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Type-1.5 superconductivity in multiband systems: Effects of interband couplings
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In contrast to single-component superconductors, which are described at the level of Ginzburg-Landau theory
by a single parameter κ and are divided in type-I κ < 1/

√
2 and type-II κ > 1/

√
2 classes, two-component

systems in general possess three fundamental length scales and have been shown to possess a separate “type-1.5”
superconducting state. In that state, as a consequence of the extra fundamental length scale, vortices attract one
another at long range but repel at shorter ranges, and therefore should form clusters in low magnetic fields. In
this work we investigate the appearance of type-1.5 superconductivity and the interpretation of the fundamental
length scales in the case of two active bands with substantial interband couplings such as intrinsic Josephson
coupling, mixed gradient coupling, and density-density interactions. We show that in the presence of substantial
intercomponent interactions of the above types the system supports type-1.5 superconductivity with fundamental
length scales being associated with the mass of the gauge field and two masses of normal modes represented by
mixed combinations of the density fields.
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I. INTRODUCTION

According to Ginzburg-Landau theory, a conventional
superconductor near Tc is described by a single complex order-
parameter field. The physics of these systems is governed by
two fundamental length scales, the magnetic-field penetration
depth λ and the coherence length ξ , and the ratio κ of these
determines the response to an external field, sorting them into
two categories as follows: type I when κ < 1/

√
2 and type II

when κ > 1/
√

2.1

Type-I superconductors expel weak magnetic fields, while
strong fields give rise to formation of macroscopic normal
domains with magnetic flux.2 The response of type-II super-
conductors is completely different; below some critical value
Hc1, the field is expelled. Above this value a superconductor
forms a lattice or a liquid of vortices that have a supercurrent
circulating around a normal core and carry magnetic flux
through the system. Finally, at a higher second critical value,
Hc2 superconductivity is destroyed.

These different responses are usually viewed as conse-
quences of the vortex interaction in these systems, the energy
cost of a boundary between superconducting and normal
states and the thermodynamic stability of vortex excitations.
In a type-II superconductor the energy cost of a boundary
between the normal and the superconducting state is negative,
while the interaction between vortices is repulsive.1 This
leads to a formation of stable vortex lattices and liquids. In
type-I superconductors the situation is the opposite; the vortex
interaction is attractive (thus making them unstable against
collapse into one large vortex), while the boundary energy
between normal and superconducting states is positive. From a
thermodynamic point of view the principal difference between
type-I and type-II states is the following: (i) In type-II super-
conductors the external magnetic-field strength required to
make formation of vortex excitations energetically preferred,
Hc1, is smaller than the thermodynamical magnetic field Hct

(the field whose energy density is equal to the condensation
energy of a superconductor, i.e., the field at which the uniform

superconducting state becomes thermodynamically unstable).
(ii) In type-I superconductors the field strength required to
create a vortex excitation is larger than the thermodynamical
critical magnetic field, i.e., vortices cannot form. One can
distinguish also a special “zero measure” boundary case
where κ has a critical value exactly at the type-I–type-II
boundary, which in the most common Ginzburg-Landau (GL)
model parametrization corresponds to κ = 1/

√
2. In that case

vortices do not interact3 in the Ginzburg-Landau theory.
The above circumstances result in a situation where, in a

strong external magnetic field, type-I superconductors usually
have a tendency to minimize boundary energy between the
normal and superconducting states, leading to a formation
of large inclusions of normal phase which frequently have
laminar structure.2

Recently there has been increased interest in superconduc-
tors with several superconducting components. The main sit-
uations where multiple superconducting components arise are
(i) multiband superconductors,4–9 (ii) mixtures of indepen-
dently conserved condensates such as the projected supercon-
ductivity in metallic hydrogen and hydrogen rich alloys,10–12

and (iii) superconductors with other than s-wave pairing
symmetries. In this work we focus on cases (i) and (ii). The
principal difference between cases (i) and (ii) is the absence
of the intercomponent Josephson coupling in case (ii).

In two-band superconductors (i) the superconducting com-
ponents originate from electronic Cooper pairing in different
bands.4 Therefore these condensates could not a priori be
expected to be independently conserved. This, at the level of
effective models, should manifest itself in a rather generic
presence of intercomponent Josephson coupling.

In case (ii) two superconducting components were pre-
dicted to originate from electronic and protonic Cooper
pairing in metallic hydrogen or hydrogen-rich alloys. In the
projected liquid metallic deuterium or deuterium-rich alloys,
electronic superconductivity was predicted to coexist at ul-
trahigh pressures with deuteronic Bose-Einstein condensation
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condensation.10–12 Because electrons cannot be converted to
protons or deuterons the condensates are independently con-
served, and therefore in the effective model intercomponent
Josephson coupling is forbidden on symmetry grounds. These
states are currently a subject of a renewed experimental
pursuit. They are expected to arise at high but experimentally
accessible pressures (≈400 GPa). Current static compression
experiments achieve pressures of ≈350 GPa with pressures
of an order of 1 TPa being anticipated in diamond-anvil
cell experiments due to the recent availability of ultrahard
diamonds. Similar two-charged component models were dis-
cussed in the context of the physics of neutron stars where they
represent coexistent protonic and �−-hyperon Cooper pairs in
the neutron star interior.13

This wide variety of systems raises the need to understand
and classify the possible magnetic responses of multicom-
ponent superconductors. It was discussed recently that in
multicomponent systems the magnetic response is much more
complex than in ordinary systems, and that the type-I/type-II
dichotomy is not sufficient for classification. Rather, in a wide
range of parameters, as a consequence of the existence of three
fundamental length scales, there is a separate superconducting
regime where vortices have long-range attractive, short-range
repulsive interaction and form vortex clusters immersed in
domains of the two-component Meissner state.14,15 Recent
experimental works16,17 have put forward the suggestion that
this state is realized in the two-band material MgB2, which
sparked growing interest in this topic. In particular, questions
were raised over whether this “type-1.5” superconducting
regime (as it was termed by Moshchalkov et al.16 for
recent works, see Ref. 18) is possible even in principle in
the case of various nonvanishing couplings (e.g., intrinsic
Josephson coupling, mixed gradient couplings, etc.) between
superconducting components in different bands.

In this work we report a study of the appearance of
type-1.5 superconductivity especially focusing on the case of
multiband superconductivity, demonstrating the persistence of
this type of superconductivity in the presence of various kinds
of intercomponent couplings (such as interband Josephson
coupling, mixed gradient coupling, and density-density and
other kinds of couplings).

A. Type-1.5 superconductivity

The possibility of a new type of superconductivity, distinct
from the type I and type II in multicomponent systems,14,15

is based on the following considerations. In principle the
boundary problem in the Ginzburg-Landau type of equations
in the presence of phase winding is not, from a rigorous point
of view, reducible to a one-dimensional problem in general.
Furthermore, as discussed in Refs. 14 and 15, in general in
two-component models there are three fundamental length
scales, which renders the model impossible to parametrize
in terms of a single dimensionless parameter κ . In the case
where the condensates are not coupled by interband Josephson
coupling but only by the vector potential these length scales
are the two independent coherence lengths of the condensates
(set by the inverse masses of the corresponding scalar density
fields) and magnetic-field penetration length (set by the inverse
mass acquired by the gauge field). In contrast, in the case
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FIG. 1. (Color online) A comparison of the magnetic phase
diagrams of clean bulk type-I, type-II, and type-1.5 superconductors
at zero temperature. The semi-Meissner state is a macroscopic phase
separation into a two-component Meissner state and vortex clusters
where one of the density modes is suppressed by core overlaps.

where the condensates are coupled by interband Josephson
terms, one cannot distinguish independent coherence lengths
attributed to different condensates. Nonetheless, in this case
the density variations can also possess two fundamental
length scales,15 in contrast to single-component theories. We
elaborate on this fact below. In Refs. 14 and 15 vortex
solutions in two-component theories were found that have
nonmonotonic vortex interaction, with a long-range attractive
part determined by a dominant density-density interaction and
a short-range repulsive part produced by current-current and
electromagnetic interactions. An important circumstance that
was demonstrated was that these vortices are thermodynami-
cally stable in spite of the existence of the attractive tail in the
interaction.

A non-monotonic intervortex interaction potential should
result in the formation of vortex clusters in low magnetic field
immersed into the vortexless areas, a state referred to in Ref. 14
as the “semi-Meissner state.” Figure 1 shows the schematic
phase diagram of a type-1.5 superconductor.

If the vortices form clusters one cannot use the
usual one-dimensional argument concerning the energy of
superconductor-to-normal state boundary to classify the mag-
netic response of the system. First of all, the energy per vortex
in such a case depends on whether a vortex is placed in
a cluster or not: i.e., formation of a single isolated vortex
might be energetically unfavorable, while formation of vortex
clusters is favorable, because in a cluster where vortices are
placed in a minimum of the interaction potential, the energy
per flux quantum is smaller than that for an isolated vortex
(thermodynamically the nonmonotonic two-vortex interaction
potential predicts that the smallest energy per flux quantum
will be in the case of a uniform lattice with spacing equal to
the minimum of two-body intervortex potential).

