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Superfluid density in quasi-one-dimensional systems
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The helicity modulus in a quasi-one-dimensional classical XY model is calculated with the Monte Carlo
method in connection with recent experiments on liquid He in quasi-one-dimension. The helicity modulus,
which is closely related to superfluid density, is strongly reduced by phase slippage. However, the effect of
phase slippage is not necessarily probed in a dynamical experiment. Two methods to calculate the helicity
modulus that are not affected by phase slippage are proposed: One is to use a boundary condition that prohibits
phase slippage and the other is to restrict the Monte Carlo sampling to samples without phase slippage. It is
then found that the helicity modulus can survive at such a high temperature as the Kosterlitz-Thouless transition
temperature (in films) or the bulk transition temperature (in bars) even in the one-dimensional limit. A remarkable
difference in the number of thermal vortex excitations between the cases with a film and a bar is then pointed out.
The relevance of the present results to recent experiments on the superfluidity of quasi-one-dimensional He is
discussed.
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I. INTRODUCTION

Wada and coworkers succeeded in introducing He atoms
into one-dimensional pores of a porous material, FSM (folded
sheet mesoporous material) 16.1–4 FSM-16 has a regular
array of one-dimensional channels whose diameter R is
systematically controlled from R = 15 Å to 47 Å. Typical
length of pores is 2000–3000 Å. In their experiments,3,4

4He atoms are adsorbed not only on the outer surface of
the substrate but also on the inner walls of pores. They
then measured superfluid density using a torsional oscillator.
Separating the contribution of the one-dimensional part from
that of the outer surface, they found that the onset temperature
of the superfluidity in the one-dimensional part is as high as
the Kosterlitz-Thouless (KT) transition temperature,5–8 which
is determined by the areal density of He atoms.

Taniguchi and Suzuki also studied superfluidity of 4He
confined in pores of FSM-16.9–11 In contrast to Wada and
coworkers’ experiments,3,4 they immersed the sample into
bulk 4He, and pores were filled with liquid 4He. They also
measured superfluid density with a torsional oscillator. They
found not only an abrupt increase in the resonance frequency
corresponding to the superfluid transition of the bulk liquid,
but also a second increase in the frequency at a lower
temperature. They ascribed it to the onset of superfluidity in
the one-dimensional pores.9–11

Thus, results are quite different between the two similar
experiments. Under the full-pore condition,9–11 the onset
behavior characteristic of a one-dimensional system is ob-
served. In films, no clear evidence for the superfluid onset
characteristic of one dimension is found,3,4 although it was
reported that a second increase in the resonance frequency is
observed at a particular value of pore diameter, 24 Å.12 In this
paper, we discuss a possible reason for the difference between
the two experiments. We should note that three-dimensionality
plays little role in these experiments, in contrast to previous
experiments using interconnected porous materials.13–18

Superfluidity in one dimension or quasi-one-dimension
has long been discussed by many authors.19–22 Shevchenko

argued19 that the characteristic temperature for one-
dimensional superfluidity is given by

Tc ∼ h̄2n1

kBM�z

, (1)

where n1 is the one-dimensional number density of boson
atoms, M the atomic mass, and �z the one-dimensional length
of the system. It vanishes as �z → ∞ with n1 being fixed. At
the same time, he argued19 that superfluid behavior could be
observed at much higher temperature than Tc when ωτ � 1,
where ω is the frequency at which superfluidity is observed
(e.g., the frequency of a torsional oscillator) and τ is the
relaxation time of the superflow. A similar argument was given
by Machta and Guyer.22 They pointed out that there can be two
definitions of superfluid density. One is denoted by ρs in this
study, which is the coefficient of the increase in the free energy
in the presence of infinitesimal phase gradient, and the other by
ρp,23 which is the coefficient of the increase in the free energy
in the presence of infinitesimal phase twist between both ends
of the system, that is, the increase in the free energy under a
twisted boundary condition. They derived22 the relation

ρp(T ) � 2Leff
kBT

J
exp

[
− Leff

2ρs(T )

kBT

J

]
(2)

at T � ρsJ/(kBLeff), where Leff = �z/(n1a
2),

J = h̄2/(Ma2), and aD is the area (D = 2) or volume
(D = 3) per atom. [They derived the expression for D = 2
(for 4He films on a cylindrical surface). The extension to the
case with D = 3 (for 4He filling pores) is straightforward.]
In both cases, Leff is the effective length of the system.
Here the superfluid densities are normalized so that
ρs,p(T = 0) = 1. ρp suffers from phase slippage and vanishes
at T � Jρs/(kBLeff) � h̄2n1/(kBM�z) ∼ Tc. This is because
the energy of a state with finite superflow vanishes in
proportion to 1/�z in the limit of �z → ∞. In contrast to
ρp, ρs(T ) is not affected by phase slippage and can remain
finite at higher temperatures. They further argued that it
is ρs that is observed in torsional oscillator experiments,22
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because the motion of the substrate establishes an external
superfluid velocity over the entire area of the film rather
than a phase twist from one side of the film to the other.24

Another relation between the two superfluid densities was
also derived by Prokof’ev and Svistunov.25 They pointed out
that the difference between the two definitions can be relevant
in (quasi-)one dimension.25,26

The experimental results mentioned above can then be
partly understood by these theories. If the condition ωτ � 1
holds in Wada and coworkers’ experiments,3,4 it may be natural
that superfluidity is observed at such a high temperature
as the KT transition temperature. On the other hand, in
the full-pore experiments by Taniguchi and Suzuki,9–11 the
opposite condition, ωτ � 1, seems to hold so that ρp is
observed and the onset is at a temperature characteristic of
one-dimensional superfluidity.

However, a few questions remain unanswered. One of them
is what the explicit temperature dependence of ρs(T ) is. If
Leff is sufficiently large, ρp(T ) vanishes at an extremely low
temperature. Then, ρs(T ) in Eq. (2) can be approximated by
ρs(T = 0). In this case, the explicit temperature dependence
of ρp(T ) is obtained without knowledge of that of ρs(T ). In
full-pore experiments using nanopores of diameter R ∼ 40 Å,
Leff � 8. In such a case, the temperature dependence of ρs(T )
may matter. The earlier theoretical investigations19,22,25 did not
give an explicit temperature dependence of ρs(T ). Naively, one
may expect that the temperature dependence of ρs(T ) is the
same as that in the bulk. However, it may be too naive to expect
that it holds for any �z (or Leff).

Recently, the superfluid density in one dimension has also
been studied within the Tomonaga-Luttinger liquid (TLL)
theory.27,28 The expression for superfluid density obtained in
these studies is similar to the one by Machta and Guyer,22

and no explicit temperature dependence of ρs(T ) is given,
either. Explicit temperature dependence of superfluid density
in (quasi-)one dimension has recently been investigated using a
classical XY model29 and an interacting boson model.30,31 The
results are consistent with the prediction of the earlier studies.
Again, we emphasize that the focus of these investigations
was on ρp(T ) and the temperature dependence of ρs(T ) was
not explicitly calculated. Therefore, it is desirable to be able
to calculate ρs(T ), in addition to ρp(T ), using a microscopic
model. This is one of the purposes of this work.

