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Temperature dependence of the lower critical field in underdoped cuprates
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Recently, we have suggested that the underdoped cuprate superconductors should be described by a modified
Ginzburg-Landau theory which takes into account their reduced phase stiffness. In the present paper, (i) we
calculate physical properties, such as the surface energy, which have not been discussed previously within this
scheme, (ii) we propose a unified description of the pseudogap and of the superconducting state of the cuprates,
and (iii) by analyzing the temperature dependence of the penetration depth and of the lower critical field we
provide additional evidence for the applicability of the modified Ginzburg-Landau theory to underdoped cuprates.
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I. INTRODUCTION

The Ginzburg-Landau (GL) theory is a phenomenolog-
ical theory of superconductivity which has been success-
fully applied to a handful of problems in conventional
superconductivity.1–3 Recently we have argued that, if we
want to describe the superconducting state of underdoped
cuprates, the conventional GL theory should be modified.4

The reason is simple: It seems well established that when we
heat up an underdoped cuprate above its Tc, the “normal”
state immediately above the superconducting state is a kind
of phase-disordered superconductor5–7 or a somewhat related
phase-disordered liquid of resonating valence bonds, which
roughly may be thought of as Cooper pairs.8,9 In our language
this means that the stiffness of the superconducting amplitude
above Tc is finite, whereas the superconducting phase stiffness
vanishes in the pseudogap region. By continuity, it seems
reasonable to assume that below Tc the superconducting phase
stiffness, while being finite, is still much lower than the
amplitude stiffness. The conventional GL theory does not
have this property, but it is straightforward to modify it so
that it contains two different stiffnesses, one for the amplitude
and another for the phase. Precisely such a theory has been
constructed in Ref. 4. The modified GL theory is characterized
by three length scales, instead of the two length scales of the
conventional theory. These length scales are the penetration
depth λ, the amplitude coherence length ξ , and the phase
coherence length ξ⊥. The theory is therefore characterized
by two dimensionless parameters: the GL parameter κ = λ/ξ

and a novel parameter s = ξ⊥/ξ . It is worth pointing out
that due to the large difference of the energy gap and of
the transition temperature in the underdoped region, the
possibility of introducing two different coherence lengths has
been repeatedly pointed out also by different groups.10–12

In order to clarify the region of applicability of the modified
GL theory, let us first note that within the non-superconducting
pseudogap phase we have ξ⊥ = 0 and therefore s = 0. On the
other hand, deep inside the superconducting dome we expect
that the conventional GL theory applies and therefore s = 1 in
this region. Thus we expect that within the shaded region of
the schematic phase diagram shown in Fig. 1, the parameter
s continuously changes from the value s = 1 deep in the
superconducting phase to s = 0 along the phase boundary with
the “normal” state. In this region of phase space the modified
GL theory should be used. In order to prove this, in Ref. 4

we have introduced a dimensionless combination Hc1 of the
lower critical field Hc1 and of the penetration depth,

Hc1 = 4πμ0λ
2Hc1

�0
, (1)

where �0 = h/(2e) is the superconducting flux quantum, and
we have studied the experimental doping dependence of Hc1

in the low-temperature limit [path (a) in Fig. 1]. In agreement
with our expectations, we have found that the large increase
of Hc1 upon approaching the non-superconducting region can
be nicely explained by a parameter s interpolating between 0
and 1.

The plan of the present paper is as follows. In Sec. II we
review the results obtained within the modified GL theory in
Ref. 4 and we calculate further physical properties, such as the
surface energy and the critical current of a thin wire, within
this framework. In Sec. III we propose a unified description
of the pseudogap and of the superconducting state of the
cuprate superconductors. Finally, by comparing to a set of
experimental data on a set of YBa2Cu3O7−x (YBCO) samples,
in Sec. IV we present further experimental evidence for the
validity of the modified GL theory. We start by presenting an
improved analysis of the doping dependence along path (a)
in Fig. 1 and then we compare the modified GL theory to
the temperature dependence of Hc1 for optimally doped and
extremely underdoped YBCO samples [paths (b) and (c) in
Fig. 1, respectively].