Thus besides the energy of a vortex in a cluster, there
appears an additional energy characteristic associated with
the boundary of a cluster. In other words, in this situation,
to determine the magnetic response of a system it is not
sufficient to study the one-dimensional boundary problem nor
the single-vortex problem, in contrast to single-component
systems. Moreover, in a cluster the system tends to minimize
the boundary energy of a cluster (similarly to type-I behavior),
while breaking into a lattice of one-quantum vortices inside
the cluster (similarly to type-II systems with negative interface
energy). Thus, in an increased magnetic field the vortices
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TABLE I. Basic characteristic of bulk clean superconductors in type-I, type-II and type-1.5 regimes. Here the most common units are used
in which the value of the GL parameter κ = λ/ξ which separates type-I and type-II regimes is κc = 1/

√
2.

Single-component type I Single-component type II Multicomponent type 1.5

Characteristic Penetration length λ and Penetration length λ and Two characteristic density variations
lengths scales coherence length ξ ( λ

ξ
< 1√

2
) coherence length ξ ( λ

ξ
> 1√

2
) length scales ξ1,ξ2 and penetration

length λ, the nonmonotonic vortex
interaction occurs in these systems
typically when ξ1 <

√
2λ < ξ2

Intervortex Attractive Repulsive Attractive at long range and
interaction repulsive at short range

Energy of Positive Negative Under quite general conditions
superconducting/ negative energy of superconductor/
normal-state normal interface inside a vortex
boundary cluster but positive energy of the

vortex cluster’s boundary

The magnetic field Larger than the thermodynamical Smaller than thermodynamical In different cases either (i) smaller
required to form critical magnetic field critical magnetic field than the thermodynamical critical
a vortex magnetic field or (ii) larger than

critical magnetic field for a single
vortex but smaller than the
critical magnetic field for a vortex
cluster of a certain critical size

Phases in external (i) Meissner state at low fields (i) Meissner state at low fields (i) Meissner state at low fields
magnetic field (ii) Macroscopically large (ii) Vortex lattices/liquids at (ii) “Semi-Meissner state”:

normal domains at larger fields. Second order vortex clusters coexisting with
larger fields. First phase transitions between Meissner domains at intermediate
order phase transition superconducting and vortex states fields (iii) Vortex lattices/
between superconducting and and between vortex and normal states liquids at larger fields. Vortices
normal states form via a first order phase

transition. The transition from
vortex states to normal state
is second order.

Energy E(N ) of E(N)
N

< E(N−1)
N−1 for E(N)

N
> E(N−1)

N−1 There is a characteristic number Nc

N-quantum all N . Vortices coalesce onto for all N . N -quantum vortex such that E(N)
N

< E(N−1)
N−1

axially symmetric a single N -quantum megavortex decays into N infinitely separated for N < Nc, while E(N)
N

>

vortex solutions single-quantum vortices E(N−1)
N−1 for N > Nc.

quantum vortices N -quantum vortices decay into
vortex clusters.

forms via a first order phase transition. A magnetic phase
distinct from the vortex and Meissner states, which then
arises, is a macroscopic phase separation into domains of
a two-component Meissner state and vortex clusters where
one of the density modes is suppressed by core overlap. We
summarize the basic properties of type-I, type-II, and type-1.5
regimes in Table I.

The existence of thermodynamically stable type-1.5
superconducting regimes ultimately depends on the existence
of a nonmonotonic intervortex interaction potential. It is an
important question how generic this effect is. In this work we
mainly focus on multiband realizations of multicomponent
superconductivity and investigate the effects of interband
Josephson coupling, mixed gradient coupling, and density-
density coupling terms on vortex interactions in two-band
superconductors. We show that (i) when these and other
similar kinds of couplings are present, the system still can

possess three fundamental length scales, in contrast to the two
length scales in the usual single-component GL theory, and (ii)
nonmonotonic interaction potential resulting from these scales
is possible in a wide parameter range in these models.

The structure of this paper is as follows: In Sec. II we
introduce the model. In Sec. III we present a linear theory of
asymptotics of the vortex fields in a superconductor with two
bands with various interband couplings. We begin Sec. III by
demonstrating that for a general form of the effective potential
in a two-band (or more generally two-gap) Ginzburg-Landau
free energy, the linear theory gives, under quite general
conditions, two fundamental length scales of the variations
of the densities. From the linearized theory we calculate the
long-range intervortex interaction potentials using the two-
component generalization of the point-vortex method19 and
show how the nonmonotonic intervortex interaction potential
arises from the interplay of two fundamental length scales
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of the superfluid density variations and the magnetic-field
penetration length. The central point of this part is how
the fundamental length scales are defined in the presence
of interband coupling as well as the occurrence of “mode
mixing.” Next we move to quantitatively study the effects
of several kinds of intercomponent couplings which quite
generically arise in two-component theories. In Sec. III D
we demonstrate that mixed gradient coupling can lead, under
certain conditions, to an increase in the disparity of the
characteristic scales of the density variations. In Sec. IV we
present a large scale numerical study of the full nonlinear
problem of the interaction between a pair of vortices.

II. MODEL

A. Free-energy functional

We study the type-1.5 regime using the following two-
component Ginzburg-Landau (TCGL) free-energy functional,

F = 1
2 (Dψ1)(Dψ1)∗ + 1

2 (Dψ2)(Dψ2)∗

− νRe{(Dψ1)(Dψ2)∗} + 1
2 (∇ × A)2 + Fp. (1)

Here D = ∇ + ieA, and ψa = |ψa|eiθa , a = 1,2, represent
two superfluid components which, in a two-band superconduc-
tor, correspond to two superfluid densities in different bands.
The term Fp can contain in our analysis an arbitrary collection
of nongradient terms.

A particular form of two-component GL model, which
was microscopically derived in Refs. 6–8 for two-band
superconductors is

F = 1
2 (Dψ1)(Dψ1)∗ + 1

2 (Dψ2)(Dψ2)∗

− νRe{(Dψ1)(Dψ2)∗} + 1
2 (∇ × A)2

+ α1|ψ1|2 + 1
2β1|ψ1|4+α2|ψ2|2 + 1

2β2|ψ2|4
− η1|ψ1||ψ2| cos(θ1 − θ2) + η2|ψ1|2|ψ2|2. (2)

The first two terms represent standard Ginzburg-Landau
gradient terms, the second term represents mixed gradient
interactions, which were shown to originate in two-band
superconductors from impurity scattering.6,7 The next term
is the magnetic-field energy density and the remaining terms
represent an effective potential. Here we note that α1 and α2

can invert sign at different temperatures. The regime where
α1 is positive while α2 is negative corresponds to the situation
where one of the bands has no superconductivity of its own
but nonetheless bears some superfluid density due to interband
Josephson tunneling, which is represented here by the term
η1|ψ1||ψ2| cos(θ1 − θ2). The type-1.5 behavior in this regime
was studied in Ref. 15. In this work we will mainly focus
on the situation where both bands are active, i.e., α1,2 < 0.
For generality we also add a higher-order density-density
coupling term η2|ψ1|2|ψ2|2. We also consider the case of
independently conserved condensates where the third and
ninth terms in Eq. (2) are forbidden on symmetry grounds,
that is, ν = η1 = 0 (see also remark, Ref. 20). The equivalence
mapping between our units and the standard textbook units is
given in Appendix V.

A microscopic derivation of the TCGL model (2) requires
the fields |ψa| to be small. However, it does not in principle

require αa to change sign at the same temperature. Moreover,
as in the case of single-component GL theory, we expect model
(2) to give in many cases a qualitatively acceptable picture in
lower temperature regimes as well. In fact, our analysis can in
some cases give a qualitative picture for the case where one
of the fields does not possess a GL-type effective potential
because the regime where one of the bands is in a London
limit (i.e., it does not possess a GL effective potential but
has a small vortex core modeled by a sharp cutoff) can be
recovered from our analysis as a limiting case. As will be clear
from the analysis below, that regime also supports type-1.5
superconductivity.

B. Basic properties of the vortex excitations

The only vortex solutions of model (2) that have finite
energy per unit length are the integer N -flux quantum vortices,
which have the following phase windings along a contour l

around the vortex core:
∮
l
∇θ1 = 2πN,

∮
l
∇θ2 = 2πN . Vor-

tices with differing phase windings carry a fractional multiple
of the magnetic-flux quantum and have energy divergent
with the system size. These solutions were investigated in
detail in Ref. 21. In what follows we investigate only integer
flux vortex solutions, which are the energetically cheapest
objects to produce by means of an external field in a bulk
superconductor.

III. VORTEX ASYMPTOTICS

The key to understanding the interaction of well separated
vortices is to analyze the large r asymptotics of the vortex
solution. We will analyze this problem in the context of a
general TCGL model whose free energy takes the form

F = 1
2 (Diψ1)∗Diψ1 + 1

2 (Diψ2)∗Diψ2

+ 1
2 (∂1A2 − ∂2A2)2 + Fp, (3)

where Fp contains all the nongradient terms (in particular, but
not restricted to, Josephson and density-density interaction
terms). This free energy is consistent with Eq. (2) in the
case ν = 0. We will show in Sec. III D how to handle mixed
gradient terms. The precise form of Fp is not crucial for our
analysis in this section. By gauge invariance, it can depend
on the condensates only via |ψ1|, |ψ2| and (if the condensates
are not independently conserved) on θ1 − θ2. We will assume
that Fp takes its minimum value (which we normalize to be
0) when |ψ1| = u1 > 0, |ψ2| = u2 > 0, and θ1 − θ2 = 0. So,
either there is no phase coupling (Fp is independent of θ1 − θ2)
and the choice of θ1 − θ2 = 0 is arbitrary, or the phase coupling
is such as to encourage phase locking. (Note that the case of
phase antilocked fields can trivially be recovered from our
analysis by mapping ψ2 �→ −ψ2.)

