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Coulomb blockade due to quantum phase slips illustrated with devices
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To illustrate the emergence of Coulomb blockade from coherent quantum phase-slip processes in thin
superconducting wires, we propose and theoretically investigate two elementary setups, or devices. The setups
are derived from the Cooper-pair box and Cooper-pair transistor, so we refer to them as the QPS box and QPS
transistor, respectively. We demonstrate that the devices exhibit sensitivity to a charge induced by a gate electrode,
this being the main signature of Coulomb blockade. Experimental realization of these devices will unambiguously
prove the Coulomb blockade as an effect of coherence of phase-slip processes. We analyze the emergence of
discrete charging in the limit of strong phase slips. We have found and investigated six distinct regimes that are
realized depending on the relation between three characteristic energy scales: inductive energy, charging energy,
and phase-slip amplitude. For completeness, we include a brief discussion of dual Josephson-junction devices.
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I. INTRODUCTION

The interplay between superconductivity and Coulomb
interactions in mesoscopic superconducting circuits has been a
subject of active research for more than 20 years.1–5 A generic
device that has been widely studied and used is the Cooper-pair
box (CPB).3,6,7 It consists of a superconducting island to
store discrete charges that is connected to a bulk electrode by
means of a tunnel Josephson junction. This enables coherent
transfer of Cooper pairs between the island and electrode.
A gate electrode capacitively coupled to the island induces
a continuous charge q. The energies of quantum states of the
CPB are periodic functions of this induced charge. This charge
sensitivity reveals the charging states of the device, those with a
well-defined number of excess Cooper pairs, and opens up the
possibility to create and control their quantum superpositions.
For instance, the CPB can be operated near the point where two
charging states are approximately degenerate, forming a qubit
basis. The Josephson tunneling lifts the degeneracy between
these charging states and enables their superpositions.8

CPB and similar devices based on Coulomb blockade, such
as flux qubits,9 have been used to realize viable qubit schemes.
Among other achievements, coherent control of quantum
states,10 Rabi oscillations,11,12 successful dc readout,13,14 and
rf coupling of multiple junctions have been demonstrated.

The studies of phase-slip processes15 in superconducting
wires have a long and spectacular history. During a phase-slip
process, the superconducting order parameter passes zero at a
certain moment of time and at a certain position in the wire.
The phase difference between the wire ends changes by 2π .
In accordance with the Josephson relation, this gives rise to a
voltage pulse across the wire. It was established more than 40
years ago16 that the residual resistance of the wires below the
superconducting transition is due to thermally activated phase
slips.17

At sufficiently low temperatures, the quantum fluctuations
should supersede the thermally activated ones. The manifesta-
tions of these quantum phase slips in ultrathin resistive wires
have been actively investigated for the last 10 years.18–21 It has
been suggested that the switching from superconducting to
normal state in current-driven wires is caused by individual
quantum phase-slip events.21,22 These experiments imple-

mented resistive measurements where the quantum coherence
between individual phase-slip events seems to be destroyed
by accompanying dissipation. If such coherence is preserved,
the manifestations of phase slips is qualitatively different: they
change the characteristics of the ground and excited quantum
states.23 It has been proposed24 that the coherent phase slips
should be observed and studied in nondriven devices of qubit
type. Recently, the effect of coherent quantum phase slips has
been observed in Josephson chains that are, in many respects,
similar to superconducting wires.25

It is clear that sufficiently well-developed coherent phase
slips should eventually lead to Coulomb blockade in the
wire. This statement is fascinatingly counterintuitive: the
superconducting wire is one of the best conductors possible,
while Coulomb blockade requires isolation. However, the
necessity of Coulomb blockade and accompanying isolation in
this regime directly follows from basic arguments that involve
duality between the charge and phase.26 In a nutshell, the
argumentation is as follows. The coherence of Cooper-pair
tunneling events leads to zero-voltage states at currents below
a critical value. Interchanging charge and phase, current and
voltage, we prove that the coherence of the phase-slip events
should lead to a zero-current state below a critical voltage. This
is essentially Coulomb blockade and isolation. Indeed, there
are experimental data that indicate a possible crossover to
insulating behavior in ultrathin wires.19,21 However, the exact
conditions and mechanism of this crossover are still subject to
debate.27

The main motivation of this paper is to facilitate an unam-
biguous experimental proof of Coulomb blockade due to phase
slips. In this context, we note that Coulomb blockade is usually
accompanied by periodic charge sensitivity. The observation
of charge sensitivity in setups where the tunnel barriers
are replaced by uninterrupted superconducting wires would
constitute the proof required. The experimental attention to
charge sensitivity is presently insufficient, although a very
recent communication28 reports indirect observation of charge
sensitivity by its effect on the decoherence in fluxonium29

qubit. We have also recently learned of unpublished results of
the authors of Ref. 25 that demonstrate the gate-voltage effect.
In this paper, we analyze the problem at an elementary level by
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introducing simple phase-slip systems (we call them devices)
where this charge sensitivity can be observed, and discuss the
conditions for this to happen.

The devices are obtained from the generic Cooper-pair
box and Cooper-pair box with two leads [Cooper-pair tran-
sistor, (CPT)] by replacing the tunnel junctions with the
superconducting wires subject to phase slips. We ascribe all
the capacitance to the island, thus disregarding geometric
capacitance of the wires. We also disregard quasiparticle
effects, assuming that the superconducting gap by far exceeds
the temperature. These assumptions allow us to account
for the phase slips in the framework of a zero-dimensional
phenomenological model of phase-slip junction26 (we discuss
the relation of this model and microscopic theory of phase
slips in the Appendix). We call the devices QPS box and QPS
transistor.

Let us note that, for the devices proposed, the Coulomb
blockade and associated charging states do not occur in the
wire. It would be wrong to assume that the wire is broken
into a chain of weakly connected Coulomb islands. Indeed,
the assumption of vanishing self-capacitance, in fact, forbids
any charge accumulation in the wire. Rather, the collective
state developed in the wire as a whole provides the isolation
between the wire ends. Qualitatively, the wire as a whole acts
as a single tunnel barrier.

We study the energy levels in these devices, with emphasis
on the ground state. The operational limit of the devices is set
by the value of the effective impedance γ = (EL/EC)1/4: the
ratio of the inductive and capacitive energies. In the limit of
large impedance, the phase fluctuations are dominant, while for
the small impedance regime, the charge fluctuations become
relevant. The values of L and C are set by fabrication and
they have a wide range of possible values. To make qualitative
and quantitative predictions about the devices, we compare
the corresponding inductive and charging energies with the
phase-slip amplitude.

We demonstrate that these energies exhibit charge sensitiv-
ity (for the boxes) and combined flux-charge sensitivity (for
the transistors). Moreover, in the limit of large phase-slip am-
plitude, the phase-slip devices can be directly mapped on their
tunnel-junction counterparts and exhibit the standard pattern of
crossing parabolas: charge-sensitive discrete charging states.

For completeness, let us make a remark about the effect
of the random offset charges on our devices. Without phase
slips, the proposed devices are just linear and not affected
by any charge. However, the charge sensitivity brought about
by the phase slips implies that the devices are affected not
only by the gate voltage, but also by the random offset charges
most likely present in the substrate. In general, it is a task of the
fabrication technology to minimize the effect of offset charges.
We expect that the effect of the offset charges on the devices
under consideration would be the same as that on any other
Coulomb-blockade system such as single-electron tunneling
(SET) transistor, quantum dot, superconducting qubit, etc.
At sufficiently low substrate temperature, the random offset
charges remain the same and can be compensated for by a
shift in the gate voltage. If the devices are realized with metal
wires (rather than with Josephson-junction chains), there is a
chance that the offset charges are efficiently screened by the
metal leads. Therefore, such realization may be better than that

involving tunnel junctions where the offset charges are present
in the insulating layers of the junctions.

The paper is organized as follows. Section II describes in
detail the devices under consideration and establishes their
Hamiltonians. Section III is devoted to the QPS box. We
consider first the phase slips perturbatively, then analyze
the crossover to Coulomb blockade in the regimes of large,
small, and intermediate impedance. Section IV details the QPS
transistor with emphasis on flux sensitivity specific for this
device. In Sec. V, we discuss the Josephson-based devices
that are dual to the QPS box and QPS transistor. We conclude
in Sec. VI.