Another issue that must be addressed is the difference
between the two experiments: One is on 4He films adsorbed
on nanopores3,4 and the other is on 4He filling nanopores.9–11

One could say that the difference is because of the difference
in the value of ωτ ; however, it is still unclear why it can be
so different. To understand the possible reason behind this
difference is another purpose of this work.

In this study, we use a classical XY model to study superfluid
density in quasi-one-dimension. A hard-core boson system
can be mapped to a quantum XY model.32 Many microscopic
details, such as the precise form of the adsorption potential
of the substrate, the degree of randomness of the surface,
and so on, in the experiments are unknown at present. In
this study, discarding these details, we use the simplest
possible model to consider superfluidity in nanopores. Then,
in addition to the classical approximations, we consider only
the exchange interaction between xy components of spins on

the nearest-neighbor sites neglecting the effect of interatomic
interaction working at finite distances. Moreover, the exchange
interaction is assumed to be independent of the position (except
in Sec. V); the effect of adsorption potential is not considered.
Due to these simplifications, the results obtained in this
study would be only of qualitative relevance to 4He systems
in reality and quantitative comparison is difficult. However,
qualitative results obtained in this study can be useful for
understanding the experiments on quasi-one-dimensional 4He.
Recently, cold atoms confined in a quasi-one-dimensional trap
have been successfully prepared and their physical properties
are extensively studied.33–36 Possible superfluid behavior is of
much interest. This study may also be useful for studies of
those systems.

In the next section, we introduce the model, summarize the
results obtained so far, and introduce quantities of interest in
this study. In Sec. III, we propose a method to calculate ρs(T )
and show the numerical results of ρs(T ) in films and bars.
Then, in Sec. IV, we introduce another method to calculate
ρs(T ). In doing so, we clarify an important difference between
the case with films and with bars. In Sec. V, we study the effect
of possible randomness on the surface of nanopores. The final
section is devoted to a summary and discussion.

II. QUASI-ONE-DIMENSIONAL XY MODEL:
HELICITY MODULUS, PHASE WINDING,

AND VORTEX-PAIR DENSITY

A hard-core boson system can be mapped to a ferro-
magnetic XY model by introducing a fictitious lattice into
the system.32 In the mapping, we have to specify the lattice
constant d. It is natural to assume that d is comparable
with (or slightly larger than) the average particle-particle
distance a, that is, d � a. Exchange interaction J can then
be estimated as J � h̄2/(2md2),32 where m is the mass of
a 4He atom. Considering d � a, the exchange interaction J

can be written as J � h̄2n1/(2m�x) in 4He films adsorbed
on inner surfaces of nanopores, where �x is the width of
films (the circumference of nanopores). In liquid 4He filling
nanopores, J � h̄2n1d/(2ms), where s is the cross-sectional
area of nanopores.

To study 4He films adsorbed on nanopores, we consider
an XY model on a square lattice measuring Lx × Lz, where
Lμ = �μ/d (μ = x,z) with Lx � Lz (a film). We impose
the periodic boundary condition in both (x and z) directions.
For 4He filling nanopores, we consider an XY model on
a cubic lattice measuring Lx × Ly × Lz with Lx = Ly and
Lx � Lz (a bar). In this case, Lx = Ly � √

s/d. We impose
the periodic boundary condition in the z direction and open
boundary condition in the other directions. Note that the
effective length Leff is Leff = Lz/Lx = �z/�x in films, and
Leff = Lz/LxLy � �zd/s in bars. In a film, Leff is its aspect
ratio and is independent of d. In a bar, it depends on the lattice
constant d and is not determined only by the geometry of the
system.

In this work, we consider classical XY models. Certainly,
quantum effects are important in low dimensions; a one-
dimensional quantum XY model has no long-range order even
at T = 0 while the classical counterpart does. However, a
classical model turns out to be useful in discussing qualitative
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superfluid property. The temperature dependence of superfluid
density in one dimension calculated with a classical XY
model29 is similar to that calculated for an interacting boson
model and also to the prediction of the TLL theory,30 if
the coupling constant is appropriately replaced, except at
extremely low temperatures.

Thus, we consider the XY model defined as

H = −J
∑
〈n,n′〉

cos[θ (n) − θ (n′)], (3)

where θ (n) stands for the direction of the spin vector at lattice
point n and J represents the exchange interaction between
the nearest-neighbor pairs 〈n,n′〉. The total number of lattice
points is N = LxLz for a square lattice (a film) and N =
LxLyLz = L2

xLz for a cubic lattice (a bar).
We calculate various quantities with the Monte Carlo

method. In doing so, we use Wolff’s algorithm.37 We typically
collect (1–5) × 106 samples after discarding (1–5) × 104

thermalization steps.
We calculate the helicity modulus ϒ along the z axis.

Superfluid density is a tensor, and it is the z component that
is relevant in the experiments. ϒ is defined as the coefficient
of the increase in the free energy under a twisted boundary
condition in the z direction and is given by38

ϒ = 1

N

〈∑
n

cos[θ (n + ẑ) − θ (n)]

〉

− J

NkBT

〈{∑
n

sin[θ (n + ẑ) − θ (n)]

}2〉
. (4)

Conventionally, it is considered39 to be proportional to super-
fluid density,

ϒ ∝ ρp. (5)

Here, we use subscript p to distinguish it from ρs , which is the
coefficient of the increase in the free energy in the presence of
infinitesimal phase gradient. Even if the phase twist between
both ends of the system is infinitesimally small, the phase
gradient is not necessarily so and superflow of finite velocity
can flow between both ends, because the phase twist has
uncertainty of 2πI , where I is an integer. If the energy of a state
with nonzero I is much higher than the ground-state energy,
it makes little contribution to superfluid density. However, in
quasi-one-dimension, the energy decreases as 2π2JI 2/Leff in
the limit of Leff → ∞ and then phase slippage can contribute
to the decay of superflow even at low temperatures.