The field equations are obtained from F by demanding that
the total free energy E = ∫

Fdx1dx2 is stationary with respect
to all variations of ψ1,ψ2, and Ai . A routine calculation yields

DiDiψa = 2
∂Fp

∂ψ∗
a

, (4)

∂i(∂iAj − ∂jAi) = e

2∑
a=1

Im(ψ∗
a Djψa). (5)
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This triple of coupled nonlinear partial differential equations
supports solutions of the form

ψa = fa(r)eiθ , (A1,A2) = a(r)

r
(− sin θ, cos θ ), (6)

where f1,f2,a are real profile functions. Note that in some
cases mixed gradient terms favor nonaxially symmetric
solutions. In this section we consider only axially symmetric
vortices. Fields within the above ansatz satisfy the field
equations if and only if the profile functions f1(r),f2(r),a(r)
satisfy the coupled ordinary differential equation system

f ′′
a + 1

r
f ′

a − 1

r2
(1 + ea)2fa = ∂Fp

∂|ψa|
∣∣∣∣
(u1,u2,0)

, (7)

a′′ − 1

r
a′ − e(1 + ea)

(
f 2

1 + f 2
2

) = 0. (8)

The solution we require, the vortex, has boundary behavior
fa(r) → ua , a(r) → −1/e as r → ∞. So, for large r , the
quantities

εa(r) = fa(r) − ua, α(r) = a(r) + 1

e
(9)

are small and so should, to leading order, satisfy the lineariza-
tion of Eqs. (7) and (8) about (u1,u2, − 1/e). That is, at large
r ,

ε′′
a + 1

r
ε′
a =

2∑
b=1

Habεb, (10)

α′′ − 1

r
α′ − e2

(
u2

1 + u2
2

)
α = 0, (11)

where H is the Hessian matrix of Fp(|ψ1|,|ψ2|,0) about its
minimum

Hab = ∂2Fp

∂|ψa|∂|ψb|
∣∣∣∣
(u1,u2,0)

. (12)

So α decouples from ε1,ε2 asymptotically, and we see
immediately that

α(r) = q0rK1(μAr), μA = e

√
u2

1 + u2
2, (13)

where Kn denotes the nth modified Bessel’s function of the
second kind,22 and q0 is an unknown real constant. Hence at
large r ,

A ∼
(

− 1

er
+ q0K1(μAr)

)
(− sin θ, cos θ ). (14)

Since, for all n,

Kn(s) ∼
√

π

2s
e−s as s → ∞, (15)

it follows that the magnetic field decays exponentially as a
function of r , with length scale (penetration depth)

λ ≡ 1

μA

= 1

e

√
u2

1 + u2
2

. (16)

By contrast, Eq. (10) represents, in general, a coupled pair
of ordinary differential equations for ε1,ε2. Since (u1,u2,0)
is a minimum of Fp(|ψ1|,|ψ2|,θ1 − θ2), the Hessian matrix
H is a positive definite symmetric 2 × 2 real matrix. Hence

its eigenvalues, μ2
1,μ

2
2 say, are real and positive, and its

eigenvectors, v1,v2 say, form an orthonormal basis for R2.
Expanding ε = (ε1,ε2)T in the basis v1,v2,

ε(r) = χ1(r)v1 + χ2(r)v2, (17)

we see that χ1,χ2 satisfy the uncoupled pair of ordinary
differential equations

χ ′′
a + 1

r
χ ′

a = μ2
aχa, (18)

whence

χa(r) = qaK0(μar) (19)

for some (unknown) constants q1,q2. Since v1,v2 are orthonor-
mal, there is an angle �, which we call the mixing angle, such
that the eigenvectors of H are

v1 =
(

cos �

sin �

)
, v2 =

(− sin �

cos �

)
. (20)

Hence at large r the density fields behave as

ψ1 ∼ [u1 + q1 cos �K0(μ1r) − q2 sin �K0(μ2r)]eiθ ,
(21)

ψ2 ∼ [u2 + q1 sin �K0(μ1r) + q2 cos �K0(μ2r)]eiθ .

where, once again, K0 is a Bessel function.
This analysis implies the following:

(1) In general there are three fundamental length scales
in the problem (in contrast to the two length scales of
one-component Ginzburg-Landau theory) which manifest
themselves in the vortex asymptotics, namely 1/μA, 1/μ1,
and 1/μ2.

(2) These are constructed from the vacuum expectation
values ua of |ψa| (in the case of 1/μA) and from the eigenvalues
of H, the Hessian matrix of Fp about the vacuum (i.e., the
ground state).

(3) 1/μA can be interpreted as the London penetration
length of the magnetic field.

(4) However, unless the mixing angle � is a multiple of π/2,
1/μ1 and 1/μ2 cannot be interpreted as the coherence lengths
of ψ1,ψ2 in the usual sense. This is because the normal modes
of the field theory close to the vacuum are not |ψa| − ua , but
rather

χ1 = (|ψ1| − u1) cos � − (|ψ2| − u2) sin �,

χ2 = (|ψ1| − u1) sin � − (|ψ2| − u2) cos �

obtained by rotating through the mixing angle �, which is also
determined by H. Therefore in general (e.g., in the presence of
intercomponent Josephson coupling) for a one-flux quantum
axially symmetric vortex, the recovery of both fields ψa at
very long range will be according to the same exponential law,
set by the smaller of the masses μ1,μ2; one should use the
representation in terms of the fields χ1,2 to handle properly the
two length scales associated with the density recovery.

(5) This analysis tells us only about the vortex structure
at large r . It gives no direct information on the vortex core,
which is important to understand quantitatively the nature of
the vortex interactions at intermediate and short distances. This
will be studied numerically in Sec. V.

Since the gauge field mediates a repulsive force between
vortices, while the condensate fields mediate an attractive
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force, it is clear that we can read off from the above analysis
the condition under which the intervortex force is attractive
at long range: we require that 1/μA is not the longest of the
three length scales, or, more explicitly, that (at least) one of the
eigenvalues of H should be less than μ2

A = e2(u2
1 + u2

2). We
can predict an explicit formula for the long-range two-vortex
interaction potential, using the point vortex formalism19 (a
brief review of the method in given in Appendix V). This rests
on the observation that, far from its core, the fields of the
vortex are identical to those of a hypothetical point particle
in a linear theory with two Klein-Gordon fields (χ1 and χ2

above) of mass μ1,μ2 and a vector field (A) of mass μA. The
point particle carries scalar monopole charges 2πq1 and 2πq2

and a magnetic dipole moment 2πq0. Two such hypothetical
particles held distance r apart would experience an interaction
potential

V (r) = 2π
[
q2

0K0(μAr) − q2
1K0(μ1r) − q2

2K0(μ2r)
]
. (22)

This formula reproduces the prediction explained above: the
long-range interaction will be attractive if (at least) one of
μ1,μ2 is less than μA.

One can ask, retrospectively, whether the approximation
of linearizing in the small quantities α(r),χ1(r),χ2(r) is well
justified. Rigorous analysis of the single-component model23

shows that if either of the scalar mode masses, μ2 say, exceeds
2μA, then quadratic terms in α become comparable at large
r with linear terms in χ2, so that the equation for χ2 should
include extra terms. In this case, χ2 decays like K0(μAr)2

rather than K0(μ2r). One should note, however, that, unless
μ1 > 2μA also, the leading term in Eq. (21), decaying like
K0(μ1r), is still correct, and it is only the leading term that
determines the nature (attractive or repulsive) of the intervortex
interactions at long range. The case of interest to us is when
the long-range force is attractive, that is, when at least one
of μ1,μ2 is less than μA, so the linearized analysis presented
above suffices for our purposes.

A. U(1) × U(1) symmetric model

We first illustrate the above analysis in the case of U(1) ×
U(1) condensates coupled only by a gauge field14 where

Fp = α1|ψ1|2 + β1

2
|ψ1|4 + α2|ψ2|2 + β2

2
|ψ2|4 + const,

(23)
with both α1 < 0 and α2 < 0. Here Fp is independent of θ1 −
θ2 and its minimum occurs at |ψa| = ua where

ua =
√−αa

βa

. (24)

The Hessian matrix of Fp at (u1,u2,0) is

H =
(−4α1 0

0 −4α2

)
(25)

whose eigenvalues are μ2
a = −4αa , with corresponding eigen-

vectors v1 = (1,0)T , v2 = (0,1)T . Hence the mixing angle is
� = 0, the penetration depth is

λ ≡ 1

μA

= e−1

(−α1

β1
+ −α2

β2

)−1/2

(26)

and the density decay lengths are the usual coherence lengths

ξa ≡ 1

μa

= 1

2
√−αa

. (27)

The criterion for long-range vortex attraction therefore
amounts to the requirement that one of the coherence lengths
is larger than the magnetic-field penetration length,

min{2√−α1,2
√−α2} < e

√−α1

β1
+ −α2

β2
. (28)

Note that this criterion indicates only a long-range attraction.
For a realization of the type-1.5 regime one should additionally
require short-range repulsion and thermodynamic stability
of a vortex cluster (i.e., a vortex cluster should become
energetically favorable to form in external fields smaller than
the thermodynamical critical magnetic field).