II. DESCRIPTION OF THE DEVICES

Let us recall two generic devices that exemplify the man-
ifestation of Coulomb blockade in superconducting circuits.
They are made by connecting a superconducting island with
either one or two superconducting leads. An isolated island
supports discrete charges. The important part of the setup is
the gate electrode that is not electrically connected to the island
but, by means of capacitive coupling, induces charge q on the
island. We will refer to these two devices as Cooper-pair box or
CPB [Fig. 1(a)] and Cooper-pair transistor or CPT. The latter
term is less conventional; we use it because the supercurrent
through the device does depend on the gate voltage, this being
a transistor effect. Besides, the setup is similar to that of a
normal-metal single-electron tunneling transistor.30

Our idea of introducing the phase-slip devices is to
replace the tunnel junctions in the above setups with thin
superconducting wires. In this way, we come to the setups
of the QPS box and QPS transistor. Healthy reasoning infers
that the wires would short-circuit the superconducting island to
the lead or leads; unlike the tunnel junctions, the wires are not
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FIG. 1. (Color online) (a) Cooper-pair box(CPB): generic
Coulomb-blockade superconducting device. (b) In quantum phase-
slip box (QPS box), the tunnel junction is replaced with a supercon-
ducting wire.
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expected to provide isolation required for Coulomb-blockade
phenomena. In this case, the charge induced to the island
should have no physical effect. This is indeed true if coherent
phase slips in the wires are disregarded. In this case, both
devices are just linear electric circuits.

It is the main goal of this paper to show in detail that
the coherent phase slips induce charge sensitivity in both
devices. Moreover, for sufficiently large phase-slip amplitudes,
the phase-slip devices are eventually identical to CPB and
CPT, respectively, and exhibit almost pure charging states as
shown in Fig. 2. For the QPS transistor, the charge sensitivity
is combined with the flux sensitivity, so one can observe a
transistor effect.

All devices are simple to describe quantum mechanically:
this involves a Hamiltonian with several degrees of freedom
only. In the rest of this section, we give these Hamiltonians as
the basis for further consideration.

A. CPB versus QPS box

The Hamiltonian of the CPB consists of charging and
Josephson terms

ĤCPB = EC

(
Q̂ − q

2e

)2
− EJ cos(φ̂), (1)

where EC = 2e2

(C+Cg) is the charging energy involving the
total capacitance of the island. The Josephson energy can be
expressed in terms of the conductance of the tunnel junction G,
i.e., EJ = G

GQ

�
4 , where GQ is the conductance quantum and

� is the superconducting gap. The operator Q̂ is the charge
stored on the island measured in units of Cooper-pair charge 2e

and φ is the operator of the superconducting phase difference
between the island and the lead. These two operators satisfy
the canonical commutation relations [Q̂,φ̂] = −i.

This Hamiltonian is undefined unless we specify the
space in which the variables Q,φ are defined. For CPB, the
phase is defined in the interval (−π,π ) so that the wave
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FIG. 2. (Color online) Energy spectrum of CPB vs induced charge
q in the limit of large charging energy. The discrete charging states
give rise to a standard 2e-periodic pattern of crossing parabolas. The
spectrum of phase-slip devices considered in this paper follows the
same pattern in the limit of large phase-slip amplitudes.

function is periodic in φ, ψ(φ) = ψ(φ + 2π ). This assumption
makes the charge variable discrete, Q = N , with N being
integer numbers spanning a countable set of states |N〉. The
Hamiltonian in charge representation then reads as

ĤCPB =
∑
N

EC

(
N − q

2e

)2
|N〉〈N |

− EJ

2
(|N〉〈N + 1| + H.c.) . (2)

The QPS box includes a superconducting wire. If we
restrict ourselves to the energies lower than the inverse time
of propagation of electric excitations along the wire, we can
neglect the details of spatial distribution of the order parameter
in the wire and characterize its quantum state by a single
quantum variable φ that corresponds to the phase drop across
the wire. Neglecting the details of the spatial distribution
implies that we the disregard geometric capacitance of the
wire. More precisely, we ascribe all the capacitance to the
island. We stress that, in distinction from CPB, the phase
variable is extended being defined in the interval (−∞,∞).
One can regard this variable as consisting of a compact phase
of the island and discrete number of phase windings p along
the superconducting wire. Correspondingly, the charge is a
continuous variable, and Coulomb blockade is not evident.
Without phase slips, the wire can be regarded as a linear
inductor of inductance L. Together with the island capacitance,
this gives a LC oscillator. The phase slips change the winding
number p by ±1. Since we neglect the details of spatial
distribution, it does not matter where in the wire a phase
slip would occur. The tunneling between different p can be
thus described by a single amplitude.26 We present more
microscopic details in the Appendix.

These assumptions define the Hamiltonian of the QPS box.
It consists of a part that describes a linear circuit, in our case,
a LC oscillator, and phase slips

HQPS box = EC

(
Q̂ − q

2e

)2
+ EL

4
φ̂2 + HS, (3)

where

EC = 2e2

C
, EL = 2

L

(
�0

2π

)2

are the charging energy corresponding to charging the capaci-
tor C and, respectively, the inductive energy corresponding to
the inductor L, with �0 being the flux quantum.

The action of the phase-slip Hamiltonian adds ±1 to the
winding number, that is, shifts the wave function in phase
variable by ±2π :

HS ψ(φ) = −ES ψ(φ + 2π ) − ES ψ(φ − 2π ), (4)

with ES being the phase-slip amplitude. In the charge repre-
sentation, this term takes a simple form of a cos potential

HS = −2ES cos(2πQ̂). (5)

The charge sensitivity is entirely due to the phase-slip term;
one can make this explicit by shifting the charge variable by
q/2e. The induced charge q disappears from the oscillator
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term, while the phase-slip amplitudes acquire phase factors

HSψ(φ) = −ESe
−iπq/eψ(φ + 2π ) − ESe

iπq/eψ(φ − 2π ).

(6)

One can say that the induced charge affects the interference of
phase slips of two opposite directions. It is a matter of choice
whether Eq. (4) or (6) defines the phase-slip operator since
the difference is the shift in charge space. Depending on the
choice, the charging energy reads as either EC(Q̂ − q/2e) or
ECQ̂.

We notice that the QPS box without phase slips (ES = 0)
is a LC oscillator with the frequency

h̄ω0 = h̄√
LC

=
√

ELEC

and the spectrum

En = h̄ω0

(
n + 1

2

)
,

with n being number of oscillator quanta. The oscillator is
characterized by an important parameter γ defined as

γ =
√

h̄

2e2

√
C

L
=

√
1

2πGQZ

that measures the effective impedance Z of the oscillator
in quantum units. This parameter can be readily expressed
through the ratio of the charging and inductive energies

γ 2 =
√

EL

EC
. In terms of the creation-annihilation operators

b, b† of the oscillator, the phase-slip Hamiltonian reads as
HS = −ES(eπγ (b†−b) + H.c.).

B. CPT versus QPS transistor

Physically, the CPT is a device that is more functional than
the CPB. It can conduct the superconducting current that is
affected by the induced charge, and this presents a convenient
way to detect the charge sensitivity. However, at Hamiltonian
level, the devices are described by the same Eq. (2). The
only difference is that the Cooper-pair tunneling to/from the
island can proceed through two junctions, both adding to the
tunneling amplitude

EJ = EJ,1 + EJ,2e
i�.

The superconducting phase difference between the leads �

affects the interference of the two amplitudes. We note that a
practical way to realize such phase bias is to embed the device
into a superconducting loop penetrated by magnetic flux so that
we interchangeably refer to this parameter as phase or flux. For
instance, we talk about flux sensitivity while referring to the
dependence of energy levels on �.

In contrast to this, the Hamiltonian description of the QPS
transistor [Fig. 3(b)] is more complex than that of the QPS
box. The point is that there are two wires in the device, each
with its own winding number. This gives rise to two extended
phases φ1,2. However, there is a constraint on these phases.
They should sum up to the overall phase drop over the device
that is fixed externally. It is convenient to restrict the external

Vg
C1

Cg C2

EJ,1 EJ,2

0

tunneling junctions

bulk island bulk

Cooper pair transistor(a)

bulk

gate

QPS transistor(b)

bulk

bulk

gate

island

phase-slip
wires

phase-slip
wires

klubklub

Vg

Cg
0

ES,1 ES,2L1 L2

FIG. 3. (Color online) (a) Cooper-pair transistor (CPT). The
dependence of its energy on external phase � (flux sensitivity) gives
rise to the supercurrent that can be modulated by changing q = CgVg .
(b) Quantum phase-slip transistor.

phase to the interval (−π,π ). In this case, the constraint reads
as

φ1 + φ2 = � + 2πp, (7)

with the integer p being the total winding number in both
wires.