II. MODIFIED GL THEORY

Let us start by summarizing the main ideas of Ref. 4. The
central object of both the conventional and the modified GL
theories is the free-energy density

δF = 1

2μ0
(∇ × A)2 + δFs ,

which is a sum of the trivial electromagnetic term and of
the superconducting term δFs , which is a functional of the
macroscopic center-of-mass wave function ψ(r) of the Cooper
pairs and of the vector potential A(r). In what follows we will
write ψ(r) = ψ∞f (r)eiθ(r), where ψ∞ is the wave function
in a homogeneous piece of a superconductor in zero applied
magnetic field, f (r) is a dimensionless amplitude field, and
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FIG. 1. (Color online) Schematic phase diagram of the cuprates
in the doping vs temperature plane. We expect that within the shaded
region 0 < s < 1 holds and therefore the modified GL theory applies.
Three different checks of the theory on a set of YBCO samples were
performed. Path (a): Doping dependence of the dimensionless lower
critical field Hc1 in the low-temperature limit (see also Ref. 4). Paths
(b), (c): Temperature dependence of Hc1 for optimally doped and
extremely underdoped samples.

θ (r) is a phase field. In Ref. 4 we have postulated the following
form of the superconducting term δFs :

δFs

μ0Hc
2 =−f 2 + 1

2
f 4+ξ 2(∇f )2+s2ξ 2f 2

(
∇θ+ 2π

�0
A

)2

.

Note that due to the presence of the factor s < 1, phase
fluctuations are cheaper in energy than amplitude fluctuations,
which is in fact the only difference of our theory with respect
to the conventional GL theory. It is also worth pointing out that
within our theory, the superconducting state is characterized
by three parameters: the thermodynamic critical field Hc,
the coherence length ξ , and the parameter s measuring the
reduction of the phase stiffness.

Our choice of the free-energy functional represents a
minimal extension of the conventional GL theory which allows
for different phase and amplitude stiffness. Other terms are
allowed by symmetry, but we do not consider them for the
following reasons. The linear term in f is not taken into
account, since a weak-coupling instability should gain energy
at least quadratically in the order parameter.14 The cubic term
is not considered, since there is no experimental evidence for
first-order transitions in the pseudogap region. As regards the
mixed-gradient term ∇f · (∇θ + 2πA/�0), it is not allowed
in time-reversal-invariant superconductors.

Minimizing the functional δF with respect to f we obtain
the modified GL equation

−ξ 2�f + s2ξ 2

(
∇θ + 2π

�0
A

)2

f = f − f 3. (2)

Minimization with respect to θ results in the continuity
equation ∇ · j = 0, where the supercurrent density is given
by the usual expression

j = − f 2

μ0λ2

(
A + �0

2π
∇θ

)
. (3)

One checks easily that in weak applied magnetic fields f ≈ 1
and therefore λ is the weak-field penetration depth. When
expressed in terms of the parameters Hc, ξ , and s, it reads

λ = �0

2π
√

2μ0Hcξs
. (4)

Finally, minimization with respect to the vector potential A
results in the Maxwell equation ∇ × B = μ0j.

Within the above-mentioned formalism, in Ref. 4 we have
calculated the lower and upper critical fields Hc1 and Hc2, as
well as the equilibrium magnetization curve. In particular, for
the dimensionless lower critical field in the large-κ limit we
have found

Hc1 = 1

s(1 + s2)
+ ln κ. (5)

Note that as already mentioned in the Introduction, Hc1

diverges when s → 0.
In what follows we will calculate further physical proper-

ties, which have not been discussed in Ref. 4. To this end,
we will rewrite the modified GL equations as a coupled
set of equations for f and for the reduced magnetic field
b = B/(μ0Hc):

−ξ 2�f + λ2

2

(∇ × b)2

f 3
= f − f 3,

∇ × (∇ × b) + f 2

(
1

λ2
b + S

)
= 2

f
∇f × (∇ × b),

S =
√

2s

κ
∇ × ∇θ.

Let us also note that δFs can be written in terms of the fields
f (r) and b(r) which solve the above equations as

δFs

μ0Hc
2 = −f 2 + 1

2
f 4 + ξ 2(∇f )2 + λ2

2f 2
(∇ × b)2.

It is worth pointing out that for a nonsingular phase field
θ (r), the source term S = 0 and the equations for f and
b are equivalent to the conventional GL equations for a
superconductor with coherence length ξ and penetration depth
λ; i.e., the parameter s does not enter these equations. This
means that for problems with S = 0 the results of the modified
GL theory should be, when expressed in terms of Hc, ξ and λ,
equal to the conventional GL results.

