),19 which can be
attributed to a self-field caused by the nonuniform current flow.
This may lead to the appearance of zero-field Fiske steps.18

However, they can hardly explain the observed emission from
Bi-2212: Large flux quantization field in atomic scale IJJs
would require a too large inhomogeneity.9 Furthermore, such
inhomogeneity could hinder mutual synchronization of IJJs
(Ref. 6) and suppress collective Fiske resonances, required for
coherent amplification of the emission power.

B. Trapped vortices

Fluxons create a large phase gradient �π/λJ (λJ is
the Josephson penetration depth) and an effective dc-to-
ac-power conversion. Usually, fluxons are introduced by
applying an in-plane magnetic field. In long Josephson
junctions, L � λJ , they can be trapped at H = 0. Emission
scenarios, involving quasistatic semifluxons/antifluxons8 or
fluxons/antifluxons10 in mesas were proposed. For a single
junction static fluxon-antifluxon pairs are unstable, because
they tend to annihilate. However, for stacked junctions
fluxon-antifluxon pairs in neighbor junctions are stable.20,21

Metastable fluxon-antifluxon modes at H = 0 were clearly
observed in large Bi-2212 mesas, as they cause multiple
valued critical current.20 Fluxons experience the Lorentz
force, which facilitates efficient pumping of the dc power
into the fluxon energy. Upon collision and annihilation of
fluxons at junction edges, radiation pulses are produced.
Significant flux-flow emission from stacked junctions requires
both stabilization of the square (in-phase) fluxon lattice and
high-quality geometrical resonances.7 For IJJs, this can only
be achieved at strong fields, H > �0/λJ s � 2T , and for small
mesas.6,22 None of those requirements is realized in case of
zero-field emission from large mesas.

C. Electrostriction

The presence of ionic dielectric polarization in BiO layers
of Bi-2212 leads to generation of c-axis phonons or phonon
polaritons at the ac-Josephson frequency. Recently, it has been
demonstrated that very-high-power densities ∼kW/cm2 can
be achieved in small mesas.23 Such emission may occur at
zero field, but phonons, rather than photons, are emitted.

D. Non-Josephson mechanisms: Zero-field steps, Cherenkov
radiation, and nonequilibrium emission

Several non-Josephson emission mechanisms at H = 0
are also known. Stable fluxon-antifluxon pairs in stacked
junctions can be unbound by a transport current and may start
shuttling in the stack, leading to appearance of zero-field steps
(ZFS) in I–V curves.21 Some emission does take place at
ZFS;24,25 however, it occurs at subharmonics of the Josephson
frequency24 and the emission power is small because the
fluxon is not annihilated, but is reflected as an antifluxon upon
collision with the edge.

In stacks, ZFS can be accompanied by non-Josephson
Cherenkov radiation due to partial decomposition of fluxons
into traveling plasma waves.26–28

Also, recombination of injected nonequilibrium quasipar-
ticles leads to generation of bosons.13,29 The nonequilibrium
emission is direct (does not involve the ac-Josephson effect)
and can provide very high efficacy.13 It is most effective at
H = 0 because it benefits from the sharp gap singularity in
the quasiparticle density of states.

III. NUMERICAL FORMALISM

Analysis of emission from stacked Josephson junctions
requires the implementation of proper nonlocal radiative
boundary conditions7 into the coupled sine-Gordon equation.
The emission is facilitated by the finite radiation impedance
Z. Simulations are made at H = 0 for N = 10 identical,
uniform junctions with parameters typical for optimally doped
Bi-2212 IJJs.6,22 A variety of dynamic states for different
stack parameters can be explicitly seen using a provided
demo program.17 Instructions to the program are given in the
supplemental material.

IJJs exhibit hysteresis, that is, remain underdamped, almost
up to Tc (Ref. 30). To take into account temperature variation,
the damping parameter was varied from strongly underdamped
α = 0.01 (low T ) to overdamped α = 1 (high T ). The
emission power scales with the width of the stack w and is
normalized to w = 20 μm.