Note also that, in systems with independently conserved
condensates, such GL models arise from expansion of the
free energy in powers (1 − T/Tc1) and (1 − T/Tc2) near
two critical temperatures (such systems are for example the
projected superconducting states of metallic hydrogen or
condensate mixtures in neutron stars). In general, Tc1 and Tc2

can be quite different, making two such expansions at the
same temperature formally impossible. In that case the more
suitable model is a London model for one component (i.e.,
|ψ1| ≈ const except a core cutoff) coupled to a GL model of
the second component. When it is the component with “short”
coherence length that is modeled by the London limit, we
recover a description of the type-1.5 behavior in that case
from our above analysis as a simple limit.

B. Josephson coupling

We next consider how this picture is influenced by the
addition of an interband Josephson term that breaks the U(1) ×
U(1) symmetry to U(1),

Fp = F̂p − η1|ψ1||ψ2| cos(θ1 − θ2), (29)

where F̂p is the free energy defined in Eq. (23) and η1 > 0,
so that Fp is minimized when θ1 − θ2 = 0. Adding this term
changes the vacuum expectation values ua of the fields. To
find u1,u2 we must solve

∂Fp

∂|ψ1| = ∂Fp

∂|ψ2| = 0, (30)

that is,

2α1u1 + 2β1u
2
1 = η1u2, (31)

2α2u2 + 2β2u
2
2 = η1u1. (32)

Unfortunately, it is not possible to solve these equations
explicitly, except in special cases. For particular values of the
parameters αa,βa,η1 they can easily be solved numerically, as
can the eigenvalue problem for H. Note that like in the case
of uncoupled bands, there are in general three fundamental
length scales also in the presence of the Josephson term,
which can then be computed. We present numerical analysis
of this problem in the full Ginzburg-Landau model in Sec. IV.
To make analytical advance in this section we treat the η1
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dependence of the length scales perturbatively. That is, we
will construct Taylor expansions for ua(η1), μA(η1), μa(η1),
and �(η1). To keep the presentation simple, we will work to
order η1

1, so the results will give the leading correction to the
formulas of the previous section as the Josephson coupling η1

is “turned on.” Higher-order corrections are easily computed
but do not give much extra insight.

Let us denote quantities defined in the uncoupled model
(at η1 = 0) with a hat, so ûa = √−αa/βa are the uncoupled
vacuum expectation values of |ψa|, for example. Let u(η1) =
(u1(η1),u2(η1))T and

G(|ψ1|,|ψ2|) =
(

∂Fp/∂|ψ1|
∂Fp/∂|ψ2|

)
. (33)

Then, by definition G[u(η1)] = 0 for all η1, and Ĝ(û) = 0.
Differentiating with respect to η1 (denoted by a prime), we see
that

0 = ∂G

∂η1
(û) + Ĥu′(0) ⇒ u′(0) = −Ĥ−1 ∂G

∂η1
(û)

= −
(

μ̂−2
1 0

0 μ̂−2
2

)(−û2

−û1

)
. (34)

Hence the ground state densities receive a correction linear in
η1,

u1(η1) = û1 + û2

μ̂2
1

η1 + O
(
η2

1

)
,

(35)

u2(η1) = û2 + û1

μ̂2
2

η1 + O
(
η2

1

)
.

From this expression for ground-state densities one can readily
calculate the gauge field mass μA(η1), whose inverse gives the
London penetration length. One sees that

μA(η1)2 = μ̂2
A + 2û1û2

(
1

μ̂2
1

+ 1

μ̂2
2

)
η1 + O

(
η2

1

)
. (36)

So the effect of the Josephson coupling is always to increase
the vacuum expectation values of |ψa|, and hence to decrease
the penetration depth 1/μA.

The other two length scales are the eigenvalues of H where

Hab = ∂2

∂|ψa|∂|ψb| (F̂p − η1|ψ1||ψ2|)
∣∣∣∣
u(η1)

= Ĥab + η1
∂3F̂p

∂|ψa|∂|ψb|∂|ψc|
∣∣∣∣
û

u′
c(0)

− η1(1 − δab) + O
(
η2

1

)
. (37)

Now

∂3F̂p

∂|ψa|∂|ψb|∂|ψc| =
{

12βa|ψa| if a = b = c

0 otherwise
(38)

so

H = Ĥ + η1

(
12β1û1u

′
1(0) −1

−1 12β2û2u
′
2(0)

)
+ O

(
η2

1

)
=

(
μ̂2

1 + 3η1û2/û1 −η1

−η1 μ̂2
2 + 3η1û1/û2

)
+ O

(
η2

1

)
. (39)

So the eigenvalues λ = μ2
a satisfy the characteristic equation(

μ̂2
1 + 3η1

û2

û1
− λ

)(
μ̂2

2 + 3η1
û1

û2
− λ

)
+ O

(
η2

1

) = 0.

(40)
Hence

μ2
1 = μ̂2

1 + 3η1
û2

û1
+ O

(
η2

1

)
,

(41)

μ2
2 = μ̂2

2 + 3η1
û1

û2
+ O

(
η2

1

)
.

As with the penetration depth, the effect of Josephson coupling
(at leading order), is to decrease the characteristic length scales
1/μa of both normal modes. Another effect of Josephson
coupling is mixing the fields. Let us now compute the
corresponding mixing angle �(η1). Recall that this is, by
definition, the angle such that

v(η1) =
(

cos �(η1)

sin �(η1)

)
(42)

is the eigenvector of H with eigenvalue μ2
1. We know that

v(0) = v̂ = (1,0)T , that v(η1) · v(η1) = 1, and that

M(η1)v(η1) = 0, where M(η1) = H(η1) − μ1(η1)2I2

(43)
for all η1. As computed above,

M(η1) =
(

0 0

0 μ̂2
2 − μ̂2

1

)
+ η1

(
0 −1

−1 3
(

û1
û2

− û2
û1

)) + O
(
η2

1

)
.

(44)
Differentiating Eq. (43) and v(η1) · v(η1) = 1 with respect to
η1 yields

M ′(0)v̂ + M(0)v′(0) = 0, v(0) · v′(0) = 0, (45)

which can be solved for v′(0). One finds that

v(η1) =
(

1

0

)
+ η1

(
0
(
μ̂2

2 − μ̂2
1

)−1) + O
(
η2

1

)
. (46)

Hence the mixing angle is

�(η1) = η1

μ̂2
2 − μ̂2

1

+ O
(
η2

1

)
. (47)

Thus the Josephson term produces mode mixing. Clearly, this
perturbative expansion is well defined only if μ̂1 
= μ̂2. In the
case where μ̂1 = μ̂2, Ĥ = μ̂2

1I2 and the assertion that v(0) =
(1,0)T is arbitrary, any orthonormal pair of vectors can be
taken as the eigenvectors associated with μ̂2

1,μ̂
2
2. Hence the

notion of “mixing angle” is ill defined in this case, and is not
amenable to perturbative calculation.

The normal modes are associated with the following
combinations of the |ψa| fields:

χ1 = (|ψ1|−u1) cos

[
η1

μ̂1
2−μ̂2

1

]
−(|ψ2| − u2) sin

[
η1

μ̂1
2−μ̂2

1

]
,

χ2 = (|ψ1|−u1) sin

[
η1

μ̂1
2−μ̂2

1

]
−(|ψ2|−u2) cos

[
η1

μ̂1
2 − μ̂2

1

]
.

Thus one can associate “coherence lengths” of these fields
with the inverse masses of model (41), which are functions of
the coherence lengths (μ̂−1

a ) and vacuum field densities (ûa)
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defined in the Josephson-uncoupled theory, and the strength of
the Josephson coupling η1. Note that, returning to the original
fields |ψa|, the very long-range behavior of both of these
density fields is governed by whichever of the fields χ1,2 has
the slower recovery rate. This implies that at very long range
both fields |ψa| should have the same exponential recovery law
set by the smaller of μa . The physical meaning of mode mixing
is that the variation of the original density fields |ψa| acquires
two length scales and one should rotate the fields through the
mixing angle � to determine the normal modes χ1,2 whose
recovery rates are governed by different single exponential
laws.

Another point to note here is that, from a quantitative
point of view, turning on a small Josephson coupling does
not radically alter the integer flux vortices. For small η1, there
is a small correction to each of the length scales (all three
length scales become smaller), and there is a small amount
of normal-mode mixing [measured by �(η1)]. Therefore for
composite integer flux vortices the addition of Josephson
coupling does not represent any kind of singular perturbation.