As a first example of a problem with S = 0, let us discuss
the critical current density of a thin wire. In this case, we
can assume that the amplitude field f is constant and the
free-energy density of the wire with prescribed gauge-invariant
phase gradient q = ∇θ + 2πA/�0 is2

δFs = μ0Hc
2

[
−(1 − s2ξ 2q2)f 2 + 1

2
f 4

]
.

Minimizing δFs at fixed q we find an optimal amplitude
f 2 = 1 − s2ξ 2q2. Plugging this value into Eq. (3) and maxi-
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mizing with respect to q, we find the critical current density
of a thin wire:

jmax = 1

3π
√

3

�0

μ0λ2ξs
=

(
2

3

)3/2
Hc

λ
. (6)

Note that the first form differs from the prediction of the
conventional GL theory, since it depends on the parameter s.
However, when jmax is expressed in terms of Hc and λ making
use of Eq. (4), the conventional GL result is recovered. Since
S = 0, this is consistent with the general argument.

As the next example, let us consider the critical field Hc3 for
surface superconductivity. As shown for example in Ref. 4, if
we choose the Landau gauge A = (0,μ0Hx,0) and if we take
for the phase field θ = ky, the linearized version of Eq. (2)
reduces to an equation for a harmonic oscillator. Note that also
in this case S = 0. Introducing instead of x a dimensionless
coordinate t = x/L where L2 = �0/(2πμ0Hs), this equation
can be rewritten as the following eigenvalue problem:

−d2f

dt2
+ (t − t0)2 f = 
f, 
 = �0

2πμ0Hξ 2s
,

where t0 = −k�0/(2πμ0HL). The bulk upper critical field
Hc2 can be determined by inspecting the lowest eigenvalue

min of this problem with the boundary conditions f → 0 as
t → ±∞. It is well known that in this case 
min = 1, leading
to

Hc2 = �0

2πμ0ξ 2s
= κ

√
2Hc. (7)

On the other hand, the critical field Hc3 for surface super-
conductivity can be determined from the lowest eigenvalue

min of the same problem with different boundary conditions
f → 0 as t → ∞ and f ′ = 0 for t = 0, as appropriate for a
superconductor-insulator interface. In this case 
min = 0.59,
and therefore

Hc3 = 1.695Hc2. (8)

Note that although both Hc2 and Hc3 depend on the parameter
s, when expressed in terms of Hc and κ = λ/ξ , the formulas
are formally the same as in the conventional GL theory. This
is again a consequence of the fact that S = 0.

Finally, also the surface energy can be calculated in a
gauge where the wave function ψ(r) is real and thus S = 0.
According to our general argument the fields f and b are equal
to those calculated within the conventional GL theory; i.e.,
they do not depend on the value of s. Within the modified GL
theory, it is therefore only the value of κ which distinguishes
materials with positive and negative surface energies with the
same critical value κc = 1/

√
2 as in the conventional GL

theory.13 Note that the same critical value of κ is predicted
also by the second form of the result for the upper critical field
Eq. (7).

On the other hand, in a vortex the phase field is nontrivial
and thus S 	= 0. Therefore the dependence of Hc1 on the
parameter s in general cannot be eliminated by making use of
the thermodynamic critical field Hc in conventional formulas.
In particular, our result for the large-κ limit can be written as

Hc1

Hc

= 1

κ
√

2

[
1

1 + s2
+ s ln κ

]
.

Nevertheless, generalizing the argument presented in Ref. 13
it is possible to show that irrespective of the value of s, for
κ = κc the lower critical field equals the thermodynamic field,
Hc1 = Hc. In fact, the following modified GL equations for a
single vortex were derived in Ref. 4:

−ξ 2

(
f ′′ + 1

r
f ′

)
+ s2ξ 2

r2
(1 − φ)2 f + f 3 = f, (9)

φ′′ − 1

r
φ′ + f 2

λ2
(1 − φ) = 0, (10)

where φ(r) is the dimensionless magnetic flux threading a ring
with radius r around the vortex center. It is worth pointing out
in passing that Eq. (9) predicts an unconventional vortex shape,
as can be seen, e.g., by noting that f (r) ∝ rs for r → 0.4

One checks easily that if we assume that Eq. (10) holds and
if we make the ansatz

φ′(r) = r

2sλ2
(1 − f 2), (11)

then, assuming κ = κc, we can derive Eq. (9). Thus the ansatz
Eq. (11) is consistent with Eqs. (9) and (10). Using the results
of Ref. 4, Hc1 can be calculated as

Hc1 = 2πμ0H
2
c

�0

∫ ∞

0
drr(1 − f 2) = κ

√
2Hc.