Let us introduce two continuous charge variables Q1,2 that
are canonically conjugated to these phases. With this, the
Hamiltonian of the QPS transistor reads as

HQPS tr = EL,1

4
φ̂2

1 + EL,2

4
φ̂2

2 + EC

(
Q̂2 − Q̂1 − q

2e

)2

+HS,1 + HS,2, (8)

where the phase-slip Hamiltonians are

HS,1(2) = −2ES,1(2) cos (2πQ̂1(2)).

We recognize the inductive terms, which are proportional
to the squares of the phase drops φ1,φ2 across each inductor.
The total charge accumulated in the island is the difference
of the charges Q2,Q1 passing the wires, and this gives the
form of the charging energy. The last two terms present
the phase slips that shift the corresponding phase drops by
±2π . The Hamiltonian can be written in several equivalent
representations. In charge representation, the constraint (7)
implies the following periodicity condition on the wave
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function:

ψ(Q1,Q2) = ψ(Q1 + 1,Q2 + 1),

while the Hamiltonian reads as

HPST = EL,1

4

(
−i

∂

∂Q1

)2

+ EL,2

4

(
−i

∂

∂Q2
+ �

)2

+EC

(
Q2 − Q1 − q

2e

)2
− 2ES,1 cos(2πQ1)

− 2ES,2 cos(2πQ2). (9)

However, the properties of the QPS transistor at ES,1, ES,2

are easier to understand in phase representation. In this case,
the wave function is defined as a series of lines numbered by
p and parametrized with continuous φ1. At each line, the wave
functions are that of a harmonic oscillator with the frequency

h̄ω0 = √
EC(EL,1 + EL,2).

The ground-state energies of these oscillators are different on
different lines. They correspond to minimum inductive energy
at a given total winding number p,

Ep = EL,1EL,2

4(EL,1 + EL,2)
(2πp + �)2.

Therefore, the spectrum reads as

En,p = h̄ω
(
n + 1

2

)
+ Ep. (10)

It is important to recognize that the oscillators at different p are
shifted with respect to each other, their equilibrium positions
being given by

φ
(0)
1 (p) = EL,2

EL,1 + EL,2
(2πp + �).

In this representation, the phase-slip Hamiltonians either
increase or decrease the total winding number, while HS,1

also shifts φ1 by ±2π ,

HS,1ψ(φ1,p) = −2ES,1
(φ1 + 2π,p + 1)

−2E∗
S,1
(φ1 − 2π,p − 1), (11)

HS,2ψ(φ1,p) = −2ES,2ψ(φ1,p + 1) − 2E∗
S,2ψ(φ1,p − 1).

(12)

We define the parameter γ that measures the effective
impedance of the oscillator γ 2 = √

(EL,1 + EL,2)/EC .
In contrast to the QPS box, the QPS transistor exhibits both

flux and charge sensitivity, which makes it potentially useful
for measurements.

III. QPS BOX

In this section, we study the ground state and low-energy
states of the QPS Cooper-pair box, with emphasis on the charge
sensitivity of their energies. The charge sensitivity appears
already in the limit of ES → 0 as a first-order perturbation
correction to the oscillator levels. Upon increasing ES , the
charge sensitivity increases and eventually the low-lying
states follow the standard Coulomb-blockade pattern. The
crossover to the Coulomb blockade follows different scenarios
depending on the effective impedance of the oscillator 1/γ 2.

FIG. 4. (Color online) The magnitude of the charge-sensitive
first-order correction [Eq. (13)] to the first four energy levels n =
0, . . . , 4 vs γ 2.

We discuss the limits of large and small impedance and present
numerical illustrations for these limits as well as for the case
of intermediate impedance.

A. First-order corrections

In the limit of ES � EC, EL, it should be possible to treat
the phase-slip term HS as a perturbation. The unperturbed
system at ES = 0 is nothing but an LC oscillator, and the first-
order correction is given by the diagonal matrix element of HS ,
E(1)

n = 〈n|ĤS |n〉, with respect to these states. The correction
gives the charge-sensitive part of the energy and reads as

E(1)
n = −2ES cos

(πq

e

)
exp(−π2γ 2/2) 1F1[−n,1,γ 2π2].

(13)

Here, 1F1 stands for the confluent hypergeometric function of
the first kind.

This expression is valid at any value of the effective
impedance. In Fig. 4, we plot this correction for the first
four eigenenergies versus γ 2. For the ground state n = 0, the
correction reads as

E
(1)
0 = −2ES cos

(
πq

e

)
exp

(
−π2

2

√
EL

EC

)
, (14)

where we use γ 2 =
√

EL

EC
.

The first-order corrections have a characteristic cos(πq/e)
dependence on the induced charge. Despite their relatively
small magnitude, they can be revealed by driving the oscillator
with ac gate voltage at a frequency close to ω0.31 The first-
order corrections are exponentially suppressed in the limit of
small effective impedance γ 	 1. To see this, let us estimate a
typical spread of the wave function of the ground state in phase
space, that is, quantum fluctuation of phase. For the case of
small effective impedance, this fluctuation is small 
 1/γ . The
first-order correction due to phase slips is given by the overlap
of this ground-state wave function with its copy shifted by 2π .
The small spread leads to exponentially small overlap and thus
to the exponentially small correction.

Comparing these first-order corrections with oscillator
energy differences, h̄ω0 suggests that the crossover to well-
developed Coulomb blockade takes place at ES 
 h̄ω0 for γ �
1 and at exponentially large ES for γ 	 1. This estimation is
too simplistic; we will consider below the cases of small and
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FIG. 5. (Color online) QPS box: Small impedance regime. Bloch states: The energies vs quasiphase χ . (a) Strong PS: ES = 6.25EL.
(b) Moderate PS: ES = 2.5EL. (c) Weak PS: ES = 0.25EL.

large effective impedance to show where and how the crossover
actually happens.

B. Small impedance regime

In this case, EL 	 EC and thus γ 	 1. To understand the
specifics of the regime, let us first set the charging energy EC

to zero. The Hamiltonian in charge representation reads as

H = −EL

4

∂2

∂Q2
− 2ES cos

[
2π

(
Q − q

2e

)]
,

which is translational invariant in Q space and is equivalent to a
Hamiltonian of a quantum particle a periodic potential. Owing
to translational invariance, the eigenenergies do not depend on
q showing no charge sensitivity. The eigenfunctions are Bloch
states labeled by χ , ψ(Q + 1) = eiχψ(Q). We will call the
parameter χ the quasiphase, since it is similar to the variable
φ and plays the role of quasimomentum for common Bloch
states in periodic solids.

The properties of Bloch states are determined by com-
petition of the energy scales ES and EL. If EL 	ES , they
form nearly parabolic subbands [see Fig. 5(c)]. The energy
correction to the ground state appears in the second order in

ES , E
(2)
0 ∝ E2

S

EL
. Note that, in distinction from the first-order

correction [Eq. (14)], this is not exponentially suppressed.
In the opposite limit of EL � ES , we have a well-developed

periodic potential in Q space. The lowest Bloch subbands
correspond to quantized energy levels in equivalent potential
wells. Near the potential minimum, the energies of these levels
are those of an effective oscillator En = π

√
ESEL(2n + 1).

Their dispersion comes about the tunneling through potential
barriers of the height 
ES and is exponentially suppressed
[see Fig. 5(a)]. For the lowest subband, where the suppression
is the strongest,

E = −|ES | + π
√

ELES + 2�0 cos(χ ),

with �0 ≡ 8(E3
SEL)1/4 exp(− 8

π

√
ES

EL
) being the amplitude of

tunneling between the lowest-energy states in the neighboring
wells.

Let us now resume our analysis of the QPS box and
consider small but finite charging energy EC . We thereby
lift the degeneracy of the potential minima that would, in
principle, lead to charge sensitivity. Let us concentrate on
the lowest-energy eigenstates. These should originate from
the Bloch states with lowest energy. Their dispersion can be
approximated as const + E∗

L/4χ2, where we expand in the
quasiphase χ and introduce an effective inductive energy

E∗
L. The latter is given by the second derivative of the

lowest-energy band energy with respect to χ and represents
the renormalization of inductance by the phase-slip processes.
We plot this quantity versus ES/EL in Fig. 6.

With this, the lowest energy states can be approximated by
an effective Hamiltonian in quasiphase representation

H = E∗
L

4
χ2 + EC

∂2

∂χ2
, (15)

which is one of a harmonic oscillator with the renormalized
oscillation frequency

√
E∗

LEC/h̄. These states are not charge
sensitive in this approximation of a renormalized oscillator. We
expect the charge sensitivity to set on only if the approximation
breaks down.