1. Comparison with the case of passive second band

It is interesting to compare these results with the case where
one of the bands, ψ2 say, is passive, and has superconductivity
only by virtue of the Josephson coupling term.15 In this
case, the free energy Fp has α2 > 0. In the uncoupled model
(at η1 = 0), Fp is minimized when |ψ1| = û1 = √−α1/β1

and |ψ2| = û2 = 0. The gauge field has mass μ̂A = eû1,
there is no mode mixing, and the condensates have masses
μ̂1 = 2

√−α1 and μ̂2 = √
2α2. The vortex solution has ψ2 = 0

everywhere and is identical to the Abrikosov vortex of the
single-component GL theory with ψ2 set to zero. As the
Josephson coupling is turned on, ψ2 acquires a vacuum density
of order η1

1, mode mixing develops, and the three length scales
acquire corrections. Repeating the arguments of the α2 < 0
case, one finds that

u1(η1) = û1 + O
(
η2

1

)
, u2(η1) = û1

μ̂2
2

η1 + O
(
η2

1

)
,

μA(η1)2 = μ̂2
A + O

(
η2

1

)
, μ1(η1)2 = μ̂2

1 + O
(
η2

1

)
, (48)

μ2(η1)2 = μ̂2
2 + O

(
η2

1

)
, �(η1) = η1

μ̂2
2 − μ̂2

1

+ O
(
η2

1

)
.

A significant difference from the case of two active bands
(α2 < 0) is that all three of the length scales receive corrections
only at order η2

1. Nevertheless, there is mode mixing at order η1
1.

C. Density-density coupling

A similar perturbative analysis of the case when there is
biquadratic density-density coupling

Fp = F̂p + η2

2
|ψ1|2|ψ2|2 (49)

can be carried out. Since the calculations are similar, we merely
record the results (once again, hatted parameters refer to the

uncoupled η2 = 0 model):

u1(η2) = û1 + û1û
2
2

μ̂2
1

η2 + O
(
η2

2

)
,

u2(η2) = û2 + û2û
2
1

μ̂2
2

η2 + O
(
η2

2

)
,

μA(η2)2 = μ̂2
A + 2û2

1û
2
2

(
1

μ̂2
1

+ 1

μ̂2
2

)
η2 + O

(
η2

2

)
,

(50)

μ1(η2)2 = μ̂2
1 +

(
1 + 3

û2

μ̂2
1

)
û2

2η2 + O
(
η2

2

)
,

μ2(η2)2 = μ̂2
2 +

(
1 + 3

û1

μ̂2
2

)
û2

1η2 + O
(
η2

2

)
,

�(η2) = 2û1û2

μ̂2
1 − μ̂2

2

η2 + O
(
η2

2

)
.

The effect of the extra term is to reduce (if η2 > 0) or increase
(if η2 < 0) all three length scales and to introduce a mode
mixing. We present numerical analysis of this kind of coupling
in Sec. IV.

D. Mixed gradient terms

In this section we consider the case where the free energy
has gradient-gradient coupling terms,

F = 1

2
(Diψ1)∗Diψ1 + 1

2
(Diψ2)∗Diψ2

− ν

2
[(Diψ1)∗Diψ2 + (Diψ2)∗Diψ1] + Fp, (51)

where Fp(|ψ1|,|ψ2|,θ1 − θ2) is, as before, a non-negative
function minimized at (u1,u2,0). In contrast to the previous
two cases, this we can treat exactly, without resorting to power
series expansion in the coupling parameter ν. We can assume
ν > 0 without loss of generality (the case ν < 0 is obtained
by mapping ψ2 �→ −ψ2), and we must have ν < 1, or else F

is not positive definite.
This case does not fit into the general analysis presented

above. Nonetheless, a similar method, with some modification,
can be applied.

The field equations are

DiDi(ψ1 − νψ2) = 2
∂Fp

∂ψ∗
1

, (52)

DiDi(ψ2 − νψ1) = 2
∂Fp

∂ψ∗
2

, (53)

∂i(∂iAj − ∂jAi)

= e Im[ψ∗
1 Dj (ψ1 − νψ2) + ψ∗

2 Dj (ψ2 − νψ1)], (54)

which support vortex solutions of form (6) provided the profile
functions obey the coupled system(

d2

dr2
+ 1

r

d

dr
− 1

r2
(1 + ea)2

)
P

(
f1

f2

)
=

(
∂Fp/∂|ψ1|
∂Fp/∂|ψ2|

)∣∣∣∣
(f1,f2,0)

a′′ − 1

r
a′ − e(1 + ea)

(
f 2

1 − 2νf1f2 + f 2
2

) = 0, (55)
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where

P =
(

1 −ν

−ν 1

)
. (56)

The vortex boundary conditions are fa(r) → ua and a(r) →
−1/e as r → ∞. Note that these are independent of ν.
We again define ε(r) = (f1(r) − u1,f2(r) − u2)T and α(r) =
a(r) + 1/e, and linearize the system about ε1 = ε2 = α = 0:(

d2

dr2
+ 1

r

d

dr

)
Pε = Hε,

(57)

α′′ − 1

r
α′ − e2

(
u2

1 − 2νu1u2 + u2
2

)
α = 0.

We immediately see that A behaves asymptotically as in
Eq. (14), but with

μA = e

√
u2

1 − 2νu1u2 + u2
2. (58)

The effect of the gradient-gradient coupling is thus to increase
the penetration depth 1/μA. Note that the effect would be
opposite if there is a competing sufficiently strong Josephson
term which enforces phase antilocking in the vacuum, that is,
phase difference θ1 − θ2 = π .

To decouple the pair of equations for ε1,ε2 we must expand
ε in a basis of eigenvectors, not of H, but rather of

H̃(ν) = P (ν)−1H. (59)

Note that this matrix is not in general symmetric. Nonetheless,
it can be shown that its eigenvalues are real and positive for
all 0 � ν < 1 (see Appendix B). Let μ2

1,μ
2
2 be the eigenvalues

of H̃ and v1,v2 be the corresponding eigenvectors. Then the
condensate fields at large r take the form(

ψ1

ψ2

)
∼

{(
u1

u2

)
+ q1K0(μ1r)v1 + q2K0(μ2r)v2

}
eiθ .

(60)
Once again, the condition for long-range attraction is

min
{
μ2

1,μ
2
2

}
< μ2

A (61)

but now μ2
1,μ

2
2 are the eigenvalues of P (ν)−1H, not H, and

μA depends on u1,u2 and ν, as in Eq. (58). Note that

μ2
1μ

2
2 = det H̃ = detH/ det P (η1) = detH

1 − ν2
(62)

so the effect of the coupling must be to increase (at least) one
of μ1,2 and hence to decrease (at least) one of the normal-mode
recovery length scales. Since H̃ is not symmetric, there is no
reason why v1, v2 should be orthogonal, so it is not possible
to define a single mixing angle in this case.

To illustrate, consider the simplest case, where Fp is defined
as in Eq. (23). Then ua = √−αa/βa and the uncoupled ν = 0
model has μ̂2

a = −4αa and μ̂2
A = e2(u2

1 + u2
2). For ν > 0, the

vacuum expectation values do not change, but the penetration
depth increases, since

μ2
A = μ̂2

A − 2νu1u2. (63)

Furthermore,

H̃(ν) = P (ν)−1

(
μ̂2

1 0

0 μ̂2
2

)
= 1

1 − ν2

(
μ̂2

1 νμ̂2
2

νμ̂2
1 μ̂2

2

)
(64)

whose eigenvalues are

μ2
1,2(ν) = 1

2(1−ν2)

(
μ̂2

1+μ̂2
2 ±

√(
μ̂2

1−μ̂2
2

)2+4ν2μ̂2
1μ̂

2
2

)
.

(65)

Now μ−1
1,2(ν) are the new fundamental length scales which

control the variation of the density fields (60). Without loss of
generality, we may assume that μ̂1 � μ̂2 (if μ̂1 < μ̂2 then we
simply swap the labels of the condensates). In this case, for
ν > 0 it is clear from the above expression that

μ2
1 >

1

2(1 − ν2)

(
μ̂2

1 + μ̂2
2 +

√(
μ̂2

1 − μ̂2
2

)2
)

= μ̂2
1

1 − ν2

(66)
so when 0 < ν < 1, μ1(ν) > μ̂1. Recall that

μ2
1μ

2
2 = det H̃ = μ̂2

1μ̂
2
2

1 − ν2
, (67)

so

μ2
2 = μ̂2

1

μ2
1

μ̂2
2

1 − ν2
< μ̂2

2 (68)

by Eq. (66), and hence μ2(ν) < μ̂2 when 0 < ν < 1. In this
case, the effect of gradient-gradient coupling is to decrease the
smaller of the normal-mode decay lengths, μ−1

1 , and increase
the larger, μ−1

2 . Thus gradient coupling tends to increase the
disparity in these length scales.

As in Secs. III B and III C it is instructive to see what
happens to the parameters of the uncoupled model (ν = 0)
as ν > 0 is turned on. This can be extracted from the above
formulas by expanding in ν, keeping only terms up to order ν.
One sees that

ua(ν) = ûa exactly,

μA(ν)2 = μ̂2
A − 2νû1û2 exactly, (69)

μa(ν)2 = μ̂2
a + O(ν2)

so, to leading order in ν, the only length scale that changes is
the penetration depth 1/μA, which increases. The eigenvectors
of H̃ are

v1 =
(

1
μ̂2

1ν

μ̂2
1−μ̂2

2

)
+ O(ν2), v2 =

( −μ̂2
2ν

μ̂2
1−μ̂2

2

1

)
+ O(ν2), (70)

which, one should note, are not orthogonal: the angle between
them is π

2 − ν + O(ν2). It follows that the vortex has asymp-
totic densities (at large r)

|ψ1| ∼ û1 + q1K0(μ̂1r) − q2μ̂
2
2ν

μ̂2
1 − μ̂2

2

K0(μ̂2r) + O(ν2),

(71)

|ψ2| ∼ û2 + q2K0(μ̂2r) + q1μ̂
2
1ν

μ̂2
1 − μ̂2

2

K0(μ̂1r) + O(ν2),

where q1,q2 are unknown constants. So, while the “coherence
lengths” remain unchanged to leading order, the normal modes
with which they are associated do receive a correction at
order ν.