Now, we define the phase winding. First, we define the
phase winding in each row. For a film,

I (nx) = 1

2π

Lz∑
nz=1

[θ (nx,nz + 1) − θ (nx,nz)], (6)

where [· · ·] is defined so that |[· · ·]| � π . I (nx) is an integer
because of the periodic boundary condition in the z direction.
Then, we define Itot (and itot) as

itot = 1

Lx

Itot = 1

Lx

Lx∑
nx=1

I (nx). (7)

The thermal average of Itot must vanish, because the probabil-
ity of a state with Itot is equal to that with −Itot. We then define
a quantity representing the degree of phase winding, i2

W ,

i2
W = 1

Lx

Lx∑
nx=1

〈I (nx)2〉. (8)

For a bar, we can define similar quantities. For example,

I (nx,ny) = 1

2π

Lz∑
nz=1

[θ (nx,ny,nz + 1) − θ (nx,ny,nz)] (9)

and

itot = 1

LxLy

Itot = 1

LxLy

Lx∑
nx=1

Ly∑
ny=1

I (nx,ny). (10)

In films, vortices always appear as a vortex-antivortex pair
under the periodic conditions in both directions. Vorticity can
be defined as40

v(n) = 1

2π
{[θ (nx + 1,ny) − θ (nx,ny)]

+ [θ (nx + 1,ny + 1) − θ (nx + 1,ny)]

+ [θ (nx,ny + 1) − θ (nx + 1,ny + 1)]

+ [θ (nx,ny) − θ (nx,ny + 1)]}. (11)

Essentially, v(n) = 0 and ±1,40 and
∑

n〈v(n)〉 = 0. We define
vortex-pair density ρv as

ρv = 1

2LxLz

∑
n

〈|v(n)|〉 (12)

in films.
Note that while Itot takes only integer values, itot is not

necessarily an integer. Let us first assume that I (nx) = 0 for
all nx’s; that is, there is neither phase slippage nor vortices.
When only phase slippage occurs, itot takes an integer value.
On the other hand, if a vortex is created at (n1,ny) and an
antivortex at (n2,n

′
y) (n1 > n2), then I (nx) = 1 (0) at n2 + 1 �

nx � n1 and I (nx) = 0 (−1) otherwise. Then, itot can assume
a noninteger value.

In bars, there are two kinds of vortices: vortices whose ends
are on the surface of a bar and vortex rings. Looking only at the
surface, the ends of one vortex can be regarded as a vortex and
an antivortex. Discarding vortex rings,41 the quantity defined
by Eq. (12), where the summation is over the lattice points on
the surface of a bar and the normalization 1/(2LxLy) should
be replaced by 1/[4(Lx + Ly − 2)Lz], represents the number
of vortices (per surface area) in the system.

Figure 1(a) shows the temperature dependence of ϒ on
a square lattice whose size is N = 16 × 480 and Leff =
Lz/Lx = 30. It can be seen that ϒ rapidly decreases from
unity as T increases. The temperature dependence can be
expressed by ϒ = C exp [−LeffkBT /(2J )] where C depends
on LeffkBT /J (and kBT /J ) for kBT � J/Leff .29,43 This
expression is consistent with that obtained by Machta and
Guyer.22 The linear temperature dependence at low tem-
peratures is a consequence of the classical approximation;
ϒ � 1 − kBT /(2DJ ) when Lx,Lz → ∞ (D = 2 for films,
and D = 3 for bars). From Fig. 1(b), we can see that vortex
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FIG. 1. (a) Helicity modulus ϒ in the z direction in the 2D
XY model on a lattice N = 16 × 480. For comparison, ϒ for N =
160 × 160 is also shown (stars). (b) Vortex-pair density ρv (closed
dots) and phase winding i2

W (open squares) in the 2D XY model
(N = 16 × 480). Thin solid curve stands for the result with the
spin-wave approximation (i2

W � 2 exp[−2π 2J/(LeffkBT )]).29 Error
bars are smaller than the size of symbols. The vertical dotted line
stands for the KT transition temperature TKT = 0.89J/kB .42

pairs hardly contribute to the reduction of ϒ , and it is phase
slippage, that is, finite i2

W , that causes ϒ to vanish. The same
is true in a bar of size N = 4 × 4 × 480 as can be seen from
Fig. 2; the effective length Leff is also Leff = Lz/L

2
x = 30 here.

We note that the temperature dependence of i2
W (and therefore
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FIG. 2. (a) Helicity modulus ϒ in the z direction in the 3D XY
model on a lattice N = 4 × 4 × 480 (open dots). For comparison,
ϒ for N = 40 × 40 × 40 is also shown (stars). Small closed dots
represent ϒ in the 2D XY model (N = 16 × 480). (b) Vortex density
ρv (closed dots) and phase winding i2

W (open squares) in the 3D XY
model (4 × 4 × 480). Thin solid curve stands for the result with the
spin-wave approximation (i2

W � 2 exp[−2π 2J/(LeffkBT )]).29 Small
closed squares represent ρv in the 2D XY model (N = 16 × 480).
Error bars are smaller than the size of symbols. The vertical dotted
line stands for the bulk transition temperature Tλ = 2.20J/kB .44
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FIG. 3. (Color online) Vortex(-pair) density ρv as a function of
inverse temperature for different system sizes: N = 16 × 480 (open
dots), 32 × 480 (open squares), 160 × 160 (closed dots), 4 × 4 × 480
(open diamonds), 8 × 8 × 480 (triangles), and 40 × 40 × 40 (closed
squares). Solid line is the result of fitting.

of ϒ) in a film is the same as that in a bar at low temperatures
for the same value of Leff .29

From the behavior of ρv(T ) at low temperatures, we can
measure the energy necessary for creation of a vortex pair
in 2D (a vortex in 3D). The vortex density ρv(T ) depends
on temperature exponentially at low temperatures, ρv(T ) ∼
exp [−Ev/(kBT )]. Figure 3 shows the logarithmic plot of
ρv(T ) as a function of 1/T . In films, ρv hardly depends on the
size. Usually, the energy required for creation of a vortex pair is
denoted by 2μ. We can estimate Ev/J = 2μ/J = 7.19 ± 0.01
for a lattice N = 160 × 160 and results for different system
sizes agree within errors. This is smaller than the earlier
results.40,45,46 Here, we used the data between 10−6 and
10−4, 10−6 < ρv(T ) < 10−4, in the estimation of Ev; this
corresponds to the temperature range 0.44J � kBT � 0.62J

in films.47 (The quality of data at lower temperatures gradually
deteriorates.) If we also used the data at higher temperatures,
we would obtain a larger value of 2μ, consistently with the
earlier results. In contrast to the case with films, ρv(T ) slightly
depends on the size in bars. This is because there are “corners”
in the bars studied here. For N = 4 × 4 × 480, we find
Ev/J = 7.75 ± 0.01, for N = 8 × 8 × 480, Ev/J = 8.20 ±
0.02, and for N = 40 × 40 × 40, Ev/J = 8.96 ± 0.01. In
Appendix A, we discuss the case with bars without corners.

III. SUPERFLUID DENSITY WITHOUT CONTRIBUTIONS
OF PHASE SLIPPAGE. I

Whether the superfluid density ρp can be observed or not
depends on the value of ωτ . τ is the time necessary for phase
slippage to occur and must depend on temperature as τ ∝
exp [
F/(kBT )], where 
F is the free-energy barrier that
the system has to get over in the process of phase slippage.48

If ωτ � 1, no phase slippage occurs during one period of a
torsional oscillator. In this case, ρp is not observed and it is
ρs that is observed. In this section we propose a method to
calculate ρs(T ), which is not affected by phase slippage.