A. The coupled sine-Gordon equation

We consider a stack with the overlap geometry, consisting
of N = 10 junctions with the following parameters: Jci ,
the critical current density; Ci and Ri , the capacitance and
the quasiparticle resistance per unit area, respectively; ti ,
the thickness of the tunnel barrier between the layers; di

and λSi , the thickness and London penetration depth of
superconducting layers, respectively; and L, the lengths of the
stack along the x axis. The elements of the stack are numerated
from the bottom to the top, so that junction i consists of
superconducting layers i, i + 1 and the tunnel barrier i.

The gauge invariant phase differences, ϕi , in the stack can
be described by the coupled sine-Gordon equation16:

ϕ′′ = A · Jz − Jb. (2)

Here ϕ is the column of ϕi , “primes” denote spatial
derivatives (in x axis), A is a symmetric tridiagonal N ×
N matrix with nonzero elements Ai,i−1 = −Si/�l ; Ai,i =
�i/�l ; Ai,i+1 = −Si+1/�l . Here �i = ti + λSicoth( di

λSi
) +

λSi+1coth( di+1

λSi+1
), Si = λSicosech( di

λSi
). Parameters in the equa-

tions above are normalized to those in the junction i = l.
Jz is the vector representing the current density across

the junctions, which consists of three main components,
the supercurrent, the displacement current, and the normal
(quasiparticle) current:

Jzi = jcisin(ϕi) + C̃i ϕ̈i + αiϕ̇i . (3)
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Here jci = Jci

Jcl
, C̃i = Ci

Cl
, “dots” denote time derivatives and

αi =
√

�0

2πcJclClR
2
i

is the damping parameter, �0 is the flux

quantum, and c is the velocity of light in vacuum.
In Eq. (3), Jb represents the bias current density.27,28 In

Eqs. (2) and (3) space and time are normalized to the Josephson

penetration depth, λJl =
√

�0c

8π2Jcl�l
, and the inverse plasma

frequency 1/ωpl =
√

�0Cl

2πcJcl
of a single junction l, respectively.

For a stack of N Josephson junctions, phase velocities
of transverse electromagnetic waves, propagating along the
junctions, are split into N modes with velocities31

cn = c0

[
1 − 2Scos

(
πn

N + 1

)]−1/2

, n = 1,2, . . . ,N, (4)

where c0 = c
√

tl/εr�l is Swihart velocity of a single JJ (#l)
and εr is the dielectric constant of the barrier. The slowest
velocity cN corresponds to out-of-phase mode with opposite
direction of the electric field in neighbor junctions. The fastest
c1 corresponds to the in-phase mode with similar direction of
field in all the junctions in the stack.

Calculations are presented for a stack with N = 10 identical
junctions with parameters typical for optimally doped Bi-
2212: d = 6 Å; t = 9.5 Å; the stacking periodicity of IJJs
s = d + t = 15.5Å; Jc=1050 A/cm2; λs=1244 Å, which
corresponds to the effective London penetration depth λab =
λs

√
s/d = 200 nm; the dielectric constant was εr � 8.5,

corresponding to the Swihart velocity c0 = 4.42 × 105 m/s
and the slowest out-of-phase mode velocity cN = 3.16 × 105

m/s; the Josephson penetration length is λJ � 0.7 μm; and
Josephson plasma frequency ωp = 6.36 × 1011rad/s.

B. Nonlocal radiative boundary conditions

In order to calculate emission from the junctions, dynamic
radiative boundary conditions to the sine-Gordon equation
must be employed7:

∂ϕ

∂x
(x = 0,L) =

(
H ± μ0

Eac(0,L)

Z

)
2πλJl�

∗
l

�0
. (5)

Here H is the applied in-plane magnetic field in the y-axis
direction and �∗

l = �l − Sl − Sl+1 is the effective magnetic
thickness of the junction #l. Eac is the dynamic (instantaneous)
value of the ac component of the electric field outside the
junctions and Z is the effective radiative impedance, which
facilitates emission from the junctions (emission is zero for
Z = ∞). Plus and minus signs correspond to the left x = 0
and right x = L edges of the junction, respectively, because the
direction of emission is opposite at opposite edges. In stacked
junctions Eac is nonlocal and is the result of interference of
electric fields from all junctions:

Eac =
N∑

i=1

Ei. (6)

Radiative losses are associated with additional currents
flowing through edges of the stack:

�Irad = wEac/Z. (7)

Those displacementlike currents should be added to the bias
term at the edges of the junctions.