Finally, we remark that an alternative approach to handling
gradient-gradient terms is to remove them from F from the
outset by a linear redefinition of the fields: essentially one
expands (ψ1,ψ2)T in a basis of eigenvectors of P (ν).24 This
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is mathematically elegant, but tends to obscure the physical
meaning of the nongradient terms Fp.

IV. NUMERICAL SOLUTION OF THE
NONLINEAR PROBLEM

The linear analysis presented in the previous section can
only provide information about the asymptotic tail of the
intervortex interaction. To determine the actual full intervortex
potential, especially in the case of strong interband coupling, it
is necessary to treat the full nonlinear Ginzburg-Landau theory,
something which is not possible analytically. In this section we
present interaction energies for vortex pairs (including cases
of relatively strong interband coupling), computed numerically
using a local relaxation method. The numerical method which
we use is the following: A lattice approximant of the energy
is minimized with respect to all the degrees of freedom in
the full Ginzburg-Landau functional subject to the constraint
that vortex positions remain fixed. This gives the intervortex
interaction energy as a function of intervortex separation. We
used high-resolutions grids, with the number of data points
ranging from 1600 × 1600 to 2400 × 1700, and relaxed each
configuration for 50–100 h on an eight-core cluster node.

In this section the length scale is given in units of 2/μ̂1,
where, as in Sec. III, μ̂1 denotes the mass of the field
|ψ1| in the absence of interband couping (η1 = η2 = ν = 0).
Alternatively, the unit of length is

√
2ξ̂1, where ξ̂1 = √

2/μ̂1

is the coherence length of the first band in the uncoupled case.
Recall that ξ̂1 cannot be identified with physical coherence
length when interband coupling is present. We also measure
condensate density |ψa| in units of û1, the vacuum expectation
value of |ψ1| in the uncoupled case. As shown in Appendix V,
this amounts to using scale freedom to set α1 = −1 and
β1 = 1. In the single-component limit, the parameter e can
then be interpreted as an inverse GL parameter. More precisely,
κ = √

2/e, so in these units, in single-component limit, the
critical value of e which separates type-I and type-II regimes
is ec = 2. The intervortex interaction energy is given in units
of total vortex energy, i.e., 2Ev where Ev is the energy of a
single isolated vortex. All energies are measured relative to
the uniform Meissner state (ψa = ua , A = 0, in the notation
of Sec. III).

A. Weak Josephson coupling to a passive band

Let us consider a strongly type-II single-component super-
conductor, and see how vortex interaction in this system is
modified by a weak Josephson coupling to a passive band (i.e.,
a band which has no superconductivity of its own, which in the
context of GL theory manifests itself as a positive coefficient
α2).

Figure 2 shows the vortex interaction energy in such a
system. In the limit of decoupled bands, the parameter e is
here ec/8. Therefore for zero Josephson coupling this system
would have κ ≈ 5.7, putting it far into the type-II region. Weak
Josephson coupling changes the length scales as discussed
in the previous section and adds a qualitatively new feature:
the intervortex potential acquires a minimum, occurring at a
separation of approximately 24

√
2ξ1.
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FIG. 2. (Color online) Nonmonotonic vortex interaction in a
system with a passive band (i.e., superconductivity is induced in
the second band by an intrinsic proximity effect). In the limit of
zero Josephson coupling, the active band would have κ = 8κc, and
thus would be deep into the type-II region. This figure shows that
a perturbation in the form of a weak Josephson coupling to passive
band in this case produces a minimum in the intervortex potential at
a very large distance from the vortex center.

B. Effects of Josephson and mixed gradient terms
in case of two active bands

Figure 3 illustrates the effect of the mixed gradient term,
as well as of Josephson coupling in a system with two
active bands. Curve (4) (green online) corresponds to two
independent bands, interacting only through the magnetic
field. Curve (2) corresponds to a system with added Josephson
coupling, which increases the binding energy, but decreases
the distance where the energy minimum is located and slightly
reduces the range of interaction.
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FIG. 3. (Color online) Intervortex interaction potential for a set
of systems with two active bands. The systems share the parameters
given in the table “common parameters.” Curve (4) (green online)
corresponds to the case where the bands are coupled by the vector
potential only. In this case, the ratio of the coherence lengths is
ξ2/ξ1 = 4. Curve (2) shows the effect of the addition of Josephson
term, curve (5) shows the effect of addition of mixed gradient term.
Curves (1) and (3) show the effect of the presence of both mixed
gradient and Josephson terms with similar and opposite signs.
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FIG. 4. (Color online) Gradient, magnetic, and potential-energy
contributions to the vortex interaction energy for the parameter set
corresponding to curve (3) of Fig. 3 (black curve).

The inclusion of a mixed gradient term [shown as curve (5)]
here has a similar effect on phase difference as the Josephson
term. When the phases are locked θ1 − θ2 = 0, effectively this
term gives a negative contribution to the energy associated with
co-directed currents. Thus for this choice of the sign of ν, the
mixed gradient term also prefers phase locking θ1 − θ2 = 0.

Due to symmetry, changing η1 → −η1 and ν → −ν does
not qualitatively change the behavior of the system, as this
only results in phase locking with π difference instead. While
Josephson coupling increases the energy of vortices, and mixed
gradients decreases it, their effect on interaction energy is the
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FIG. 5. (Color online) Non monotonic vortex interaction in
systems with two active bands and significant disparity in length
scales associated with the density variation. In the absence of
inter band coupling (curve 1), the ratio of the coherence length is
ξ2/ξ1 = 12.
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FIG. 6. (Color online) Comparison of how Josephson coupling
(1) and high-order density coupling, (2)–(4), affects vortex interaction
energy. In (3), η2 is chosen so that the densities are approximately
the same as in (1). In (4), η2 is chosen to give the same condensation
energy as (1). Both these parameter values give larger vortex binding
energy. Similar binding energy as (1) is acquired for a significantly
smaller η2 (2). The large condensation energy associated with
Josephson coupling is responsible for the shorter interaction range
in (1).

opposite. The decomposition of vortex interaction energy into
a set of contributions from different terms given in Fig. 4
illustrates why mixed gradients in this case increase repulsion.

In contrast the curve (1) (blue online), corresponds to the
case where ν and η1 have different signs, and so there is
competition between the gradient mixing and the Josephson
term with regard to the preferred phase difference. The mixed
gradient term is minimal for a phase locking where θ1 − θ2 =
π , while the Josephson term is minimal for θ1 − θ2 = 0. The
result in these simulations was that the phase locking was
determined by the dominating Josephson coupling, and that
the gradient mixing resulted in increased cost for co-directed
currents. This was the most energetically expensive vortex, but
it also exhibited the smallest intervortex interaction energy.

C. Solutions with large disparity in the characteristic
length scales

Figure 5 shows a set of simulations done with two active
bands and a larger disparity in characteristic length scales. We
start with case when the condensates interact only through
the magnetic field [blue curve (1)], and the density in the
second band is 1/4 of the density in the first band and the
coherence length ratio is ξ2/ξ1 = 12 (so in the notation of
Sec. III, û1 = 4û2 and μ̂1 = 12μ̂2). This allows nonmonotonic
interaction to occur at smaller e than above—here we simulate
at e = 0.7. This gives the smallest binding energy in this set of
simulations. Adding a Josephson coupling of η1 = 0.005 56
[shown on curve (2)] gives a substantially higher density in
the second band, and thus a stronger binding energy. Adding a
stronger Josephson coupling [shown on curve (3)] gives even
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FIG. 7. (Color online) Cross sections of two interacting vortices. The densities are given as 1 − |ψi |2/〈|ψ |2〉, i.e., the condensates are
normalized to 1 and turned upside down. The magnetic field is also normalized. The left column corresponds to curve (3) of Fig. 5 and the right
column corresponds to curve (4) of the same figure. The intervortex separation is 3.0 in the upper row, giving repulsion, 5.4 in the middle row,
corresponding to the minimum energy, and 7.8 in the bottom row, giving attraction. Curves 3 and 4 in Fig. 5 are the ones showing the largest
binding energy, a property resulting from them having the largest vacuum expectation values in the second band (0.526, 0.5). A careful
comparison shows that the recovery of the second band is slower in the right column where there is zero interband coupling. This is a very
generic result, Josephson coupling shrinks the disparity in length scales. The result of this effect is also seen when comparing the vortex
interaction energies of the two systems, curve (3) reveals a shorter vortex interaction range than curve (4).

larger density in the second band. It also shows some of the
qualitative differences associated with this coupling. Namely,
the binding occurs at a smaller separation, and the range of
the interaction decreases. It is clearly visible that curve (3)
crosses the other curves. The Josephson coupling causes the
second condensates to recover faster (as follows also from the
linear theory presented in the previous section), and thereby
decreasing the range of attractive interaction.