The validity of the approximation can be estimated by
comparing the spread of the ground-state wave function in
quasiphase space [
 (EC/E∗

L)1/4] and 2π , the scale at which
we expect the dispersion of Bloch states to deviate from the
quadratic law. We thus expect the approximation to break
down, and the charge sensitivity to set on, when EC 
 E∗

L.
Since in the limit under consideration EL 	 EC , this can only
become possible if the renormalized inductance is strongly
suppressed. This requires ES 	 EL and yields E∗

L ≈ �0.
Comparing �0 and EC , we obtain the estimation for ES at
which the ground state becomes charge sensitive:

E∗
S 
 EL

(π

8

)2
ln2

(
EC

EL

√
8

π3

)
.

In this limit, we can restrict our consideration to the states of
the lowest Bloch subband assuming that the energy is small in
comparison with the subband splitting E � √

ELES 	 EC .
This is equivalent to taking into account only the lowest-energy
state in each potential well. We number these states with N

E
* 

/E
L

L

E  /ES L

FIG. 6. (Color online) The renormalized inductive energy E∗
L vs

the phase-slip amplitude ES . It becomes exponentially suppressed at
ES 	 EL.
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E  /ES L

(a)

(b)

E  /ES L

E
/

ω
h

0
E

/
ω

h
0

FIG. 7. (Color online) Small impedance regime (γ = 1.91): The
excitation energies vs ES/EL for two values of the induced charge of
(a) q/e = 0 and (b) q/e = 1. The sticking together of the excitation
energies at sufficiently large ES indicates emergence of the charging
states.

and arrive at the effective Hamiltonian

H = −�0

∑
N

(|N〉〈N + 1|+|N+1〉〈N |)+EC(N̂ − q/2e)2,

(16)

which appears to be the same as the Hamiltonian equation (2)
of the Cooper-pair box with EJ replaced with 2�0. The energy
levels follow the standard Coulomb-blockade pattern provided
EC 	 �0. Therefore, we have proven the equivalence of the
CPB and QPS box in the limit of large ES and the emergence
of well-developed Coulomb blockade in the QPS box.

We complement this analytical consideration valid in the
limit γ 	 1 by numerical calculations at finite value γ = 1.91.
In Fig. 7, we plot the energies of several excited states
counted from the ground state versus ES/EL. To illustrate
the charge sensitivity, the plots are made at q/e = 0 and
1. We see how the states evolve from equally separated
oscillator levels at ES = 0 to charging states at ES that follow
a typical Coulomb-blockade degeneracy pattern (at q/e = 0,
only the excited states are doubly degenerate, while at q/e = 1
the ground state is doubly degenerate as well). We see that the
higher excited states become more chargelike at smaller values
of ES , due to quadratic dependence of the charging energy on
the state number. This is also illustrated in Fig. 8, where we

plot the energies of the ground and first two excited states
versus induced charge upon the increase of ES .

C. Large impedance regime

In this limit, EC 	 EL and γ � 1. To start with, let us
disregard the inductive energy. The Hamiltonian is diagonal in
charge representation and reads as

H = EC

(
Q − q

2e

)2
− 2ES cos(2πQ). (17)

The stable states are associated with the minima of E(Q). The
positions of minima Qm are determined from the equation

EC

ES

= −2π
sin(2πQm)

Qm − q

2e

, (18)

with the corresponding energies being given by

Em = EC

[(
Qm − q

2e

)2
+ Qm − q

2e

π
cot(2πQ)

]
. (19)

If ES � EC , the energy has a single minimum and
exhibits weak charge sensitivity E(q) = −2ES cos(πq/e), in
agreement with Eq. (14). At q/e = 1 and critical value of
ES = EC/8π2, this minimum splits into two. More minima
emerge upon increasing ES . Finally, at ES 	 EC , a large
number (
πES/EC) of low-energy minima are pinned by
the oscillatory potential to Qm = N . Their energy is con-
tributed by the charging-energy term only and reproduces the
Coulomb-blockade pattern EN = EC(N − q/2e)2. We thus
conclude that the crossover to the well-developed Coulomb
blockade takes place at ES 
 EC . The crossings of the energy
levels are not avoided in this approximation.

Let us take into account the final value of EL. This leads
to quantization of energy levels around each minimum that is
described by an effective oscillator Hamiltonian

E∗
C(Qm − Q)2 − EL

4

∂2

∂Q2
,

where E∗
C ≡ 2E′′(Qm) is the charging energy renormalized

by the phase slips. Since EL is small, the distance between
the levels is smaller than the scale of the potential E(Q). At
ES 	 EC , we deal with almost identical potential wells of
depth 4ES . The oscillatory mode in each well gives rise to a
system of equidistant levels separated by 2π

√
ESEL. Finite

EL also induces tunneling between the neighboring wells that
removes the degeneracy at the level crossings.

We distinguish two cases in the regime of well-developed
Coulomb blockade ES 	 EC . At sufficiently small ES , the

E
/E

C

e/qe/qe/q

(a) (b) (c)

FIG. 8. (Color online) The charge sensitivity in the small impedance regime (γ = 1.91) for (a) ES/EL = 5.48, (b) ES/EL = 8.22, and
(c) ES/EL = 10.96.
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E
/

ω
h

0
E

/
ω

h
0

E  /E

(a)

(b)
S C

E  /ES C

FIG. 9. (Color online) Excitation energies in the large impedance
regime (γ = 0.32) for (a) q/e = 0 and (b) q/e = 1.

effective oscillator frequency 2π
√

ESEL is much smaller than
the Coulomb energy. In this case, the lowest-energy states are
charging states (labeled by N ) with n oscillator quanta. If one
neglects the exponentially small tunneling between the wells,
the energies of these states are given by

E(N,n) = π
√

ESEL(2n + 1) + EC(N − q/2e)2.

Tunneling between the wells leads to a fascinating picture of
avoided crossings between the energy levels that differ in N

and n [see Fig. 10(c)].
In the opposite case ES 	 E2

C/EL, the first excited state
of the oscillator lies much higher than many charging states.
The tunneling in this case is between the ground states in
each potential well. The low-energy states are described by
the same Hamiltonian equation (16) as in the regime of small
impedance. However, in distinction from the small impedance
regime, �0 is always parametrically smaller than EC .

The above analytical analysis is confirmed by numerical
calculations at γ = 0.32. In Fig. 9, we see the evolution of
the excitation energies from those of the original oscillator to
those of charging states (seen as horizontal lines at sufficiently
large ES) or charging states with extra number of quanta of
the renormalized oscillator (seen as rising lines owing to ES

dependence of the oscillator frequency). The charge sensitivity
is illustrated in Fig. 10. We plot a number of low-lying states
versus q at increasing values of ES . We see the formation

of charging and oscillator states and progressive reduction of
anticrossings between those.

In Fig. 11 we qualitatively show the change of the potential
E(Q) from a parabola to multiple wells upon increasing ES .

D. Intermediate impedance regime and summary

To investigate the regime of intermediate impedance,
we have numerically computed the eigenenergies of the
Hamiltonian equation (3) at γ = 1. The results for excitation
energies are presented in Fig. 12. As in previous regimes, we
observe a crossover from equidistant levels of the original
oscillator to the charging states. The natural scale of this
crossover is neither EL nor EC , rather, this is the frequency
of the original oscillator h̄ω0 ≡ √

ELEC . As in the regime
of large impedance, the charging states are augmented with
quantized oscillations around the minimum of each potential
well: excitations with n �= 0 are manifested as the curves rising
with increasing ES . In distinction from the large impedance
case, the energy of these excitations slightly exceeds the energy
of the lowest charging states once they are formed. We note that
for small impedance, the excitation energies typically decrease
with increasing ES , while for large impedance, they typically
grow. In the intermediate case, we see that many excitations
just keep approximately the same energy while converted from
an oscillator level to a charging state.

Charge sensitivity (Fig. 13) shows a pattern similar to that
in small impedance regime. This proves that, at sufficiently
large ES , in all cases we reach a well-developed Coulomb
blockade.