Both 2D films and 3D bars can be viewed as tori under the
periodic boundary condition. A vortex pair in a film or a vortex
in a bar is generated when a vortex filament pierces the surface
of a torus. Suppose that the system is in a state of itot = 0
in the beginning and that a vortex filament comes from the
outer space, pierces the surface [creates a vortex(-pair)], drifts
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itot=0(a) (b)

(c) itot=±1

FIG. 4. Cross-sectional view of a torus. (a) A vortex filament
pierces the surface of a torus, creating a vortex-pair in a film or a
vortex in a bar. (b) Inward drift of a vortex filament. (c) A vortex
filament passes through to the center of a torus, annihilating a vortex
pair (or a vortex) and leaving the state with itot = ±1 (depending on
the direction of the filament).

inward, and passes through to the center of a torus. Then, a
created vortex(-pair) is annihilated and the system is shifted to
a state with itot = 1 or −1. See Fig. 4. This is the elementary
process of phase slippage, and 
F (at T = 0) corresponds to
the energy of the state where a vortex and an antivortex are
maximally separated. It must be larger than Ev estimated in the
previous section, because attractive interaction acts between a
vortex and an antivortex.

One of the simplest ways to prevent phase slippage is to
close the hole in the center of a torus. This can be done by
imposing a specific boundary condition, that is, by replacing
all the spins in a row in a film by a single spin,

θ (n0,nz) = θ (n0), (13)

for a specific value of nx = n0. We call this boundary condition
the no-phase-slippage boundary condition (NPSBC) in this
study. Under the NPSBC, while translational symmetry in the
x direction is broken, translational symmetry in the z direction
and rotational symmetry in spin space are conserved. θ (n0)
interacts with 2Lz spin variables, θ (n0 ± 1,nz), and rotates
accordingly. Under the NPSBC, a state with I (nx) 
= 0 is
necessarily accompanied by vortex pairs. For a bar, we can
similarly consider the NPSBC. We replace spins on all the
lattice points on a corner of the bar, say nx = ny = 1, by
a single spin.49 Under the NPSBC, there occurs no phase
slippage, and the calculated ϒ can be identified with ρs .

Figure 5 shows the helicity modulus ϒ , vortex density ρv ,
and phase winding i2

W in films of different sizes calculated
under the NPSBC. It can be seen that phase winding i2

W

diminishes rapidly as temperature decreases in contrast to the
case with conventional periodic boundary condition (Fig. 1),
and that ϒ’s for different system sizes almost coincide with
each other for T < TKT. For T > TKT, ϒ remains finite and is
larger in a narrower film. This can be understood as a result of
confinement of a vortex pair: When we separate a vortex and an
antivortex along a pore axis, a constant restoring force works
between the pair whose strength is inversely proportional to
the diameter of pore.20,21 This force strongly prevents the
dissociation of a vortex pair, resulting in increase of the onset
temperature of superfluidity. Originally, this conclusion was
reached under the condition that the vortex core radius is
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FIG. 5. (Color online) (a) Helicity modulus ϒ and (b) vortex-pair
density ρv and phase winding i2

W in films of different sizes calculated
under the no-phase-slippage boundary condition (NPSBC): N =
8 × 480 (diamonds), 16 × 480 (dots), and 32 × 480 (squares). For
comparison, results for N = 160 × 160 under the conventional
boundary condition are also shown (stars). The dotted line represents
the location of the KT transition temperature TKT = 0.89J/kB .42

much smaller than the pore circumference.20,21 The present
result implies that the conclusion holds in narrower tubes.

Figure 6 shows ϒ , ρv , and i2
W in bars of different system

sizes calculated under the NPSBC. Phase winding i2
W is again

found to diminish rapidly as T → 0, and ϒ remains finite even
at T = Tλ. In contrast to the case with films, ϒ is suppressed
at T < Tλ in a bar in comparison with its counterpart in the
bulk.
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2
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(b)

FIG. 6. (Color online) (a) Helicity modulus ϒ and (b) vortex
density ρv and phase winding i2

W in bars of different sizes calculated
with the no-phase-slippage boundary condition (NPSBC): N =
2 × 2 × 480 (diamonds), N = 4 × 4 × 480 (dots), and 8 × 8 × 480
(squares). For comparison, results for 40 × 40 × 40 (stars) obtained
under the conventional boundary condition are also shown (stars).
The dotted line represents the bulk transition temperature Tλ =
2.20J/kB .44
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FIG. 7. (Color online) (a) Distribution function f (itot) of phase
winding itot for N = 16 × 480 at different temperatures: T = 0.6TKT

(closed dots), 0.8TKT (open dots), 0.9TKT (closed squares), and TKT

(open squares). (b) Distribution function f (Itot) of phase winding itot

for N = 4 × 4 × 480 at different temperatures: T = 0.2Tλ (closed
dots), 0.4Tλ (open dots), 0.6Tλ (closed squares), and Tλ (open
squares).

We find that, as the system size increases, the results
approach those on a lattice of size L × L(×L) obtained under
the conventional boundary condition, which has been used in
Sec. II, as expected. If phase slippage is prohibited, the shape
of the system does not matter and the thermodynamic limit
is naturally approached when the system size is increased.
In addition, the NPSBC hardly affects results on a lattice of
L × L(×L), because phase slippage does not contribute to
superfluid density in these cases. Further details are discussed
in Appendix B.

In both films and bars, we find that ρs can remain finite
at such a high temperature as TKT or Tλ even for a large
Leff . However, in this method of calculation, finite size effects
may be large. Consider the case with Lx = 1. In this case,
the NPSBC makes no sense. Moreover, we have found no
difference between films and bars that may suggest a possible
reason for the difference in ωτ . In the next section, we propose
another method for calculating ρs(T ).

IV. SUPERFLUID DENSITY WITHOUT CONTRIBUTIONS
OF PHASE SLIPPAGE. II. DISTRIBUTION

OF PHASE WINDING

At T = 0, there occurs no phase winding for a finite Leff ,
I (nx) = 0 [I (nx,ny) = 0] and itot = 0. At low temperatures,
no vortices are thermally excited. It is virtual vortex(-pair)
excitations that create phase slippage. Then, itot can take
finite integer values (±1,±2, · · ·). As T further increases,
vortices are thermally excited, which allows itot to assume
noninteger values. To see this behavior, we calculate a
distribution function of phase winding itot. First, we define
the number of Monte Carlo samples where itot = x as F (x);
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FIG. 8. (Color online) Helicity modulus ϒ of 2D XY model of
different sizes obtained with the restricted sampling (RS) (|itot| �
1/2): N = 16 × 480 (closed dots) and 32 × 480 (closed squares).
For comparison, the same quantities calculated under the conven-
tional boundary condition (open symbols; dots for N = 16 × 480
and squares for N = 32 × 480) and the NPSBC are also shown
(half-closed symbols; dots for N = 4 × 320 and squares for N =
32 × 480). The dotted line represents the KT transition temperature
TKT = 0.89J/kB .42

∑
itot

F (itot) = NMC, where NMC is the total number of Monte
Carlo samples. Then, we define f (itot) as

f (itot) = Lx

NMC
F (itot), (14)

for a film so that
∫

dxf (x) = 1. For a bar, Lx is replaced by
LxLy .