Decreasing β2 raises the density of condensate in the second
band. In curve (4), we have reduced it by a factor 2, thereby
increasing the vacuum expectation value of the density in the
second band by a factor 2. This does, however, not change
the length scale, as ξ is independent of β, but it does increase
the energetic benefits of core overlap in the second component.
This case shows the largest binding energy in this set of
simulations.

Finally, we consider the effect of a higher-order density-
density coupling η2 between the condensates, which is shown
on curve (5). The parameter choice here gives approximately

the same densities as Eq. (2) but smaller condensation energy.
This should generally make system (5) recover slower than
system (2), resulting in a longer range of the interaction.
A more systematic comparison of Josephson coupling and
higher-order density coupling supporting this conclusion is
given in Fig. 6.

Figure 7 displays cross sections of the condensate densities
and magnetic flux in systems (3) and (4) in Fig. 5, clearly il-
lustrating the mechanism by which type-1.5 superconductivity
appears.

Let us consider a different example of the appearance
of the type-1.5 regime in the case where there is a sub-
stantial disparity in the dominant length scales associated
with the variations of densities and magnetic-field penetration
length.

Again, our starting point is a reference case of two bands
coupled only by vector potential where we choose α2 so that the
disparity in coherence length in absence of interband coupling
is ξ2/ξ1 = 12.

174509-12



TYPE-1.5 SUPERCONDUCTIVITY IN MULTIBAND . . . PHYSICAL REVIEW B 83, 174509 (2011)

5 10 15 20 25

0

0.02

0.04

0.06

0.08

0.1

Separation

In
te

ra
ct

io
n 

en
er

gy

1
2
3

FIG. 8. (Color online) Transition from type-1.5 to type-II region
in a system with two active bands. The binding energies are 0.0109 in
the first curve and 0.0023 in the second curve. The third curve gives
monotonic repulsion. The small binding energy in the second case
signals that the critical value for e in this particular example is close
to 0.35.

Now, we take β2 to be 0.0139, i.e., the same as in curve (4) of
Fig. 5, and choose the Josephson coupling to be η1 = 0.005 56.
Then, we successively decrease e to see where the system
crosses over from type 1.5 to type II. The outcome can be seen
in Fig. 8. The first curve gives a binding energy of 0.011, the
second gives 0.0023, and the third curve shows the system
crossing over into the type-II regime by showing monotonic
repulsion. Given the small binding energy of the second curve,
the crossover from type 1.5 to type II in this example is close
to e = 0.35.

The cross-section plots of two of these systems given in
Fig. 9 illustrate how the system crosses over from type 1.5 to
type II as e is decreased, resulting in dominance of the repulsive
force originating in the electromagnetic and current-current
interaction.

V. CONCLUSIONS

In this paper we presented an analytic and numerical study
of the appearance of type-1.5 superconductivity in the case
of two bands with various kinds of substantial interband
couplings. In all the cases that we considered we demonstrated
that the system possessed three fundamental length scales:
one length scale 1/μA, associated with London magnetic-field
penetration length, while the other two fundamental scales
1/μ1,2 are associated with characteristic length scales control-
ling variations of density fields. In the limit of two condensates
coupled only electromagnetically, the length scales 1/μ1,2

are associated with standard coherence lengths. However,
we show that introducing a nonzero Josephson and quartic
density-density coupling makes both density fields decay
according to the same exponential law at very large distances
from the core, while at the same time the system still possesses
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FIG. 9. (Color online) Cross-section plots showing condensate
density and magnetic flux in type-1.5 superconductors with small
e. (a) Curve (1) in Fig. 8 at a separation of 7.2, corresponding to
the energy minimum. (b) The same system at a separation of 9.6.
(c) Curve (2) of the same figure at a separation of 9.6, corresponding to
the energy minimum. The three distinct length scales associated with
two-band superconductors are indeed visible. Despite the interband
Josephson coupling, there is a significant disparity in the recovery of
the two condensates in all the plots. The third length scale, penetration
depth, visibly differs between the two systems, and is responsible for
the differences in intervortex interaction.

two fundamental length scales, which are associated now with
variation of linear combinations of density fields rotated by
a “mixing angle.” The third fundamental length scale in that
regime is the London penetration length and thus two-band
systems with interband couplings allow a well defined type-1.5
behavior. Next we studied the effect of mixed gradient terms
and showed how the type-1.5 regime is described in that case.
We showed that in the case of a substantial mixed gradient
coupling the definition of three fundamental length scales
requires additional care because it produces mode mixing that
cannot be described by a single mixing angle. Importantly,
we demonstrated that mixed gradient coupling can enhance
the disparity of the characteristic length scales of the density
variations. An analogy can be drawn between this mechanism
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and the seesaw mechanism in neutrino physics. In the second
part of the paper we presented a comparative numerical study
of type-1.5 vortices in the different regimes with various
intercomponent couplings. The results were demonstrated in
the framework of a two-component Ginzburg-Landau model
with local electrodynamics. However, we expect that the
described type-1.5 behavior is similarly present in lower-
temperature regimes and in two-component models with
nonlocal electrodynamics.

The concept of type-1.5 superconductivity can be straight-
forwardly generalized to N-component case. There it can occur
in systems where characteristic length scales are ξ1, . . . ,ξk <

λ < ξk+1, . . . ,ξN and there are thermodynamically stable
vortices with nonmonotonic interaction.

Besides multiband superconductors and coexistent elec-
tronic and nuclear superconductors, our model can be realized
in artificially fabricated layered structures made of type-
II and type-I materials where one can control and tune
intercomponent Josephson coupling.

It was recently verified in a microscopic calculation, which
does not involve (1 − T/Tc) expansion, that GL model (2)
should quite accurately describe the vortex physics in two-
band superconductors in a quite wide range of parameters and
temperatures.25
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APPENDIX A: UNITS

In this Appendix we give an explicit mapping from our
representation of the GL model to a more common textbook
representation. Consider the Ginzburg-Landau model in the
following quite usual units:

F = h̄2

2m1

∣∣∣∣(∇ − i
e∗

h̄c
A

)
ψ1

∣∣∣∣2

+ h̄2

2m2

∣∣∣∣(∇ − i
e∗

h̄c
A

)
ψ2

∣∣∣∣2

− νh̄2Re

{(
∇ − i

e∗

h̄c
A

)
ψ1 ·

(
∇ + i

e∗

h̄c
A

)
ψ∗

2

}
+ 1

8π
(∇ × A)2 + α1|ψ1|2 + 1

2
β1|ψ1|4 + α2|ψ2|2

+ 1

2
β2|ψ2|4 − η1|ψ1||ψ2| cos(θ1 − θ2) + η2|ψ1|2|ψ2|2.

(A1)

Let us define the rescaled quantities

F̃ = 4π

h̄2c2
F, Ã = − A

h̄c
,

ψ̃a =
√

4π

mac2
ψa, ν̃ = √

m1m2ν,

α̃a = ma

h̄2 αa, β̃a = m2
ac

2

4πh̄2 βa,

η̃1 =
√

m1m2

h̄2 η1, η̃2 = m1m2c
2

4πh̄2 η2. (A2)

Then

F̃ = 1

2
|(∇ + ie∗Ã)ψ̃1|2 + 1

2
|(∇ + ie∗Ã)ψ̃2|2

− ν̃Re{(∇ + ie∗Ã)ψ̃1 · (∇ − ie∗Ã)ψ̃∗
2 }

+ 1

2
|∇ × Ã|2 − α̃1|ψ̃1|2 + β̃1

2
|ψ̃1|2 + α̃2|ψ̃2|2

+ β̃2

2
|ψ̃2|2 + η̃1|ψ̃1||ψ̃2| cos(θ1 − θ2) + η̃2|ψ̃1|2|ψ̃2|2,

(A3)

which, on dropping the tildes, coincides with representation
(2) used in this paper.

Throughout the paper, it is assumed that band 1 is active,
that is, α1 < 0. It is convenient to rescale expression (2) for F

further so that α1 is normalized to −1 and β1 is normalized to 1.
This can be achieved as follows. Recall (see Sec. III A) that in
the absence of interband couplings (i.e., when η1 = η2 = ν =
0) condensate 1 has decay length scale 1/μ̂1 = (−4α1)−1/2.
This scale is more usually specified by the coherence length

ξ̂1 =
√

2

μ̂1
= 1√−2α1

. (A4)

We emphasize once more that, in the presence of interband
couplings, ξ̂1 is not the coherence length of condensate 1. This
is the purpose of the hat, to remind us that this is a genuine
coherence length only in the uncoupled case. Recall also that
the vacuum density of condensate 1 in the uncoupled model is

û1 =
√−α1

β1
. (A5)

Our second rescaling amounts to using
√

2ξ̂1 as the unit of
length and û1 as the unit of condensate density (along with
compensating rescalings of F , e∗, and A). Explicitly, let

r̄ = r√
2ξ̂1

= √−α1r, F̄ = 2ξ̂ 2
1

û4
1

F = β2
1

−α3
1

F,

ψ̄a = ψa

û1
=

√
β1

−α1
ψa, Ā = A

û1
,

ē = 1√
2
û1ξ̂1e

∗ = e∗
√

β1
, ᾱ2 = 2ξ̂ 2

1 α2 = α2

−α1
, (A6)

β̄2 = 2ξ̂ 2
1 û2

1β2 = β2

β1
, η̄1 = 2ξ̂ 2

1 η1 = η1

−α1
,

η̄2 = 2ξ̂ 2
1 û2

1η2 = η2

β1
, ν̄ = ν.