We summarize the regimes of the QPS box in Fig. 14. This
is a log-scale diagram with ES on the vertical axis and γ 2 on
the horizontal axis. Two crossing thick lines indicate EL 

ES and EC 
 ES , correspondingly. Below the lines, ES �
max(EL,EC) phase slips can be considered perturbatively
(region I). At the lines, the main effect of phase slips is the
renormalization of either capacitance (region II) or inductance
(region III) of the original oscillator. Right above the line
ES 
 EC , we have a region IV where the charging states are
developed and each is accompanied by a set of closely spaced
oscillator levels. At the dashed line ES 
 E2

C/EL, the effective
oscillator frequency becomes comparable with the charging
energy. In the region V, the QPS box is described by the
CPB Hamiltonian equation (16). At the dashed line, EC 
 �0.
Finally, the region VI corresponds to the standard pattern of
the charging states where the degeneracy in the crossing points
is lifted by the tunneling between the ground states in each
potential well, with �0 being the tunneling amplitude.

q/e

(a) (b) (c)

q/e q/e

FIG. 10. (Color online) The charge sensitivity in the large impedance regime (γ = 0.32) for (a) ES/EC = 0.02, (b) ES/EC = 0.1, and (c)
ES/EC = 0.3.
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(a) (b) (c)

FIG. 11. (Color online) The evolution of E(Q) at q/e = 1 upon
increasing the phase-slip amplitude for (a) ES/EC = 0, (b) ES/EC =
0.5, and (c) ES/EC = 10. The multiple potential minima formed
correspond to discrete charging states.

IV. QPS TRANSISTOR

The physics of the QPS transistor is determined by the same
energy scales as those of the QPS box: inductive EL, charging
EC , and phase-slip ES energies. The relations between the
scales, as outlined in the end of the previous section, determine
the qualitative features of the QPS transistor. In this section,
we thus concentrate on the features of the QPS transistor
that are different from the QPS box or just do not exist
there. As mentioned, the levels of the QPS transistor are
sensitive to flux; this feature is absent in the QPS box. A
symmetric QPS transistor (ES,1 = ES,2,EL,1 = EL,2) exhibits
a peculiar separation of quantum variables that leads to double
degeneracy of the levels at � = π . We present the numerical
results at intermediate impedance.

A. Second-order corrections

As noted in Sec. II, the phase-slip corrections to the energy
levels of the QPS transistor are of the second order in the
phase-slip amplitudes. The nonperturbed states are labeled
with the phonon number n and the winding number p. If we
restrict the external phase � to the interval [−π,π ], the ground

E
/

(a)

(b)

ω
h

0
E

/
ω

h
0

E  / ωh 0S

E  / ωh 0S

FIG. 12. (Color online) Excitation energies in the intermediate
impedance regime (γ = 1) for (a) q/e = 0 and (b) q/e = 1.

state corresponds to |0,0〉. The correction to the ground-state
energy reads as

E(2)
g =

∑
n,±

|〈0,0|HS |n, ± 1〉|2
E0 − E±1 − h̄ω0n

,

with Ep being inductive energies. To evaluate this expression,
we represent it in the form of an integral over an auxiliary
variable t ,

E(2)
g = −∑

n

∫ ∞
0 dt[e(E0−E1−h̄ω0n)t |〈0,0|HS |n,1〉|2

+e(E0−E−1−h̄ω0N)t |〈0,0|HS |n, − 1〉|2].

After this, the sum over n can be taken and the integral can
be evaluated. The result reads as

E(2)
g = − E2

S,1

π2(EL,1 + EL,2)
e−π2γ 2l2

1

[
1

a+
1F1

(
a+π2γ 2; 1 + a+π2γ 2; l2

1π
2γ 2

) + (a+ → a−)

]

− E2
S,2

π2(EL,1 + EL,2)
e−π2γ 2l2

2

[
1

a+
1F1

(
a+π2γ 2; 1 + a+π2γ 2; l2

2π
2γ 2) + (a+ → a−)

]

− 2ES,1ES,2

π2(EL,1 + EL,2)
cos

(
π

q

e

)
e
−π2γ 2

(
l21
2 + l22

2

) [
1

a+
1F1

(
a+π2γ 2; 1 + a+π2γ 2; −l1l2π

2γ 2
) + (a+ → a−)

]
. (20)

We have also introduced the notations l1,l2 for the ratio of
the inductive energies and a± for the dimensionless energy
differences:

l1 = EL,1

EL,1 + EL,2
, l2 = EL,2

EL,1 + EL,2
,

a± = − E0 − E±1

π2(EL,1 + EL,2)
= l1l2(1 ± �/π ).

The correction (20) naturally separates into two parts: the
classical one, which is contributed by the squares of the
phase-slip amplitudes in two wires, and the interference

one, which bears charge dependence. Its rather complicated
expression has simple asymptotes at large and small γ .

In the limit of large impedance (γ � 1), the correction is
determined by the contribution of the virtual state with n = 0
and reads as

E(2)
g = −E2

S,2+E2
S,1+2ES,1ES,2 cos

(
π

q

e

)
π2(EL,1+EL,2)

(
1
a+

+ 1
a−

)
. (21)

The classical and interference parts are of the same order of
magnitude.
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E
/E

C

q/e e/qe/q

(a) (b) (c)

FIG. 13. (Color online) The charge sensitivity at the intermediate impedance (γ = 1) for (a) ES/h̄ω0 = 1.0, (b) ES/h̄ω0 = 2.0, and
(c) ES/h̄ω0 = 4.0.

In the opposite limit (γ 	 1), the classical part remains
of the same order of magnitude, while the charge-sensitive
interference correction is exponentially suppressed:

E(2)
g = − E2

S,1

π2(EL,1 + EL,2)

[
1

a+ + l2
1

+ 1

a− + l2
1

]

− E2
S,2

π2(EL,1 + EL,2)

[
1

a+ + l2
2

+ 1

a− + l2
2

]

− 2ES,1ES,2

π2(EL,1 + EL,2)
cos

(
π

q

e

)
πγ

√
2π

l1l2(1 − |�|/π )

× e− γ 2

2 [1+2l1l2((1−|�|/π){ln[e(1−�/π)]}−1)]. (22)

Interestingly, the exponent of this suppression varies with �

changing between π2γ 2/2 and π2γ 2(1 − 2l1l2)/2.
The correction diverges near the degeneracy points � =

±π . This divergence is trivial, indicating the mixing of two
crossing states |0,0〉 and |0, ± 1〉 by the phase-slip amplitude.
The correction to the ground state near the divergence point
reads as

δEg = −
√

ε2/4 + |M|2 + ε/2,

where ε ≡ π2(EL,1 + EL,2)(1 − |�|/π ), and M is the matrix
element of HS,1 + HS,2 between the degenerate states

M = −ES,1e
iπq/ee− π2γ 2

2 l2
1 − ES,2e

− π2γ 2

2 l2
2 . (23)

E
  /

ω
h

0
S

8π
2

γ 2
1

I.

II. III.

IV. VI.
V.

1

FIG. 14. (Color online) Distinct regimes in the QPS box. The
lines in this schematic log-log plot present parameter regions in the
space of ES and effective impedance 1/γ 2. Region I: Perturbative
regime; II: oscillator with renormalized capacitance; III: oscillator
with renormalized inductance; IV: discrete charging states accompa-
nied by oscillator excitations; V: direct mapping to CPB; and VI: pure
charging states.

This matrix element is exponentially suppressed in the limit
of small impedance.

We present the numerical estimations of the second-order
corrections in Figs. 15(a) and 15(b). We assume the symmetric
QSP transistor. The classical correction at any value of
the impedance takes values between the two asymptotes
[Eqs. (21) and (22)]. At each value of impedance, the
correction diverges upon approaching � = ±π . However, the
divergence controlled by the matrix element [Eq. (23)] is
exponentially suppressed at large γ . This is why the curves
approach the nondivergent asymptote [Eq. (22)] in the limit of
small impedance.

The charge-sensitive interference contribution is plotted
in Fig. 15(b) in logarithmic scale to show the exponential
dependence at large γ . Since the exponent depends on �, the
correction also displays exponential flux sensitivity.

E
/E

1
~

E
/E

2
~

Φ/π

Φ/π

(a)

(b)

FIG. 15. (Color online) QPS transistor: The second-order correc-
tion to the ground-state energy {in units of Ẽ1 = −E2

S,1/[4(EL,1 +
EL,2)] and Ẽ2 = −ES,1ES,2/[4(EL,1 + EL,2)]}. (a) Classical part of
the correction vs external phase difference �. From the uppermost
curve downward: γ � 1 (asymptote), γ = 0.5, γ = 1, γ = 2, γ = 3,
γ 	 1 (asymptote). (b) Charge-sensitive (interference) part of the
correction versus �. From the uppermost curve down: γ � 1
(asymptote), γ = 4, γ = 5.65, and γ = 8. Note the log-scale of the
plot.
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B. Large ES

Let us turn to the QPS transistor in the opposite regime
of large ES where the phase slips produce the well-developed
potential wells that house the charging states and oscillators.
As we have seen in the case of the QPS box, this situation is
achieved for sufficiently large ES for any impedance.