Figure 7 shows the distribution f (itot) in a film (N = 16 ×
480) and in a bar (N = 4 × 4 × 480). A prominent multipeak
structure can be seen at low temperatures in both cases. The
peaks at itot 
= 0 correspond to states with finite superflow,
which can be reached from itot = 0 with phase slippage. Then,
we can estimate the superfluid density that has no contributions
from phase slippage by calculating helicity modulus using only
the restricted Monte Carlo samples that satisfy |itot| � 1/2. We
call this method the restricted sampling (RS).

Figure 8 shows ϒ calculated using the RS in films of
different sizes. At T � TKT, the results agree well with
those obtained using the NPSBC, implying again that ρs can
survive at such a high temperature as TKT even for a large
Leff . However, at T > TKT, they decrease more slowly as
T increases. At high temperatures, the distribution function
f (itot) does not exhibit a multipeak structure any more. In
such cases, there is no longer a reason why the samples can
be restricted to |itot| � 1/2. If we insist on using the RS in
calculating superfluid density, contributions from vortices are
only partly considered. Therefore, at T � TKT, ϒ obtained
with the RS should overestimate superfluid density ρs . If we
increase the system size with a fixed value of Leff , we cannot
obtain the bulk limit at T � TKT. See also Appendices B and
C. Figure 9 shows ϒ calculated with the RS in bars. We find
similar results to those in the case of films (Fig. 8). However,
ϒ calculated with the RS starts to deviate from its counterpart
obtained using the NPSBC at a temperature below Tλ, implying
that there is no longer a reason to restrict the sampling far below
Tλ. Next, we further discuss this point.

Now, we return to Fig. 7. There is actually a marked
difference between the results in films and bars. In films,
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FIG. 9. (Color online) Helicity modulus ϒ of 3D XY model of dif-
ferent sizes obtained with the restricted sampling (RS) (|itot| � 1/2):
N = 4 × 4 × 480 (closed dots) and 8 × 8 × 480 (closed squares). For
comparison, the same quantities calculated under the conventional
boundary condition (open symbols; dots for 4 × 4 × 480 and squares
for 8 × 8 × 480) and the NPSBC are also shown (half-closed sym-
bols; dots for 4 × 4 × 480 and squares for 8 × 8 × 480). The dotted
line represents the bulk transition temperature Tλ = 2.20J/kB .44

the multipeak structure persists at temperatures close to TKT.
Even at T = 0.9TKT, we can see peaks in f (itot). On the
other hand, in bars, the peak structure is no longer observed
at T = 0.6Tλ. The distribution function f (itot) at T = 0.6Tλ

is hardly distinguishable from that at T = Tλ. For a larger
value of Lx , the multipeak structure persists up to higher
temperatures; however, it still vanishes at a temperature lower
than Tλ.

From the depth of a valley in the distribution function, we
can estimate 
F , because the depth of a valley is considered to
be exp [−
F/(kBT )]. From Fig. 7, we estimate 
F � 4.9J

at T = 0.8TKT and 
F � 1.9J at T = 0.9TKT in a film of
N = 16 × 480. At lower temperatures, e.g., at 0.7TKT, we can
only say 
F � (8–9)J . For N = 32 × 480, we find a larger

F than its value for N = 16 × 480. At higher temperatures,

F is roughly proportional to Lx . Similarly, in a bar with N =
4 × 4 × 480, we find 
F � 7.6J at T = 0.4Tλ and 
F �
0.8J at T = 0.5Tλ.

Thus, 
F is found to decrease rapidly as T increases.
In bars, no barrier exists at T � 0.6Tλ for N = 4 × 4 × 480.
Without a free-energy barrier, ωτ may be small enough for a
large range of itot to be probed in the period of observation 1/ω.
Then, ρp(T ) can be observed at temperatures far below Tλ. On
the other hand, in films, the free-energy barrier persists up to
temperatures close to TKT. Therefore, ρp(T ) can be observed
only at temperatures close to TKT.

This difference between films and bars originates from
the difference in the number of thermally excited vortices.
In Fig. 10, we replot ρv(T ) as a function of temperature
scaled by TKT (in films) or Tλ (in bars). In films, we find
that ρv(T ) � 4 × 10−3 at TKT = 0.89J/kB .40,45,46 In bars, ρv

has already reached 1 × 10−3 even at T = 0.5Tλ = 1.1J/kB .
This is because the energy Ev necessary for the creation of a
vortex(-pair) is not very different between the cases with films
and bars.

In the presence of thermally excited vortices, additional
creation of vortices or drifting away of a vortex and an
antivortex is unnecessary for phase slippage (dissipation of
superflow) to occur. Recombination or reconnection of existing
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ρ v

T / TC

Bar

Films

FIG. 10. (Color online) Vortex(-pair) density ρs in films or bars
with different sizes as a function of scaled temperature T/Tc; Tc =
TKT = 0.89J/kB in films and Tc = Tλ = 2.20J/kB in bars. Lattice
sizes are N = 16 × 480 (closed dots), 32 × 480 (open dots), 4 × 4 ×
480 (closed squares), and 8 × 8 × 480 (open squares).

vortices can lead to dissipation of superflow and there is no
high free-energy barrier for recombination or reconnection to
take place. See Fig. 11. This is why the free-energy barrier

F decreases so rapidly as T increases, particularly in the
case of bars. For recombination to occur in films, a vortex and
an antivortex have to be dissociated or, at least, only loosely
bound. This also implies that recombination occurs only at
temperatures close to TTK.

V. EFFECT OF RANDOMNESS ON HELICITY MODULUS

So far, we have considered uniform XY models. In real He
systems, the effects of inhomogeneity caused by adsorption
potential and randomness cannot be ignored. However, it is
difficult to precisely know the microscopic details about these
effects. In this section, we introduce bond randomness on the
surface of the system and study its effect.

First, we consider a film. Instead of Eq. (1), we consider

H = −
∑
〈n,n′〉

J (n,n′) cos (θn − θn′), (15)

where J (n,n′) distributes uniformly between 0 < J (n,n′) <

J . Figure 12 shows helicity modulus of this model, Eq. (15).
For comparison, we also show the result of a square film
(N = 80 × 80). As the average strength of the exchange
constant is 0.5J , the transition temperature is reduced roughly
by half. The helicity modulus at T = 0 is also reduced to
approximately 0.4. The ratio of the onset temperature of
ϒ in a lattice N = 16 × 480 to the reduced KT transition
temperature is close to that without randomness. However,
the distribution function f (itot) is considerably different from

(a) (b) (c)

FIG. 11. Cross section of a torus. In the presence of thermally
excited vortices (a), reconnection of vortices (b) can be an easy way
to dissipate superflow. A vortex and an antivortex in a film need not
drift against attractive interaction (c).
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FIG. 12. (Color online) Helicity modulus ϒ in the random-bond
XY model, Eq. (15), on a square lattice N = 16 × 480 (open dots).
For comparison, ϒ for a square lattice N = 80 × 80 is also shown
(stars). The inset shows the distribution function f (itot) at T = 0.5TKT

(closed dots), 0.6TKT (open dots), and 0.7TKT (closed squares); here
TKT = 0.445J/kB .

that without randomness. In the present case, the multipeak
structure in f (itot) disappears at lower temperatures, because
vortex pairs can be easily created in the presence of surface
randomness. This may imply that ρp can be observed at lower
temperatures in the presence of randomness. However, a high
density of vortex pairs does not necessarily result in dissipation
of superflow. If vortices are strongly pinned, they do not
contribute to dissipation.