In the last step we have made use of Eq. (11), of the boundary
conditions φ(∞) = 1, φ(0) = 0, and of Eq. (4). If we finally
take into account that κ = κc, we do obtain the equality
Hc1 = Hc.

Therefore, within the modified GL theory, it is only the
value of κ which distinguishes type-I from type-II behavior,
irrespective of the value of s. Three different criteria, namely,
the sign of the surface energy, the comparison of Hc1 with Hc,
and the comparison of Hc with Hc2, all lead to the same critical
value κc = 1/

√
2, as in the conventional GL theory.

III. UNIFIED DESCRIPTION OF THE PSEUDOGAP AND
OF THE SUPERCONDUCTING STATE

It is instructive to express the superconducting free-energy
density δFs in terms of the wave function ψ(r):

α|ψ |2+ β

2
|ψ |4+ h̄2

2m∗

[
(∇|ψ |)2+s2|ψ |2

(
∇θ+ 2π

�0
A

)2
]

.

Note that in this formulation, δFs is parametrized by s and by
three conventional GL parameters: α, β, and the Cooper pair
mass m∗. One checks easily that this formulation is equivalent
with the amplitude-phase formulation, if we require

α = −μ0H
2
c

ψ2∞
, β = μ0H

2
c

ψ4∞
, ψ2

∞ = 2m∗

h̄2 μ0H
2
c ξ 2. (12)

Observe that the triplet of parameters α, β, and m∗ can be
replaced by the triplet Hc, ξ , and ψ∞, and vice versa. It should
be noted, however, that none of the measurable quantities
discussed in Sec. II depends on the value of ψ∞. This is in fact
a consequence of the well-known arbitrariness in the choice of
m∗ emphasized by de Gennes.14

In what follows we will further develop our interpretation
of the modified GL theory. To this end, we will use the
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F. HORVÁTH AND R. HLUBINA PHYSICAL REVIEW B 83, 174508 (2011)

“unobservability” of ψ∞ in constructing a unified description
of the pseudogap and of the superconducting state. Our key
assumption is that in zero applied field, ψ2

∞ has a finite value
in the whole temperature range between absolute zero and the
pseudogap formation temperature T0 which we assume to be
higher than Tc. This assumption makes our theory substantially
different from the standard GL theory in which the precise
value of ψ2

∞ is arbitrary, but ψ2
∞ is definitely finite for T < Tc

and strictly zero for T > Tc. We will show later that this choice
is made possible by the existence of the additional parameter
s in the modified GL theory.

To be more specific, we will assume that ψ2
∞ minimizes the

following GL-type functional for the pseudogap:

δF0 = α0ψ
2
∞ + β0

2
ψ4

∞,

where α0 changes sign at T = T0 and β0 > 0 is roughly
independent of temperature. The temperature dependence of
ψ2

∞ and of the pseudogap “condensation energy density” are
therefore given by

ψ2
∞ = −α0

β0
,

1

2
μ0H

2
0 = α2

0

2β0
.

Before proceeding, we would like to point out that the field
ψ∞ is truly “unobservable” only strictly within the mean-field
GL-type description. It definitely is observable in all sorts of
spectroscopies at the very least. Furthermore, we will argue
that a nonzero value of ψ∞ implies the existence of a vortex
liquid.

Let us next discuss the temperature dependence of physical
quantities slightly below the true superconducting transition
temperature Tc. Since ψ2

∞ is postulated to be finite at Tc, using
Eq. (12) we have to require that Hcξ is finite as well. On
the other hand, superconductivity with its associated Meissner
effect disappears as T → Tc. Therefore, in this limit, we have
to require that λ → ∞ and Hc1 → 0. Making use of Eqs. (1),
(4), and (5), we conclude that s → 0 as the temperature
approaches Tc. Moreover, we require that Hc2 stays finite at
Tc. Since Hc2 ∝ ξ−2s−1, we are therefore forced to assume
that ξ ∝ 1/

√
s. It should be emphasized that a finite value of

Hc2 does not mean true superconductivity in our theory. In
fact, in the field region Hc1 < H < Hc2 we can only say that
the sample is filled by vortex matter. Finally, since also Hcξ

should be constant at Tc, we have to require Hc ∝ √
s. Our

predictions for the scaling of various quantities with s in the
vicinity of Tc are shown in Table. I.