We concentrate on the QPS-transistor Hamiltonian in the
charge representation

H = −EL,1

4

∂2

∂Q2
1

− EL,2

4

(
∂

∂Q2
+ i�

)
− 2ES,1 cos (2πQ1) − 2ES,2 cos (2πQ2)

+EC(Q2 − Q1 − q/2e)2, (24)

where the wave function is subject to the periodicity condition


(Q1 + 1,Q2 + 1) = 
(Q1,Q2).

The phase-slip terms pinpoint the low-energy wave functions
to the minima of the oscillating potential Q1,2 = N1,2. Each
minimum corresponds to a charging state and gives two series
of oscillator levels labeled n1,2. The states are thus labeled as
|N1,N2,n1,n2〉 and their energies are given by

E(N1,2,n1,2) = −|ES,1| − |ES,2| + EC(N2 − N1 − q/2e)2

+ h̄ω1n1 + h̄ω2n2 (25)

with the oscillator frequencies being h̄ω1,2 =
4π

√
ES,1,2EL,1,2.

Interestingly, for a QPS transistor, we get in this limit two
oscillators instead of a single original one.

Let us take into account the tunneling between the potential
wells and do it for the lowest states n1,n2 = 0 only. The
tunneling amplitudes in the directions Q1, Q2 are �1, �2e

i�,
respectively, where the latter factor incorporates the external
phase. The expressions for �1,2 are identical to that of the QPS
box:

�1 = 8
(
E3

S,1EL,1
)1/4

exp

(
− 8

π

√
ES,1

EL,1

)
,

(26)

�2 = 8
(
E3

S,2EL,2
)1/4

exp

(
− 8

π

√
ES,2

EL,2

)
.

The tunneling part of the Hamiltonian is, thus,

Htunn = −
∑

N1,N2

(
�1|N1,N2〉〈N1 + 1,N2|

+�2e
i�|N1,N2〉〈N1,N2 + 1| + H.c.

)
. (27)

We illustrate this Hamiltonian acting on the extended charge
space in Fig. 16. Let us now use the periodicity condition
that allows us to identify the states with N2 − N1 = N and
disregard higher oscillator states assuming h̄ω1,2 	 �1,2,EC .
With this, the Hamiltonian reduces to

H =
∑
N

[−(�1 + �2e
i�)|N〉〈N + 1|

+H.c.] + EC(N − q/2e)2. (28)

This is the Hamiltonian of the CPT where the Josephson
energies EJ,1, EJ,2 are replaced with 2�1,2. This reduc-

FIG. 16. (Color online) QPS transistor in the limit of large ES .
The positions of the potential minima in extended charge space
(Q1,Q2). The dotted lines connect equivalent minima, representing
the set of points that are the same in this space. Dark dots give
unique minima. Tunneling amplitudes through potential barriers
[Hamiltonian equation (27)] are indicated by Greek letters.

tion is less trivial than that in the case of the QPS box
since the QPS transistor has, in principle, more degrees of
freedom. In the limit of EC � �1,2, the QPS transistor is
thus equivalent to a double Josephson junction with the
ground-state energy −|�1 + �2e

i�| and the critical current
Ic 
 (2e/h̄)min(�1,�2).

This estimation should be compared with the maximum
current through the wire in the ground state under the
conditions of phase bias. Since the winding number in the
ground state adjusts itself to the phase, the effective phase
difference never exceeds π and this current is given by
IC(2e/h̄)πEL,1EL,2/(EL,1 + EL,2) (this is much smaller than
the critical current in a current-biased wire where large phase
differences can be built). Since the tunneling amplitudes
�1,2 are exponentially suppressed [Eq. (26)], the critical
current in the wire is also suppressed exponentially in system
parameters ln Ic 
 −√

(Es/EL). Notably, this suppression is
more efficient than intercepting the wire with tunnel barriers,
which leads to a power-law suppression in terms of the system
parameters Ic 
 E2

J /EC .
In the opposite limit of EC 	 �1,2, the flux sensitivity of

the device is determined by the second-order corrections to the
ground state, that is, 
�2/EC . We assume the ground state
to correspond to N = 0 and −1 < q/e < 1. The second-order
correction then reads as

E(2)
g = −2|�1 + �2e

i�|2
EC[1 − (q/e)2]

. (29)

This diverges at q/e = ±1 where the energies of two
charging states cross. Near the avoided crossing, the ground-
state energy is given by

Eg = EC/4 −
√

ε2 + |�1 + �2ei�|2, (30)

where ε ≡ EC(1 − q/e) � EC (for the crossing at q/e = 1).

C. Degeneracies in a symmetric QPS transistor

The odd integer values of q/e correspond to the double
degeneracy of the pure charging states, while the pure flux
states are degenerate at half-integer values of the external
flux � = ±π . We have seen that, in general, the degeneracies
of this type are lifted: Eqs. (21) and (30) describe avoided
crossing of flux and charge states, respectively. However, the
nondiagonal matrix element in both expressions vanishes if the
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degeneracies were to occur simultaneously, that is, at � = ±π

and q/e = ±1, and the QPS transistor is completely symmet-
ric (ES,1 = ES,2,EL,1 = EL,2). The double degeneracy thus
persists in this point.

Since both expressions are perturbative, one could think that
the degeneracy lifting is just not visible being governed by the
next-order perturbation terms. However, this is not the case:
the double degeneracy is preserved by a specific symmetry of
the QPS-transistor Hamiltonian that takes place at odd values
of q/e and is not obvious from the forms of the Hamiltonian
that we have used so far.

To reveal the symmetry, let us rewrite the Hamiltonian of
the QPS transistor in the basis of unperturbed wave functions
|n,p〉, with n being the number of quanta of the original
oscillator and p being the winding number across the wires.
Actually, this is the representation that we have made use of
in numerical simulations. It reads as

H =
∑
n,p

(Ep + h̄ω0n)|n,p〉〈n,p|

+
∑
n′

(
Pn,n′ |n,p〉〈n′,p + 1| + H.c.

)
, (31)

with Ep = (2πp + �)2EL,1EL,2/4(EL,1 + EL,2) being the
inductive energies of the states with different winding num-
bers. The matrix elements of the phase-slip terms read as

Pn,n′ = −ES,1e
iπq/e

∫
dφ ψn(φ)ψn′(φ + 2πl1)

−ES,2

∫
dφ ψn(φ)ψn′(φ − 2πl2), (32)

with ψn(φ) being the oscillator wave functions in the phase
representation. It is evident from this expression that for a
symmetric QPS transistor the matrix elements obey a specific
selection rule: they are nonzero only between the oscillator
states of different parity, and n + n′ should be odd. Therefore,
the whole Hilbert space is separated in two disconnected
blocks. In one block (+), n is even for even p and odd for
odd p, while in another block (−) the situation is reversed: n

is odd for even p and even for odd p.
The energies in each block are 4π -periodic functions of

the external phase. Since the 2π shift of the phase shifts p

by 1 and therefore switches between even and odd p, these
energies must satisfy E+(φ) = E−(2π + φ). This implies the
double degeneracy at all half-integer values of the external flux
provided that q/e is an odd integer.

E
/

(a) (b)

ω
h

0

Φ Φ

FIG. 17. (Color online) Ground-state energy of the QPS transistor
vs external phase � (γ = 1) for (a) q/e = 0 and (b) q/e = 1. In both
panels, the phase-slip amplitudes take the values ES/h̄ω0 = 0, 0.5, 1,
and 2 from the uppermost curve to the lowest one.

I/(
2e

ω 0)

ΦΦ

(a) (b)

FIG. 18. (Color online) Supercurrent in the QPS transistor vs
� for (a) q/e = 0 and (b) q/e = 1. In both panels, the phase-slip
amplitude takes the values ES/h̄ω0 = 0, 0.5, 0.75, 1, and 2. ES = 0
corresponds to the straight line.

In fact, the even-integer values of q/e are also specific for
the symmetric QPS transistor. As one can see from Eq. (32),
at these values, the matrix elements are only nonzero between
n of the same parity. The Hilbert space separates into
two blocks comprising respectively odd and even n. The
energies remain 2π periodic, so this separation does not imply
extra degeneracies at half-integer values of the external flux.
However, the random degeneracies due to the crossing of the
levels of different blocks at some nonspecific values of φ do
occur.

Although these peculiar separations hold for a symmetric
QPS transistor only, they may become important in the course
of quantum manipulation of the states of the QPS transistor. It
is not excluded that the values of ES in a QPS transistor may be
tuned by some extra gates; this would be a practical realization
of the fully symmetric QPS transistor. This is why we have
discussed it and give numerical results for the symmetric QPS
transistor configuration.