Substituting these into Eq. (2) yields

F̄ = 1

2
|(∇̄ + iēĀ)ψ̄1|2 + 1

2
|(∇̄ + iēĀ)ψ̄2|2

− ν̄Re{(∇̄ + iēĀ)ψ̄1 · (∇̄ − iēĀ)ψ̄∗
2 }

+ 1

2
|∇̄ × Ā|2 − |ψ̄1|2 + 1

2
|ψ̄1|2 − ᾱ2|ψ̄2|2

+ β̄2

2
|ψ̄2|2 − η̄1|ψ̄1||ψ̄2| cos(θ1 − θ2) + η̄2|ψ̄1|2|ψ̄2|2.

(A7)
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This (having dropped the bars) is the GL energy used in Sec. IV
for the purposes of numerical simulation.

Finally, we note that the single-component GL model
obtained from Eq. (A7) by setting ψ2 ≡ 0 has penetration
depth λ = 1/μa = 1/e and coherence length ξ = 1/

√
2, and

hence GL parameter

κ = λ/ξ =
√

2

e
. (A8)

So, in the parametrization used in Sec. IV, one may regard
e as an inverse GL parameter for the associated single-band
model. The value of e corresponding to the Bogomolny limit
of one-component theory is ec = 2 in this interpretation.

APPENDIX B: THE SPECTRUM OF ˜H

Let H be a real, symmetric 2 × 2 matrix, both of whose
eigenvalues are positive, and let H̃(ν) = P (ν)−1H where
P (ν) is defined in Eq. (56). We wish to show that the
eigenvalues λ1(ν),λ2(ν) of H̃(ν) are also real and positive
for all 0 � ν < 1. First note that H̃(0) = H, so the conclusion
holds at ν = 0. Further, λa(ν) depend continuously on ν. Now
det H̃(ν) = detH/(1 − ν2) 
= 0, so neither eigenvalue ever
vanishes. So λa(ν) remain real and positive, unless, for some
ν = ν∗ ∈ (0,1), they coalesce and bifurcate into a complex
conjugate pair. But then, at ν = ν∗ we have λ1(ν∗) = λ2(ν∗) =
λ∗ ∈ (0,∞) and hence H̃(ν∗) = λ∗I2. But then

H̃(ν) = P (ν)−1P (ν∗)H̃(ν∗) = λ∗P (ν)−1P (ν∗), (B1)

which is symmetric, and hence has real eigenvalues, for all
ν ∈ (0,1). Hence a bifurcation to a complex conjugate pair of
eigenvalues is not possible, and we conclude that H̃(ν) has
real, positive eigenvalues for all ν ∈ [0,1).

APPENDIX C: CALCULATION OF LONG-RANGE
INTERVORTEX FORCES FROM LINEAR FIELD

ASYMPTOTICS

Here we outline how asymptotic intervortex forces are
calculated from the linearized asymptotic behavior of the
fields. In the above we use a two-component generalization
of the method previously developed by one of us in the
context of the single-component GL model.19 The key idea
is to identify the vortices with static topological solitons in a
relativistic extension of the TCGL model to 2 + 1-dimensional
Minkowski space, which could be called a two-component
Abelian-Higgs model. Viewed from afar, the solitons in this
theory are identical to the fields induced by suitable point
sources in the linearization of the model, so the forces
between well-separated solitons approach those between the
corresponding fictitious point particles, mediated by linear
fields. The nature (attractive or repulsive) and range of such
forces can then be computed. In this Appendix we take the
opportunity to explain the method in the simplest possible
context, with the aim of making it more transparent to a wide
readership. Despite being simple and pedagogically motivated,
the calculation we present is, as far as we are aware, new,
although the result itself has been derived previously by other
means.

Consider the sine-Gordon model, which consists of a single
scalar field φ in 1 + 1-dimensional Minkowski space, evolving
according to the Euler-Lagrange equation for the action S =∫
Ldt dx with Lagrangian density

L = 1
2∂μφ∂μφ − (1 − cos φ). (C1)

It is useful to think of φ as an angular variable, with period
2π , so that the model has a single ground state (or “vacuum”),
φ = 0. It also has static kink φK solutions in which φ tends
to the vacuum as x → ±∞ but winds once anticlockwise.
Explicitly,

φK (x) = 4 tan−1 ex−x0 , (C2)

where x0 is a free parameter. These are topological solitons
(topologically stable, spatially localized lumps of energy)
analogous to the vortices of the GL model. Their energy density
E = 1

2 ( ∂φ

∂x
)2 + (1 − cos φ) is localized in a lump centered at

x = x0. At large |x| the kink has asymptotic form

φK (x) ∼
{

4e−|x−x0| x → −∞
2π − 4e−|x−x0| x → ∞.

(C3)

We wish to identify this with the field induced by a suitable
point source in the linearization of the field theory about
the ground state φ = 0 ≡ 2π . The linearized field theory has
Lagrangian density

L0 = 1
2∂μφ∂μφ − 1

2φ2 (C4)

obtained by expanding L about φ = 0 to quadratic order. The
corresponding Euler-Lagrange equation is the Klein-Gordon
equation φtt − φxx + φ = 0 for a scalar field of mass 1, whose
general static solution is

φ = c1e
x + c2e

−x. (C5)

None of these reproduces the asymptotic kink on the whole real
line: one needs c2 = 0 for x < x0 and c1 = 0 for x > x0. To
reproduce the kink’s asymptotics we must introduce a source
term into L0,

L0 �→ L0 + κφ, (C6)

where κ(x) is the source. The field equation is now

φtt − φxx + φ = κ(x). (C7)

If we take κ to be a scalar monopole of charge q placed at x =
0, that is, κ(x) = qδ(x), the induced field is φ(x) = q

2 e−|x|. We
deduce that the asymptotic kink (C3) will be induced by the
point source

κK (x) = mδ′(x − x0), m = 8, (C8)

which may be interpreted as a scalar dipole of moment m (here
δ′ denotes the derivative of the δ distribution).

So, viewed from afar, the kink soliton is identical to a scalar
dipole in the linear theory. On physical grounds, the interaction
energy of a pair of kinks held a fixed distance apart should
therefore approach that between a pair of scalar dipoles as the
distance grows large. The latter interaction energy is easily
computed. Consider the field φ induced by a static source κ(x)
which is itself the sum of two static sources κ1(x) + κ2(x).
Since the field theory is linear, φ = φ1 + φ2, where φi is the
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field induced by κi . The total action of the field φ and source
κ is

S =
∫ (

1

2
∂μ(φ1 + φ2)∂μ(φ1 + φ2) − 1

2
(φ1 + φ2)2

+ (κ1 + κ2)(φ1 + φ2)

)
dx dt

= S1 + S2 +
∫

κ1φ2 dx dt, (C9)

where Si is the action of (φi,κi), and we have integrated by
parts and used the fact that φ2 satisfies Eq. (C7) with source
κ2. From this we extract the interaction Lagrangian for the pair
of sources κ1,κ2,

Lint =
∫

κ1φ2 dx. (C10)

The case of interest is where κi are scalar dipole sources of
moment mi located at xi . One then has κ1(x) = m1δ

′(x − x1)
and φ2(x) = 1

2m2
d
dx

e−|x−x2|, and so

Lint =
∫

m1δ
′(x − x1)φ2(x) dx = −m1

dψ2

dx

∣∣∣∣
x=x1

= −1

2
m1m2e

−|x1−x2|. (C11)

Since the interaction Lagrangian depends only on the dipoles’
positions, we can identify −Lint as the interaction potential,

Vint = 1
2m1m2e

−|x1−x2|. (C12)

From this we see that like scalar dipoles (m1,m2 same sign)
repel one another, while unlike dipoles (m1,m2 opposite signs)
attract. In the case of kinks, m1 = m2 = 8, so

VKK = 32e−|x1−x2|, (C13)

in exact agreement with a formula of Perring and Skyrme,
which they found using a direct superposition ansatz.26 Kink-
antikink interactions can also be recovered from Eq. (C12).
Since the antikink is just a reflected kink, φK̄ (x) = φK (−x), it
coincides asymptotically with the field induced by a dipole of
moment m = −8, so VKK̄ = −32e−|x1−x2|, again in agreement
with Perring and Skyrme. So well-separated kinks repel one
another, while kinks and antikinks attract one another.

The same basic method works for vortices in the TCGL
model, though the details are more complicated. One must
linearize the TCGL model about the ground state in real ψ1

gauge, but now there are three fields rather than one, A, ψ1 and
ψ2, and ψ1,ψ2 are (generically) directly coupled. The coupling
is removed by expanding ψ1,ψ2 in a basis of normal modes
(eigenvectors of the Hessian of the potential). The linearized
theory is then identified with a pair of uncoupled Klein-Gordon
models and a Proca (massive vector boson) model for A. The
point source reproducing the asymptotic vortex is a composite
with scalar monopole charges for the two Klein-Gordon fields
and a dipole moment for the vector field A. The total interaction
energy for a pair of point vortices is the sum of three terms, two
attractive (the scalar monopole interactions) and one repulsive
(the vector dipole interaction), which can be read off from the
quadratic terms in the linear theory’s Lagrangian density, as
described in Sec. III.
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