Summarizing the above analysis, we postulate that the free-
energy density

δFs = sα0|ψ |2 + s
β0

2
|ψ |4

+ h̄2

2m∗

[
(∇|ψ |)2 + s2|ψ |2

(
∇θ + 2π

�0
A

)2
]

(13)

describes both the superconducting and the pseudogap phases.
For Tc < T < T0, the minimization with respect to ψ should
be performed at a finite value of s and only afterward the
limit s → 0+ should be taken. This way we can reproduce our
previous description of the pseudogap phase.

TABLE I. Predictions of the modified GL theory for the
scaling of different quantities with s → 0 under approaching
the superconductor-pseudogap (i.e., the vortex solid–vortex liquid)
boundary.

ξ λ Hc Hc1 Hc2 ≈ H0 ψ2
∞

s−1/2 s−1 s1/2 s const const

On the other hand, for T < Tc, the parameter s is finite
and Eq. (13) reproduces the modified GL theory introduced
in Ref. 4 and further studied in Sec. II of the present paper,
with α = sα0 and β = sβ0. This can be checked easily, if we
express the free-energy density in terms of Hc and ξ , making
use of Eq. (12).

It is worth pointing out that Eq. (13) can be thought of
as an effective model taking into account phase fluctuations
in a conventional GL theory which obtains by setting s = 1
in Eq. (13). If we denote the thermodynamic critical field,
coherence length, and penetration depth of that conventional
GL theory as H0, ξ0, and λ0, respectively, then we can
write the relation between the parameters of the effective and
conventional theories as

Hc = √
sH0, ξ = ξ0/

√
s, λ = λ0/s.

From here it follows that Hc2 = H 0
c2 and, for small s, Hc1 ∼

sH 0
c1, where H 0

c1,H
0
c2 denote the lower and upper critical fields

of the conventional GL theory.
The phase diagram of underdoped cuprates in the temper-

ature vs magnetic field plane, as predicted by the modified
GL theory, is schematically shown in Fig. 2. We would like
to point out that our phase diagram differs from the various
reported phase diagrams for vortex matter3 in that our vortex
liquid region extends to temperatures higher than Tc also at
zero applied field. Therefore, according to our theory, the
pseudogap state at H = 0 in the temperature range Tc < T <

T0 can be continuously deformed into the low-temperature
high-field vortex liquid state recently observed in Ref. 15.

IV. COMPARISON WITH EXPERIMENTAL DATA

In Ref. 4 the result of the modified GL theory for the
dimensionless lower magnetic field Hc1 has been compared to
experimental data on extremely underdoped YBCO samples
acquired along path (a) in Fig. 1. For the doping dependence of
the low-temperature limit of Hc1, we have used the empirical
formula Hc1 = Hc1(Tc) proposed in Ref. 16. On the other hand,
the doping dependence of the low-temperature limit of λ was
taken from Ref. 17. However, when preparing this manuscript,
we realized that in Fig. 4 of Ref. 17, the authors do not
present the actually measured low-temperature values of the
penetration depth, but instead they plot the values extrapolated
to T = 0 from the linear part in the λ−2 = λ−2(T ) curve. For
our purpose, the actually measured values are more relevant.
We have extracted them from Fig. 2 of Ref. 17 and, using
these corrected data, we have repeated our analysis of Hc1.
The results are shown in Fig. 3. Note that our conclusions are
the same as in Ref. 4; i.e., we find that the parameter s decreases
to zero with decreasing sample Tc, in complete agreement with
our expectations.
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FIG. 2. (Color online) Schematic phase diagram of underdoped
cuprates in the temperature vs magnetic field plane. The dotted lines
denote the critical fields H 0

c1, H0, and H 0
c2 = Hc2 of the conventional

theory (bottom to top). The hatched region between Hc1 and Hc2

corresponds to a superconductor with vortex matter. Finer methods
are needed to locate the position of the melting line between the vortex
liquid (s = 0) and the vortex solid (s > 0) phases. The expected
position of the melting line is at the upper margin of the shaded
region. Inside the shaded region we expect 0 < s < 1.

In what follows we present further experimental tests of the
modified GL theory against experimental data. In particular,
we will study the temperature dependence ofHc1 for optimally
doped and extremely underdoped YBCO samples, i.e., along
paths (b) and (c) schematically depicted in Fig. 1.