The net emission power from one edge of the stack is

Prad = wt0Hac

N∑
i=1

Ei = wt0E
2
ac/Z. (8)

Equations (5)–(7) together form the final nonlocal dynamic
boundary conditions for stacked Josephson junctions. For
the out-of-phase state, Ei = −Ei+1, Eac = 0, they reduce to
the nonradiative Neumann-type boundary condition. For the
in-phase state, Ei = Ei+1, Eac = NEi , they lead to coherent
power amplification ∝N2 [Eq. (8)].

C. Effect of temperature and self-heating

Self-heating of Bi-2212 mesas32 leads to reduction of the
quality factor of geometrical resonances and ultimately limits
the efficiency of emission. Q ∝ 1/α depends strongly on T

and decreases rapidly with increasing temperature. In the
present model the damping parameter and Q are assumed to
be constant, independent of N and bias. That is, self-heating
at large bias is not explicitly taken into account. In this
oversimplified case the collective in-phase mode is equally
stable no matter how many junctions are there in the stack.
This has been checked in simulations for different N , which
showed that the absolute value of electric and magnetic fields
and the modulation of phase are almost independent of N for
a given set of other parameters, because they depend only on
Q. In this case the proportionality of Prad ∝ N2 is achieved
automatically (per definition). The only N dependence appears
in resonance voltages, due to continuing growth of the in-phase
velocity c1(N ) for N < 400 (Ref. 6).

To describe the experimental situation, the strong detri-
mental effect of self-heating on Q as a function of N and
bias voltage must be taken into account. Assuming that the
main effect of self-heating is the increase of damping α(T ),
qualitatively the influence of self-heating can be obtained from
comparison of simulations for the same stack with different
damping parameters presented in Figs. 1–3: Larger damping
corresponds to higher T .

More details on the description of the coupled sine-Gordon
formalism, geometrical resonances, and radiative boundary
conditions in stacked Josephson junctions can be found in
Refs. 27 and 28, 6 and 7, respectively. A recent overview of
self-heating can be found in Ref. 33.

IV. RESULTS AND DISCUSSION

Figure 1(a) shows I–V characteristics for stacks with the
length L = 20λJ and α = 0.01. Different colors represent
simulations with different initial conditions, corresponding
to different amount of trapped fluxons and antifluxons. At
low bias this leads to the appearance of ZFS (Ref. 21). At
larger bias, distinct resonances appear, resembling Fiske steps.
Resonant modes (m,n) in a stack are described by the wave
numbers kab = mπ/L in plane and kc = nπ/Ns in the c-axis
direction.31

Figure 1(b) shows a normalized radiation power Prad

(from one edge). All presented simulations are made for
very large radiation impedance Z, so that radiative losses
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FIG. 1. (Color online) (a) Normalized I–V characteristics for
uniform, underdamped stack Josephson junctions at zero applied
field. Pronounced steps, caused by breather self-oscillations, are
seen. Different colors correspond to simulations with different
amounts of trapped fluxons/antifluxons at I = 0. It is seen that
breather resonances are metastable and depend on initial conditions.
(b) Normalized radiative power along the same I–V ’s. Pronounced
maxima occur at collective in-phase cavity resonances, indicated by
arrows.

are much smaller than internal resistive losses. Under those
circumstances, the product PradZ is independent of Z (Ref. 7).
From Figs. 1(a) and 1(b) it is seen that only certain steps are
accompanied by strong emission, while others are not, just
like in the case of Fiske steps.6,7 In Fig. 1(b) it is indicated
that distinct emission maxima occur at collective in-phase
cavity modes (19,1) and (22,1) due to coherent amplification
of radiation from the stack.7

Figure 2 shows snapshots of spatial distributions of phases
ϕi , magnetic inductions Bi (�0.18 G per division), and
ac components of voltages Vi (�0.2 mV per division) for
different resonances: (a) for overdamped α = 1 and (b)–(d)
underdamped α = 0.1 stacks with L = 20λJ . The junction
color code is shown in Fig. 2(a). Clear two-dimensional
standing wave patterns are seen, typical for cavity modes in
the stack.6,7,31

From Fig. 2 it is seen that there is no increment of phase
in the junctions ϕi(x = 0) = ϕi(L), which means that the
net magnetic flux in each junction is zero. The observed
modulation of phase is, therefore, caused by a spontaneous
formation of ordered breather lattice, consisting of similar
breather chains in each junction. Breather chains couple to the
dc-power supply via the Lorentz force and effectively pump
energy into ac-Josephson oscillations. This makes breather
resonances self-sustaining, once ignited. The frequency of
oscillations is adopted to the nearest cavity mode in the stack.
Such behavior is typical for self-oscillation phenomena, as
mentioned in the Introduction.