D. Flux sensitivity

We illustrate the flux sensitivity of the QPS transistor at dif-
ferent values of phase-slip amplitude ES = ES,1 = ES,2. We
restrict these examples to the case of intermediate impedance
γ = 1. In Fig. 17, we give the dependence of the ground-state
energies on the external phase � for weak, moderate, and
large phase-slip amplitudes and in Fig. 18 the corresponding
currents. For vanishing ES , the dependencies are parabolic.
For q/e = 0 [Fig. 17(a)], we see the rounding of parabolas at
� = ±π so the curves approach the cos shape upon increasing
ES . Also, the flux sensitivity defined as the energy difference
between � = π and 0 quickly decreases upon increasing
ES . For q/e = 1, the curves remain parabolalike; this is
due to special degeneracy described in the previous section.

E
/

(a) (b)

ω
h

0

Φ Φ

FIG. 19. (Color online) Flux dependence of the lowest three
energy levels for a symmetric QPS transistor (EL,1 = EL,2; ES,1 =
ES,2) for γ = 1, ES/h̄ω0 = 0.5 and (a) q/e = 0 and (b) q/e = 1.
Note the degeneracies at half-integer flux for q/e = 1.
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FIG. 20. (Color online) Flux sensitivity vs phase-slip amplitude
for two values of charge (γ = 1). The crosses represent q/e = 0 and
x symbols represent q/e = 1.

Nevertheless, the flux sensitivity decreases upon increasing
ES , although not as fast as in the q/e = 0 case.

The energies of the three states with lowest energy are
plotted in Fig. 19 at ES = 0.5h̄ω0. At q/e = 0, this exemplifies
the degeneracy lifting and avoided level crossing at half-integer
flux. In contrast to this, we see unavoided crossing of the first
and second excited state at � ≈ ±2.3; this indicates opposite
parity of the states. At q/e = 1, we see the double degeneracy
at � = ±π .

Figure 20 gives the flux sensitivity versus ES for q/e =
0 and 1. They coincide at ES = 0, indicating no charge
sensitivity. The most interesting region is that of moderate
ES where the flux sensitivity depends on charge and it
is still substantial. In agreement with the considerations
in Sec. IV B, the flux sensitivity drops exponentially at
large ES . Although this takes place for both values of the
external charge, the flux sensitivity drops much slower for
q/e = 1 and eventually exceeds by far the flux sensitivity
at q/e = 0. Indeed, the same considerations show that the
phase-dependent energy is 
 � for q/e = 1 and 
 �2

for q/e = 0.

V. DUAL DEVICES

As discussed in Ref. 26, there is a duality between
phase-slip junctions and Josephson junctions. Each device
containing phase-slip junctions has an analog where phase
slips are replaced with Cooper-pair tunneling events, and phase
is replaced with charge. Upon this dual transformation, the
devices have identical quantum dynamics. In this section, we
will find and shortly discuss the dual analogs of the QPS box
and QPS transistor.

To avoid any misunderstanding, the analogies between CPB
and the QPS box, and between CPT and the QPS transistor,
which we have thoroughly discussed in this paper, are not
related to the duality under consideration. Dual devices are
rather different.

EJ

Φ

FIG. 21. The Josephson circuit dual to the QPS box.

C

L/2 L/2

0

EJ1 EJ2

C

Φ

1 2

FIG. 22. The Josephson circuit dual to the QPS transistor.

The duality is based on the canonical transformation
(Q̂,φ̂) → (−φ̂/2π,2πQ̂) that preserves the commutation re-
lation [Q̂,φ̂] = −i. With this, we can readily establish the
Hamiltonians of the dual devices. The Hamiltonian dual to
that of the QPS box Eq. (3) reads as

H dual
QPS box = E′

L

4
(φ̂ − �)2 + E′

CQ̂2 − EJ cos φ̂. (33)

It is a Josephson Hamiltonian with the parameters related to
the initial QPS values as follows:

EJ → 2ES, E′
L → EC

π2
, E′

C → π2EL, � → πq/2e.

In electrical terms, this is a Josephson junction in series with
an LC oscillator (see Fig. 21). The flux sensitivity of this
device is obtained from the charge sensitivity of the QPS
box, E(�) = EQPS box(q = e�/π ). For the QPS transistor, the
same transformation leads to the following dual Hamiltonian:

H dual
QPS transistor = E′

L(φ̂2 − φ̂1 − �)2

+E′
C,1Q̂

2
1 − EJ,1 cos(φ̂1) + (1) → (2),

where the constraint Q1 + Q2 = q/2e + p is imposed, with
p being an integer number. Physically, this is an integer
number of of Cooper pairs accumulated in the nodes encircled
in Fig. 22. We note that, in the limit of vanishing EJ , this
combination of nodes is isolated from the leads and thus can
sustain integer charge. To keep consistent notations, the gate
capacitance in Fig. 22 should be assumed vanishingly small,
Cg � C1,2, whereas CgVg = q.

The regime of vanishing phase slips in original devices
corresponds to the regime of vanishing Josephson couplings
for dual ones. In this regime, the devices are LC oscillators. The
dual QPS transistor possesses an extra degree of freedom: the
number of integer charges accumulated in the isolated island.
The regime of well-developed Coulomb blockade in the QPS
devices corresponds to the classical limit of the dual Josephson
circuits, where the winding numbers in the superconducting
inductors are dual analogs of discrete charges.

VI. CONCLUSIONS

In this paper, we have proposed and discussed two super-
conducting devices made of superconducting wires subject to
coherent quantum phase slips: the QPS box and QPS transistor.
Our main goal was to demonstrate the charge sensitivity;
this would be the unambiguous experimental signature of
Coulomb-blockade behavior. The experimental realization of
our proposed devices is achievable with the state-of-the-art
technology.

We have shown that the charge sensitivity appears already
for small phase-slip amplitudes as a perturbative correction to
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the ground-state energy. This correction is of the first order in
the case of the QPS box and of the second order in the case
of the QPS transistor. In both cases, the charge-sensitive part
of the perturbative correction is exponentially suppressed in
the limit of low impedance. In contrast to the QPS box, the
QPS transistor exhibits both flux and charge sensitivity, which
makes it potentially useful for measurements.

However, if the phase-slip amplitude becomes of the
order of either charging energy (large impedance regime)
or inductive energy (small impedance regime), both devices
show discrete charging states that follow a common Coulomb-
blockade pattern of crossing parabolas. The crossover to
Coulomb blockade occurs differently in the limits of large
and small impedance. We have revealed and investigated both
analytically and numerically six distinct parameter regions.
For the QPS transistor, we have analyzed the flux sensitivity
(superconducting current) as well as combined flux-charge
sensitivity. For a symmetric QPS transistor, we have found a
variable separation at specific values of induced charge that
leads to double degeneracy of the states at q/e = 1 and half-
integer external flux. We have calculated the superconducting
current through the QPS transistor to show the nontriviality
of the device. We briefly discuss the Josephson-based devices
that are dual to the QPS box and QPS transistor.
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APPENDIX: MICROSCOPIC FOUNDATION

In this appendix, we sketch the microscopic reasoning that
justifies the Hamiltonians (3) and (8). Most of this reasoning
can not be regarded as the conclusions of this paper. Rather,
this appendix mainly summarizes the results of Refs. 15, 23,
24, and 26, perhaps with more comprehensive notations. We
include this summary for the sake of completeness, and to
respond to the requests of our colleagues.

The reasoning proceeds in two steps. At the first step,
one recognizes how the phase-slip amplitude emerges from
instantons of an effective field theory describing the quantum
fluctuations of the superconducting order parameter. The
outcome is a one-dimensional sine-Gordon-type model of
the superconducting wire where the phase-slip amplitude
per unit length enters as a parameter. At the second step, one
replaces this one-dimensional model with a zero-dimensional
one. This is justified if the internal degrees of freedom of the
wire can be efficiently disregarded or incorporated into the
parameters of the zero-dimensional model. We discuss the
requirements for this. The outcome is a Hamiltonian com-
bining inductive energy of the wire and total phase-slip
amplitude.