A. Classical superconductors

Before proceeding, let us start with the discussion of the
function Hc1 = Hc1(T ) in two well-studied low-temperature
superconductors, Nb3Sn and V3Si. Experimental data for these
classical type-II superconductors are presented in Fig. 4.
First of all it should be pointed out that in neither case
could we find data for Hc1 and λ measured on the same

Tc [K]

s

1612840

1

0.8

0.6

0.4

0.2

0

Tc [K]

H
c1

161412108642

8.5
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6.5

6

5.5

5

4.5

4

FIG. 3. Doping dependence of the dimensionless lower critical
fieldHc1 in extremely underdoped YBCO samples in the limit T = 0.
The data points were determined from the experimental data in Refs.
16,17, see the main text, using Eq. (1). The inset shows the doping
dependence of the parameter s determined from the experimental
values of Hc1 using Eq. (5) and assuming ln κ = 3.65.

sample; therefore some caution in interpretation of the data is
necessary. Nevertheless the data do show common behavior.
Namely, we find that in both cases Hc1 is a weakly decreasing
function of temperature.

Of course, even in conventional superconductors there is no
reason why Hc1 should not depend on temperature outside the
GL region. This topic has been studied already in the 1960s and
the results have been reviewed in Ref. 1. It has been pointed
out there that for large-κ materials in magnetic fields close to
Hc1, one can use the so-called temperature-dependent London
approximation. Within this approach, it is useful to introduce
a new dimensionless parameter κ3 which is defined in terms
of the measured values of the thermodynamic critical field Hc

and of the penetration depth λ as follows:

κ3 =
√

2
2πμ0Hcλ

2

�0
. (14)

Nb3Sn

T/Tc

H
c1

10.80.60.40.20

5

4.5

4

3.5

3

2.5

V3Si

T/Tc

H
c1

10.80.60.40.20

4.8

4.6

4.4

4.2

4

3.8

3.6

FIG. 4. Temperature dependence of the dimensionless lower critical field for classical superconductors. Solid lines: Hc1 determined from
Hc1 and λ using Eq. (1). Dashed lines: Hc1 determined from λ and Hc using Eq. (14) and Hc1 = ln κ3 + 0.5. Left panel: Nb3Sn. The data for
Hc1, λ, and Hc were taken from Refs. 18, 19, and 20, respectively. Right panel: V3Si. The data for Hc1, λ, and Hc were taken from Refs. 21, 22,
and 23, respectively.
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Note that the parameter κ3 reduces in the GL region to the
usual GL parameter κ . According to Ref. 1, the leading term
in the large-κ3 expansion of the dimensionless lower critical
field is Hc1 ≈ ln κ3. In order to facilitate a smooth transition
to the GL region, without proof we have extended this formula
to Hc1 = ln κ3 + 0.5, which contains an additional constant
term and which coincides with the conventional GL result
Eq. (5) with s = 1. As shown in Fig. 4, the temperature-
dependent London approximation does explain the decrease of
Hc1 with temperature, but the actually observed temperature
dependence is slightly stronger than predicted by theory.

B. Cuprate superconductors

In the literature on cuprate superconductors, we could not
find a simultaneous measurement of Hc1(T ) and λ(T ) on the
same sample and we always had to compare data sets measured
on samples with slightly varying Tc’s. That is why we have
used the reduced temperature t = T/Tc instead of the absolute
temperature T , which enabled us to construct the curvesHc1 =
Hc1(t) and λ−2 = λ−2(t).

It is worth pointing out that the determination of Hc1 at
temperatures close to Tc is a delicate issue, since it is a
product of Hc1 which vanishes and of λ2 which diverges in
this limit. We have found that the resulting Hc1(t) curves
depend sensitively on the precise Tc values of the samples
used for measurements of Hc1 and λ. As is evident, e.g., from
the temperature dependence of λ−2 in Refs. 25, even the best
samples exhibit some degree of inhomogeneity which shows
up as a small tail of λ−2 above the average Tc, which is due to
regions with a Tc higher than the average. For the same reason,
determination of the critical temperature from the onset of
the Meissner signal overestimates Tc, since it is sensitive to
the regions with the highest Tc. Therefore we have determined