The breather amplitude is not quantized and the phase
variation can acquire any value in the range −2π < �ϕi <

2π . Figure 2(a) shows a special case, when the maximum
�ϕi is close to ±π , similar to the case discussed in Ref. 8.
Figure 2(d) represents the case when breathers have large
amplitudes. At some moments fluxons and antifluxons are
well separated so that �ϕi � ±2π , similar to the case
considered in Ref. 10. This state can also be viewed as if
there are coexisting fluxon and antifluxon sublattices moving
in opposite directions. However, even in those cases, �ϕi

are not constant but are oscillating in time. In general, the
amplitude �ϕi can be arbitrary, as shown in Figs. 2(b) and
2(c).

A. Radiation spectrum

Figure 3 shows the spectra of voltage in the middle junction
i = 5 at the edge of the stack x = 0. Frequency is normalized
by the Josephson plasma frequency ωp. Results are shown
for overdamped stacks α = 1 with L = 20λJ (solid line) and
L = 100λJ (dashed line), biased at the same relative current
I/Ic = 1.4 and having the same dc voltage. For L = 20λJ

it corresponds to the in-phase resonance (2,1), shown in Fig.
2(a), and for L = 100λJ to the in-phase mode (10,1), with the
same spatial separation between nodes. It is seen that radiation
spectra are similar and consist of sharp maxima at the primary
Josephson frequency ωJ and several harmonics, similar to
experimental observations.5

B. Quality factor of breather resonance

Simulations in Fig. 3 demonstrate that self-oscillations are
not hampered even in overdamped and very long stacks.
Furthermore, neither the amplitude nor the linewidth of
oscillations is deteriorated in the longer stack. This implies
that the Q’s of both resonances are similar. Quality factors
of geometrical resonances were considered in Ref. 6: For
the mode (m,n), Qm,n = mπ (cn/c0)(λ/L)/α, where cn is
the velocity of mode n and c0 is the Swihart velocity of a
single junction. Using the approximate (valid for N < 400)
expression for c1 (Ref. 6), we obtain for the most important
in-phase mode n = 1:

Qm,1 � m
√

2(N + 1)

(L/λJ )α
. (9)

It is seen that modes with the same L/m from Fig. 3 indeed
have the same Q � √

2 > 1, despite junctions that are long
and overdamped. The quality factor of the junction, Q0 = 1/α,
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FIG. 2. (Color online) Snapshots of phases ϕi , magnetic inductions Bi , and ac component of voltages Vi at four different breather resonances
for L = 20λJ overdamped α = 1 (a) and underdamped α = 0.1 (b)–(d) stacks. It is seen that electromagnetic field forms standing-wave patterns
in the stack. Excited cavity modes (m,n) are indicated in the figures. Panels (a) and (b) represent coherently emitting modes n = 1 with in-phase
oscillations in all junctions. Panels (c) and (d) show nonemitting n = 2 modes with one half of the stack out of phase with the other.

should not be confused with that for geometrical resonances
Qm,n = (ωm,n/ωp)Q0.

I want to address the question raised in Ref. 12: why
the resonant state is established, provided it has much larger
energy than the nonresonant (McCumber) state. Apparently,
the resonance with large �ϕi , Bi , and Vi correspond to a
sharp maximum in the junction energy. However, it effectively
pumps out the energy stored in the dc-power supply (the
battery). Therefore, the total energy of the system, the junctions
plus the battery, is rapidly decreasing.