One can start with a Hamiltonian of electrons in the metal
wire subject to Coulomb and phonon-mediated interaction.32

Hubbard-Statonovitch transform in imaginary time33 rep-
resents these two interactions in terms of the (quantum)
fluctuations of two fields: V (r,τ ), time-dependent voltage,
and �(r,τ ), complex superconducting order parameter. The
electroneutrality condition enforces the Josephson relation
2eV = h̄φ̇ in each point and time moment, with φ being the
phase of the order parameter.33 After that, one can integrate
out the electron degrees of freedom and obtain the effective
action for �(r,t).15 If the lateral dimensions of the wire
are smaller than the superconducting coherence length ξ , it
suffices to consider only the realizations of the order parameter
that are constant along the wire cross section. These can be
parametrized with a one-dimensional field �(x,τ ). The action
consists of two terms15

S = Ssup +
(

h̄

2e

)2
C̄

2

∫
dx

dτ

h̄
φ̇2(x,τ ).

Here, the first term incorporates everything related to super-
conductivity, while the second term represents the charging
energy of the wire, with C̄ being the wire self-capacitance per
unit length.

The superconducting part of the action is nonlocal in both
coordinate (at the scale 
 ξ ) and imaginary time (at the
scales h̄/�0, with �0 being the saddle-point value for the
superconducting gap). The degenerate topologically trivial
saddle-point solutions correspond to the constant modulus of
order parameter and are parametrized by the phase �(x,τ ) =
�0e

iφ . This suggests the importance of Goldstone modes that
are long-wave topologically trivial fluctuations of the phase.
The effective hydrodynamic15 action for these fluctuations
reads as

Sh =
(

h̄

2e

)2 ∫
dx dτ

(
(φ′)2

2L̄

)
+

(
C̄

2
φ̇2

)
(A1)

with L̄ being the wire inductance per unit length that is mostly
contributed by kinetic inductance of the superconducting
material. This action describes the propagation of the elec-
tromagnetic waves along the wire with velocity c0 = 1/

√
L̄C̄.

The full action also permits topologically nontrivial saddle-
point configurations, instantons, that correspond to phase slips.
A single phase-slip configuration has a core at a point (x0,t0) of
a size ξ,h̄/�0, with this size corresponding to the nonlocality
of the action. Far from the core, the modulus of the order
parameter equals �0, while the phase is given by

φ(x,τ ) = − arctan

(
x − x0

c0(τ − τ0)

)
.

There is a significant extra action associated with a phase slip
SQPC. This action contains the hydrodynamic part that comes
from the long-wavelength action [Eq. (A1)] and core part. With
logarithmic accuracy, the hydrodynamic part is given by

Sh,QPS = πh̄2

4e2

√
C̄

L̄
ln

(
Xl.c.

Xu.c.

)
,

where Xl.c. is the lower cutoff (of the order of system size) and
Xu.c. is the upper cutoff (of the order of core size). The core
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part of the action is readily estimated as

Sc,QPS = α

GQR̄ξ
,

where R̄ is the normal-state wire resistance per unit length,
and α is a dimensionless coefficient, which is not known so
far. The evaluation of the partition function of the system
in the vicinity of the phase-slip saddle-point solution gives
the QPS amplitude per unit length ĒS ∝ e−SQPC/h̄. The total
amplitude has been estimated in Ref. 15, where it has been
called rate γQPS. We should perhaps stress that, by no means,
does such γQPS give an estimate of a transition rate of any event
involving quantum-phase slips, nor was this was intended
by the authors of Ref. 15. The transition rate, in any case,
should be proportional to γ 2

QPS, the square of the transition
amplitude. Unfortunately, the fact that the coefficient α is
not known makes the theory quite useless for predictions of
any concrete values of ĒS : The exponential dependence on
α would result in uncertainties of many orders of magnitude.
The core part of the action has been found for a ballistic
single-channel wire,34 but this hardly helps in any realistic
situation.

Further analysis presented in Refs. 15 and 27 concerns
the instanton configurations with multiple phase slips. The
problem can be mapped onto a two-dimensional gas of charged
particles with logarithmic interaction. For our purposes, it
is convenient to rewrite it as an equivalent sine-Gordon
model. A convenient variable for this is the charge 2eq(x,τ )
passed thought the point x of the wire (the charge density
accumulated in the wire is then −2eq ′, while the current
I = 2eq̇). The action in terms of this variable takes the form

S =
∫

dx dτ
[
4e2

(
L̄(q̇)2

2
+ (q ′)2

2C̄

)

− ĒS cos[2πq(x,t)]
]

(A2)

with the two first terms giving the hydrodynamic part of the
action, that is, (A1). The quantity ĒS corresponds to the bare
fugacity of the phase slips, that is, contains only the core
contribution of the action ĒS ∝ e−Sc,QPS/h̄. The uncertainty in
defining the core is incorporated into upper cutoff of the sine-
Gordon model.

From a formal point of view, it seems natural to consider
an infinite wire. In this case, it is very well known that
the system exhibits a quantum Schmid transition (sometimes
termed BKT, from analogy with associated two-dimensional
classical system) at arbitrary ĒS and at a critical value of the
wave impedance √

L̄

C̄
= h̄

8e2
.

In the context of the wires, it is sometimes called the
superconducting-insulating transition. Perhaps one should be
more cautious about this, since the essence of the transition
is the distinct behavior of the renormalized inductance L

of the wire as function of the wire length l, L(l). The
renormalization by the phase slip always enhances the induc-
tance, and the enhancement changes from power law L ∝ lβ

with β < 1 to exponential dependence L ∝ el/lc at the point

of the transition. Guided by personal taste, one may call
the wire insulating (zero inductance per unit length in the
limit l → ∞) or superconducting (finite inductance at any
finite l).

More insight into the wire properties in the insulating
regime can be obtained when considering the saddle-point
solutions of the sine-Gordon model. The trivial solution
corresponds to q = 0 so that no charge can pass the wire.
Aside from this, there are sine-Gordon kinks. In this case,
they correspond to the charged solitonlike excitations. The
minimum energy of the soliton Esol 
 e

√
ĒS/C̄ is the gap

for charged excitation. The soliton is spread over the length
Lsol = e/

√
ĒSC̄. The inverse inductance, that is, the su-

percurrent in the wire, is due to tunneling of the solitons
over a potential barrier of the length l and the height Esol.
Therefore, the wire in the insulating regime is a kind of
a semiconductor, a uniform barrier for charges to tunnel
through. The ground state is homogeneous; one can not say
that the wire is cut into small pieces separated by tunnel
barriers.

It is not clear at the moment to which extent the one-
dimensional model can be useful to describe experimental
results even at a qualitative level, this being a subject of
ongoing research and debate. The realistic wires are not only
finite; they are rather short. The inverse time of electricity
propagation across the wire c0/l can easily exceed the typical
superconducting energy scale �0/h̄. In this case, the upper
cutoff is smaller than the lower cutoff, and this renders
hydrodynamic corrections irrelevant. Even if this is not the
case, it has been shown23 that, for a finite wire embedded into
an external circuit, the Schmid transition should be governed
by the external impedance of the circuit rather than the wave
impedance of the wire. There were recent attempts27 to modify
the traditional renormalization schemes to take into account
finite l and possible normal excitations not captured by the
hydrodynamic action. More experiments and more detailed
comparison of experiment and theory are required to resolve
the issue.

A way to avoid these complicated issues is to think
of a phase-slip superconducting wire in terms of a zero-
dimensional model, that is, in terms of a circuit-theory element.
For a closed wire, such a model has been proposed in Ref. 24.
The model can be derived from the sine-Gordon model (A2) by
setting q = const(x). The result is most convenient to present
in the Hamiltonian form

Ĥ = ELφ̂2 − ES cos(2πq̂)

with EL being the inductive energy of the wire ES = ĒSl.
The operators of phase drop across the wire φ̂ and charge
passed q̂ satisfy canonical commutation relation [q̂,φ̂] = i.
This zero-dimensional model has been extended in26 the case
of the wire embedded into an arbitrary external circuit and
its exact duality with Josephson-junction circuits has been
demonstrated.

The zero-dimensional model obviously does not describe
the internal excitations of the wire, such as standing elec-
tromagnetic waves in the absence of the phase slips or charge
solitons arising from the sine-Gordon model in the limit of suf-
ficiently developed phase slips, although the renormalization
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of the parameters EL and ES by these excitations can be taken
into account on a phenomenological level, that is, just by
taking the measurable values of these parameters rather than
the bare ones. One can argue that these excitations either have
energies exceeding the energy scales of the zero-dimensional
model ES,EL 	 h̄c0/l,Esol or just do not fit into the
wire (Lsol 	 l).

A convenient formal way to assure irrelevance of internal
excitations is to take the limit of vanishing self-capacitance of
the wire C̄ → 0. In this limit, all of the above requirements
are fulfilled, since the energy scale of the standing waves,
soliton energy, and length become infinite. The charge can
not be accumulated in the wire q ′(x) = 0, and the model is
essentially zero dimensional.
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