1/λ2
ab

Hc1

1 /
λ

2 a
b
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−2
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FIG. 5. Dependence of Hc1 on the reduced temperature t =
T/Tc for optimally doped samples [path (b) in Fig. 1]. The
data for Hc1 and λ were taken from Refs. 24 and 25, respec-
tively. The inset shows the fitting procedure which we used to
determine the critical temperatures of the studied samples. Both the
Hc1(T ) and the 1/λ2(T ) data were fitted to the function a(Tc − T )b.
We found Tc = 92.5 K, b = 0.74 for Hc1(T ) and Tc = 92.13 K,
b = 0.68 for 1/λ2(T ).
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FIG. 6. Temperature dependence of Hc1 for extremely under-
doped samples [path (c) in Fig. 1]. The data for Hc1 and λ were
taken from Refs. 16 and 17, respectively.

the average Tc values of the studied samples by a careful fitting
procedure described in Fig. 5.

Moreover, since YBCO is an orthorhombic material, both
Hc1 and λ are tensor quantities. We are interested in Hc1

for magnetic fields perpendicular to the CuO2 planes and
in penetration depths for currents flowing within the planes.
Note that penetration depths for currents flowing in the a and
b directions may differ. Whenever the anisotropy has been
measured, we have determined the penetration depth from the
experimental data using λ = √

λaλb.
Let us turn now to the discussion of the results. The

temperature dependence of the dimensionless lower critical
field Hc1 for optimally doped samples is shown in Fig. 5. We
find that Hc1 decreases with increasing temperature, similarly
as in the classical superconductors Nb3Sn and V3Si. This
effect, while interesting, is not of direct interest to us in the
present study. We conclude that optimally doped samples do
not exhibit anomalous behavior in the vicinity of Tc and they
should be described by the model with s = 1.

Temperature dependence of the dimensionless lower criti-
cal field Hc1 of three extremely underdoped samples is shown
in Fig. 6. Note that in this doping region, Hc1 exhibits quite
different behavior. The decrease of Hc1 at low temperatures
is very weak when compared with the optimally doped
samples and, more importantly, in most of the measured
temperature region Hc1 increases with increasing temperature,
in complete agreement with the predictions of the modified GL
theory, which predicts that Hc1 diverges as the temperature
approaches Tc.

V. CONCLUSIONS

In this paper we have extended the GL theory for supercon-
ductors with reduced phase stiffness, which has been recently
introduced in Ref. 4, in three independent directions.

First, we have presented a general argument which shows
that if we are interested in physical phenomena described
by a trivial phase field S = 0, then the predictions of the
modified GL theory can be simply obtained from those of
the conventional GL theory. This applies, e.g., to the surface
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energy, critical current of a thin wire, and critical fields Hc2

and Hc3. On the other hand, nontrivial modifications of the
conventional GL theory are necessary for S 	= 0. This is always
the case if vortices are present.

Second, we have suggested a natural description of the
pseudogap “phase” of the cuprates as a region where the
GL wave function ψ2

∞ is finite and where, at the same time,
the phase stiffness vanishes since s = 0. This enabled us to
construct the phase diagram Fig. 2 of the underdoped cuprates
in the temperature vs magnetic field plane which shows that
both the pseudogap region at high temperatures and low fields
and the vortex liquid region at low temperatures and high fields
belong to the same “phase.”

Third, using Eq. (1) and the published experimental results
for the penetration depth λ and for the lower critical field
Hc1, we have calculated the dimensionless critical field Hc1

for several type-II superconductors. We have shown that in
conventional type-II superconductors, Hc1 is a weak function
of temperature which approaches a constant in the limit
T → Tc. Close to the transition temperature, we have found
the same type of behavior also in optimally doped cuprate
superconductors denoted as (b) in Fig. 1. On the other hand, in
extremely underdoped cuprate superconductors denoted as (c)
in Fig. 1, the dimensionless lower critical field Hc1 increases

sharply as the temperature approaches Tc. This behavior can
be explained by assuming that the parameter s measuring the
weakness of the phase stiffness approaches zero as T → Tc,
in agreement with our theory.

Further experimental work is needed to confirm the appli-
cability of the modified GL theory to underdoped cuprates.
Simultaneous measurements of the temperature dependence
of Hc1 and λ on the same sample would provide a more
direct test of our picture than the analysis of different samples
which we presented here. Moreover, measurements on samples
with different doping levels could help to determine the
precise shape of the shaded region in Fig. 1 where 0 < s < 1.
Alternatively, as discussed in detail in Ref. 4, the modified
GL theory can be tested also by measuring the profile of the
magnetic field in the superconducting vortex.
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