C. Emission power

Let us estimate the emission power from Bi-2212 mesas.
At the in-phase geometrical resonance Prad ∝ N2Q2 (Ref.
7). Here N2 and Q2 terms represent the coherent and the
resonant amplification factors, respectively. The latter is
rapidly decreasing with increasing temperature. Due to self-
heating, mesas with large N at large bias become overdamped.
The ac-voltage amplitude in this case can be obtained from
the corresponding simulation in Fig. 2(a): Vi � 0.1 mV. The
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FIG. 3. (Color online) Spectra of voltage oscillations in the
middle junction for overdamped stacks, α = 1, with L = 20λJ and
100λJ at H = 0. Stacks are biased at I = 1.4Ic and have the same dc
voltage, corresponding to in-phase cavity modes (2,1) and (10,1),
respectively. Spectra are similar and have narrow maxima at the
Josephson frequency ωJ . Note that amplitudes and linewidths of the
two resonances are similar, despite different L.

emission power in the in-phase state is Prad = (NVi)2/Rrad,
where Rrad is the effective radiative resistance.7 Assuming it
is of the order of the free-space impedance Rrad ∼ 100�, we
obtain for the stack with N = 100 IJJs, P ∼ 1 μW, consistent
with the reported values.3 The power in this case is limited
by small Q (Ref. 7), which in turn is limited by self-heating,
rather than the size of the mesa or N .

V. CONCLUSIONS

In conclusion, a new mechanism of zero-field radiation
from stacked Josephson junctions is proposed, via sponta-
neous breather-type self-oscillations at geometrical resonance
conditions. It explains all major experimental features of THz
emission from large Bi-2212 mesas.3–5

(i) Breather self-oscillations can lead to powerful coherent
radiation from uniform mesas at H = 0 because breather
can effectively couple ac-Josephson oscillations to dc-power
supply via the Lorentz force.

(ii) Self-oscillations follow the ac-Josephson relation and
occur via resonant excitation of cavity modes.

(iii) Unlike Fiske resonances, the in-phase state is much
more robust for breather resonances because of much weaker
breather-breather than fluxon-fluxon interaction. In-phase
Fiske resonances in the flux-flow state require stabilization
of the rectangular fluxon lattice,22 which is usually unstable
due to fluxon-fluxon repulsion.

(iv) Unlike Fiske resonances, which have only one strong
mode for a given field (the velocity matching mode with two
nodes per fluxon),6 the wavelength of the breather chain can
be arbitrary. This flexibility provides an important advantage
with respect to Fiske resonances, because it allows effective
excitation of any cavity mode, including unusual ones (e.g.,
TM modes5).

(v) The flexibility of breather resonances ensures that some
high-enough in-phase resonance would have large-enough Q,
irrespective of damping and junctions length. This allows
intense emission with narrow linewidth even in very large
mesas and at elevated temperatures.

(vi) Nonuniformity is detrimental (rather than beneficial9)
in this scenario because it hinders mutual synchronization of
junction,7 needed for coherent emission.
(vii) Small in-plane magnetic field tends to suppress the

emission. With increasing field, breather resonances are
gradually substituted by Fiske resonances, which have smaller
amplitude at low fields.
(viii) Breather resonances depend on the initial conditions.
This leads to metastability of emission, observed in Bi-
2212 mesas.3 Essentially, self-oscillations must be ignited
to become self-sustainable. Here they were ignited with the
help of trapped fluxons/antifluxons. The ignition can also
be facilitated by nonequilibrium current injection,13,29 which
is most intense just beneath bias electrodes, consistent with
observation in Ref. 4.

(ix) The coherent emission power Prad ∝ N2Q2 is initially
increasing as N2 with increasing N , but eventually slows down
because of progressive self-heating, which reduces Q of the
cavity mode. From Eq. (2) it follows that Q is enhanced up
to N � 400, which is probably the optimal number of IJJs
for achieving a large coherent amplification N2 without too
large degradation of Q as a result of self-heating. Self-heating
ultimately limits the emission efficiency from large Bi-2212
mesas.

Finally, I note that spontaneous breaking of spatial unifor-
mity at H = 0 via breather formation has been observed in
discrete Josephson junction arrays.34 It was shown that such
breathers can excite geometrical resonances in junctions.35

I also want to note some similarity between the emitting
breather-type self-oscillations in stacked Josephson junction,
discussed here, with emitting dipole-type self-oscillations in
semiconducting superlattices.2 Indeed the dipole, consisting
of charge accumulation and depletion layers (domains), can
be viewed as an analog of the breather.
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