We also consider the effect of surface randomness to the
helicity modulus in bars. We introduce uniform randomness
[0 < J (n,n′) < J ] only to bonds between surface spins.
Figure 13 shows the result. The helicity modulus is only
slightly affected by the surface randomness; the value at
T = 0 is reduced from unity, but the onset temperature is
hardly affected both in a bar and the bulk. The multipeak
structure in the distribution function disappears more rapidly
than that without randomness, reflecting larger number of
vortex excitations in the system.

VI. SUMMARY AND DISCUSSION

We have studied helicity modulus ϒ in quasi-one-
dimensional classical XY models. In quasi-one-dimension, the
distinction between ρs , the coefficient of the increase in the
free energy in the presence of infinitesimal phase gradient,
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FIG. 13. (Color online) Helicity modulus ϒ in the 3D XY model
(N = 4 × 4 × 480) where exchange interactions between surface
bonds are uniformly distributed between 0 and J . For comparison,
ϒ for a cubic lattice (N = 40 × 40 × 40) is also shown (stars). The
inset shows the distribution function f (itot) at T = 0.2Tλ (closed
dots), 0.3Tλ (open dots), and 0.4Tλ (closed squares); Tλ = 2.20J/kB .

and ρp, the coefficient of the increase in the free energy under
a twisted boundary condition, is essential. It is ρp that is
proportional to ϒ calculated under the conventional periodic
boundary condition. However, which one, ρs or ρp, is observed
in an experiment depends on the condition under which the
experiment is carried out; for example, it depends on the value
of ωτ .

We proposed two methods to calculate the helicity modulus
that is proportional to ρs . One method is to calculate ϒ with
eliminating phase slippage using a specific boundary con-
dition, the no-phase-slippage boundary condition (NPSBC).
This method is readily applied to other classical and quantum
lattice systems. The other is to restrict the Monte Carlo
sampling to those with small phase winding, |itot| � 1/2. Both
methods have some limitations; for example, neither method
can be directly applied to continuous models. However, we
have found that consistent results can be obtained with the
two methods. We have found that the results obtained with
the two methods agree well at low temperatures, and that both
methods give ϒ that survives at such a high temperature as
TKT (in films) or Tλ (in bars) even in the one-dimensional
limit, Leff � 1. At T � TKT, ρs(T ) remains finite and it
is larger for a smaller Lx in films. This implies that the
confinement mechanism discussed in rather wide pores20–22

also holds in narrower channels. With the restricted sampling
method, ρs(T ) is overestimated at T � TKT in films and at
T � Tλ in bars. This is because thermally excited vortices
make the distribution function so broad that it is unjustifiable
to restrict the sampling to |itot| � 1/2. In this connection,
we noted that the strictly one-dimensional case is different
from the quasi-one-dimensional cases because no free vortices
contribute the dissipation of superflow in one dimension (see
Appendix C).

Next, we discussed a difference between films and bars.
In films, the density of vortex pairs is so low, ∼ 4 × 10−3,
even at T = TKT, that the free-energy barrier that the system
has to overcome for phase slippage to occur remains finite at
temperatures close to TKT. This makes the observation of ρp

rather difficult in a dynamical experiment such as a torsional
oscillator experiment. Then, it would be possible to observe
finite superfluid density ρs at temperatures close to TKT in
films. On the other hand, in bars, the free-energy barriers
disappear at temperatures much lower than Tλ, say T = 0.6Tλ,
because of proliferating thermally excited vortices. This makes
the observation of ρp relatively easy in bars. Then, it is likely
that one can observe the onset of superfluidity characteristic of
quasi-one-dimension, that is, the onset at a temperature much
lower than the bulk transition temperature Tλ, in bars.50

Now, we discuss the experiments on quasi-one-dimensional
4He in the light of the results in this study. In the torsional
oscillator experiments on 4He filling nanopores, a second
increase in the resonance frequency was observed at a
temperature below T = Tλ;9–11 however, no clear second
increase was observed in 4He films.3,4 These observations are
qualitatively consistent with the results obtained in this study:
ρp is more likely to be observed in bars than in films.

Taniguchi et al. estimated the value of 
E0, which corre-
sponds to 
F in this study, as approximately 2 K (� Tλ)11 from
the dissipation at low temperatures T � 0.3Tλ. This is a small
value compared to the one obtained in this study; we found
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that 
F � (7–8)J � 3.5Tλ. Furthermore, it was reported that
in pores of diameter 24 Å, there occurs a second increase of the
frequency shift at T � 0.2 K � 0.1Tλ.51 This may also imply
a smaller value of 
F . As we discussed in Sec. V, surface
randomness may help in reducing 
F ; however, it is not clear
how far vortices created in the presence of surface randomness
can freely drift. In addition to randomness, the effect of
adsorption potential may also be important. In the presence
of adsorption potential, it is natural that a He system filling
pores is not uniform. For example, the density near the surface
can be higher than that in the center of pores and superfluid
density can be smaller near the surface than that in the central
part. Adsorption potential is unfavorable at least for exchange
processes in the normal direction of the surface. Then, it is
possible that vortices are more easily excited as we found in the
case of surface randomness, where the exchange interactions
on the surface were also weakened. Quantitative comparison
requires a precise knowledge of adsorption potential of the
substrate; it is beyond the scope of this study.

In the experiment on He films in nanopores of diameter
24 Å, a second gradual increase in the resonance frequency was
also reported.12 However, no clear second increase has been
observed in pores of other values of diameter. It is possible
that surface randomness plays a role, and further investigation
is necessary to reach a reliable conclusion.

To understand the experiments on quasi-one-dimensional
He more accurately, it may be necessary to perform cal-
culations that take account of precise microscopic details
of the system such as adsorption potential. The methods to
calculate ρs proposed in this study are not directly applicable
to continuous models. It is desirable to develop a universal
method to calculate ρs . Another possibility is to simulate the
real-time evolution of the system directly.52,53 These problems
are important subjects of future studies.
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APPENDIX A: HELICITY MODULUS IN A BAR WITH
AN OCTAGONAL CROSS SECTION

In contrast to a film, a bar (with square sections) has corners.
Corner spins have 4 nearest neighbors in contrast to the other
surface spins, which have 5 nearest neighbors. This means that
vortices tend to be created near corners, because the energy
cost can be smaller. To study the effect of corners, we consider
bars with a different cross section, an octagonal cross section,
where all the surface spins have 5 nearest neighbors. See the
inset of Fig. 14.

Figure 14 shows the temperature dependence of ϒ of a bar
(N = 12 × 480). Here, we plot ϒ as a function of LeffT . For
the bar studied here, Leff = 480/12 = 40. This result agrees
with that for a bar with corners (N = 4 × 4 × 480). Thus, the
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Leff kBT / J
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FIG. 14. (Color online) Temperature dependence of helicity
modulus ϒ in a bar of size N = 12 × 480 (open dots), whose
cross-section view is shown in the inset; Leff = 480/12 = 40. For
comparison, the result for N = 4 × 4 × 480 is also shown (closed
dots).

helicity modulus is little affected by the shape of the cross
section.

The energy necessary for vortex creation is larger than that
in a bar with a square cross section. For a bar of size N = 4 ×
4 × 480, we found Ev/J = 7.75 ± 0.02, and in the present
case, we find that Ev/J = 9.13 ± 0.01; this is larger than the
value for N = 40 × 40 × 40. As can be seen in Fig. 15, at
T = 0.4Tλ, the multipeak structure is more prominent than
that in the case of a bar with a square cross section [Fig. 7(b)].
However, the multipeak structure is completely washed out at
T = 0.6Tλ, as in Fig. 7(b). Therefore, the conclusion that the
free-energy barrier 
F decreases more rapidly in bars than
that in films is valid irrespective of the details of the shape of
the cross section of a bar.

APPENDIX B: BULK CASES

We summarize the results in the bulk cases, that is, the
results on a lattice measuring L × L(×L). Figure 16 compares
the helicity modulus ϒ calculated with different boundary
conditions or methods, that is, the conventional boundary
condition, the NPSBC, and the RS. It can be seen that the
results agree well with each other. This is because, in the
bulk cases, the contribution of phase slippage to superfluid
density is negligible from the beginning. We obtain similar
results whether the effect of phase slippage is suppressed or
not. However, by close inspection, we note that ϒ calculated
with the RS at N = 160 × 160 does not vanish and stays
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FIG. 15. (Color online) Distribution function f (Itot) of phase
winding itot for a bar of size N = 12 × 480 at different temperatures:
0.4Tλ (open dots), 0.6Tλ (closed squares), and Tλ (open squares).
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FIG. 16. (Color online) (a) Helicity modulus ϒ in a film of size
N = 160 × 160 calculated with the conventional boundary condition
(stars), the NPSBC (dots), and the RS (open squares). Closed squares
represent results obtained with the RS where the restriction of |itot| �
0.7 is imposed on the sampling. The inset shows the distribution
function f (itot) of phase winding calculated with the conventional
boundary condition at T = TKT (open dots) and 1.5TKT (closed dots).
The vertical dotted line stands for the KT transition temperature
TKT = 0.89J/kB . (b) Helicity modulus ϒ in a bar of size N = 40 ×
40 × 40 calculated with the conventional boundary condition (stars),
the NPSBC (dots), and RS (squares). The inset shows the distribution
function f (itot) of phase winding calculated with the conventional
boundary condition at T = 1.5TKT. The vertical dotted line stands
for the bulk transition temperature Tλ = 2.20J/kB .

constant (∼0.06) at T > TKT. This is because the distribution
function f (itot) fairly spreads and the effect of vortices is not
completely taken into account with the RS at T > TKT. In
the inset of Fig. 16(a), we show the distribution function
f (itot) of phase winding calculated with the conventional
boundary condition (used in Sec. II) at T = TKT and 1.5TKT.
At T = TKT, f (itot) is localized around itot = 0 so well that
the contributions of vortices are fully considered with the
restriction of |itot| � 1/2. However, at T = 1.5TKT, f (itot) is
spread so widely that the restriction |itot| � 1/2 is too strong
to consider the contributions of vortices accurately. If we relax
the restriction, ϒ readily vanishes at T > TKT. Indeed, we
find that ϒ vanishes within statistical errors at T > TKT with
the restriction |itot| � 1. When temperature further increases
from T = 1.5TKT, we find no further significant spreading of
f (itot). One may expect that additional peaks appear around
itot = ±1 at T � J/kB , but we find only a weak change in
the slope of f (itot) around itot = ±1 at T � J/kB . In bars
(N = L × L × L), the distribution function is well localized
around itot = 0 [see the inset of Fig. 16(b)], and the RS
gives results in good agreement with those obtained with the
conventional boundary condition even at higher temperatures.
Here, the energy of a state with a finite itot is of the order
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FIG. 17. (Color online) (a) Helicity modulus ϒ in a film of
effective length Leff = Lz/Lx = 15, calculated with the NPSBC
[Lx = 16 (open dots) and 48 (closed dots)] and the RS [Lx = 16
(open squares) and 32 (closed squares)]. For comparison, ϒ in a film
of size N = 160 × 160 calculated with the conventional boundary
condition is shown with stars. The vertical dotted line stands for the
KT transition temperature TKT = 0.89J/kB . (b) Helicity modulus ϒ

in a bar of effective length Leff = Lz/L
2
x = 10, calculated with the

NPSBC [Lx = 6 (open dots) and 10 (closed dots)] and the RS [Lx = 6
(open squares) and 10 (closed squares)]. For comparison, ϒ in a bar
of size N = 40 × 40 × 40 calculated with the conventional boundary
condition is shown with stars. The vertical dotted line stands for the
bulk transition temperature Tλ = 2.20J/kB .

O(L); the contribution from such a state is negligible at any
temperature when L → ∞.

Next, we briefly discuss the approach to the bulk results ob-
tained with the conventional boundary condition. Figure 17(a)
shows ϒ in films of effective length Leff = Lz/Lx = 15 calcu-
lated with the NPSBC and RS. It can be seen that the bulk limit
is approached with the NPSBC as the system size increases
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FIG. 18. (Color online) Helicity modulus ϒ of the one-
dimensional XY model with different sizes calculated with the
restricted sampling (RS) : Lz = 100 (closed dots) and 200 (closed
squares). For comparison, ϒ’s in a film N = 16 × 480 (open dots)
and in a bar N = 4 × 4 × 480 (open squares) calculated with the RS
are also shown.
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at any temperature although at a slower rate at T > TKT. On
the other hand, the results obtained with the RS are weakly
size dependent, and the bulk limit is not reached at T > TKT.
In the quasi-one-dimensional case, that is, Leff = Lz/Lx � 1,
the distribution function f (itot) is broadened significantly at
TKT even when Lx,Lz � 1, and the effects of vortices are
only partly considered with the RS. Figure 17(b) shows ϒ

in bars of effective length Leff = Lz/(LxLy) = 10 calculated
with the NPSBC and RS. Similarly to the case with films,
the bulk limit is obtained only with the NPSBC. The helicity
modulus calculated with the RS decreases only gradually as
temperature increases. In Appendix C, we compare results
obtained using the RS in films and bars with those obtained
in purely one-dimensional systems. Instead of using a fixed
value of Leff , we can increase the system size with a fixed
value of Lz/Lx = Lz/Ly . In this case, the effective length
Leff decreases as the system size increases and the bulk limit
is naturally obtained even with the RS.

APPENDIX C: HELICITY MODULUS IN ONE DIMENSION

We can also calculate the helicity modulus in one-
dimensional classical XY models. In one dimension, the

direct application of the no-phase-slippage boundary condition
makes no sense and we calculate helicity modulus with
the restricted sampling (RS). In one dimension, Itot(=itot)
assumes only integer values. Then, the RS implies that we
calculate ϒ using those samples with Itot = 0. Figure 18
shows the results for the one-dimensional XY model with
Lz = 100 and 200. The restriction Itot = 0 implies the strict
imposition of momentum conservation. That is why ϒ

remains finite at high temperatures. The results for films
and bars converge to the result in one dimension at high
temperatures when the RS is used. This also shows that
the helicity modulus calculated with the RS overestimates
ρs . In films and bars, thermally excited vortices signifi-
cantly contribute to dissipation of superflow and diminish
helicity modulus at high temperatures. In the RS, the effect
is fully considered at low temperatures where the central
peak in the distribution function f (itot) is well localized.
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increases rapidly and can far exceed unity at high temper-
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vortices. The results then converge to that in purely one
dimension.
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G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature (London)
429, 277 (2004).

36T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004).
37U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

174515-11

http://dx.doi.org/10.1103/PhysRevLett.86.4322
http://dx.doi.org/10.1103/PhysRevLett.94.065301
http://dx.doi.org/10.1103/PhysRevB.76.144503
http://dx.doi.org/10.1103/PhysRevLett.99.255301
http://dx.doi.org/10.1103/PhysRevLett.99.255301
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1103/PhysRevLett.39.1201
http://dx.doi.org/10.1007/s10909-007-9559-7
http://dx.doi.org/10.1088/1742-6596/150/3/032108
http://dx.doi.org/10.1088/1742-6596/150/3/032108
http://dx.doi.org/10.1103/PhysRevB.82.104509
http://dx.doi.org/10.1103/PhysRevB.82.104509
http://dx.doi.org/10.1007/s10909-010-0332-y
http://dx.doi.org/10.1007/s10909-010-0332-y
http://dx.doi.org/10.1103/PhysRevLett.39.348
http://dx.doi.org/10.1103/PhysRevLett.39.348
http://dx.doi.org/10.1103/PhysRevLett.51.666
http://dx.doi.org/10.1103/PhysRevLett.52.2249
http://dx.doi.org/10.1103/PhysRevLett.52.2249
http://dx.doi.org/10.1103/PhysRevLett.50.425
http://dx.doi.org/10.1103/PhysRevLett.50.425
http://dx.doi.org/10.1103/PhysRevB.33.7813
http://dx.doi.org/10.1103/PhysRevLett.93.075302
http://dx.doi.org/10.1103/PhysRevLett.60.2054
http://dx.doi.org/10.1143/PTP.80.397
http://dx.doi.org/10.1007/BF00683374
http://dx.doi.org/10.1103/PhysRevB.61.11282
http://dx.doi.org/10.1103/PhysRevB.69.014509
http://dx.doi.org/10.1103/PhysRevB.69.014509
http://dx.doi.org/10.1134/1.558661
http://dx.doi.org/10.1134/1.558661
http://dx.doi.org/10.1103/PhysRevLett.99.035301
http://dx.doi.org/10.1103/PhysRevB.79.014501
http://dx.doi.org/10.1007/s10909-010-0323-z
http://dx.doi.org/10.1103/PhysRevB.82.060515
http://dx.doi.org/10.1007/s10909-010-0316-y
http://dx.doi.org/10.1007/s10909-010-0316-y
http://dx.doi.org/10.1143/PTP.16.569
http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1103/PhysRevLett.87.080403
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1103/PhysRevLett.62.361


A. KOTANI, K. YAMASHITA, AND D. S. HIRASHIMA PHYSICAL REVIEW B 83, 174515 (2011)

38S. Teitel and C. Jayaprakash, Phys. Rev. B 27, 598 (1983).
39M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Rev. A 8, 1111

(1973).
40J. Tobochnik and G. V. Chester, Phys. Rev. B 20, 3761 (1979).
41In a narrow bar, say N = 4 × 4 × 480, vortex rings are hardly

observed in Monte Carlo snapshots; vortices easily “touch” the
surface. As a bar gets wider, the number of vortex rings increases.

42M. Hasenbusch, J. Phys. A 38, 5869 (2005), and references therein.
43In contrast to Eq. (2), this expression is given in terms of J , not

ρs(T ). That is why a simple closed-form expression such as Eq. (2)
is not obtained.

44A. P. Gottlob and M. Hasenbusch, Physica A (Amsterdam) 201,
593 (1993), and references therein.

45C. Bowen, D. L. Hunter, and N. Jan, J. Stat. Phys. 69, 1097 (1992).
46R. Gupta and C. F. Baillie, Phys. Rev. B 45, 2883

(1992).
47For N = 4 × 4 × 480, the corresponding temperature range is

0.50J � kBT � 0.72J . For a wider bar, the temperature range
shifts to higher temperatures. For N = 40 × 40 × 40, 0.58J �
kBT � 0.81J .

48In 1D, the temperature dependence of the relaxation time is shown to
follow the power law. See, for example, Yu. Kagan, N. V. Prokof’ev,
and B. V. Svistunov, Phys. Rev. A 61, 045601 (2000). However, it
is not obvious whether the theory is applicable to He in nanopores,
which is not strictly one dimensional.

49To impose the NPSBC in a bar, we can choose any one of the
Lx × Ly rows and replace the spin in the row with a single spin.

50This does not necessarily mean that ρp(T ) is observed in the whole
temperature range below T = Tλ. If ωτ � 1 at T = 0 and ωτ � 1
at T � To(<Tλ), the observed superfluid density crossovers from
ρs(T ) (at T � To) to ρp(T ) at T � To. If To is higher than the onset
temperature of ρp(T ), which is suggested in the present study, the
observed onset temperature is To.

51In this experiment, pores are filled with He, but the samples are not
immersed in bulk He. The outer surface is covered with He film and
the KT transition was observed. This condition, different from the
other experiments,3,4,10,11 may have a peculiar effect on superfluid
density.

52G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
53I. Danshita and C. W. Clark, Phys. Rev. Lett. 102, 030407 (2009).

174515-12

http://dx.doi.org/10.1103/PhysRevB.27.598
http://dx.doi.org/10.1103/PhysRevA.8.1111
http://dx.doi.org/10.1103/PhysRevA.8.1111
http://dx.doi.org/10.1103/PhysRevB.20.3761
http://dx.doi.org/10.1088/0305-4470/38/26/003
http://dx.doi.org/10.1016/0378-4371(93)90131-M
http://dx.doi.org/10.1016/0378-4371(93)90131-M
http://dx.doi.org/10.1007/BF01058763
http://dx.doi.org/10.1103/PhysRevB.45.2883
http://dx.doi.org/10.1103/PhysRevB.45.2883
http://dx.doi.org/10.1103/PhysRevA.61.045601
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.102.030407

