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We study heat transport and thermoelectric effects in two-dimensional superconductors in a magnetic field.
These are modeled as granular Josephson-junction arrays, forming either regular or random lattices. We employ
two different models for the dynamics: relaxational model-A dynamics or resistively and capacitively shunted
Josephson junction dynamics. We derive expressions for the heat current in these models, which are then used
in numerical simulations to calculate the heat conductivity and Nernst coefficient for different temperatures and
magnetic fields. At low temperatures and zero magnetic field the heat conductivity in the RCSJ model is calculated
analytically from a spin wave approximation, and is seen to have an anomalous logarithmic dependence on the
system size, and also to diverge in the completely overdamped limit C → 0. From our simulations we find at
low magnetic fields that the Nernst signal displays a characteristic “tilted hill” profile similar to experiments and
a nonmonotonic temperature dependence of the heat conductivity. We also investigate the effects of granularity
and randomness, which become important for higher magnetic fields. In this regime geometric frustration
strongly influences the results in both regular and random systems and leads to highly nontrivial magnetic field
dependencies of the studied transport coefficients.
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I. INTRODUCTION

Thermoelectric effects in superconductors are of consid-
erable interest, since they provide an important probe of
fluctuations and correlations in these materials. Such effects
have gained an increasing amount of attention since the recent
measurements of the Nernst effect in the pseudogap phase
of underdoped high-Tc cuprates, where a remarkably large
effect was observed.1 The Nernst effect has since then been
measured in many other materials, e.g., in superconducting
thin films,2 and in the iron pnictides.3 The Nernst effect
is usually very small for conventional metals, making it a
particularly sensitive probe of superconducting fluctuations.
Theoretical and numerical studies have described the large
Nernst effect either in terms of superconducting fluctuations of
Gaussian nature,4–7 or as fluctuations of the phase of the order
parameter, i.e., as a result of vortices.1,8,9 Other explanations
of nonsuperconducting origin have also been put forward, e.g.,
proximity to a quantum critical point,10,11 quasiparticles,12,13

stripe order,14 etc. Here we will focus exclusively on the effects
of phase fluctuations and vortices on heat and charge transport.
Phase fluctuations were early on proposed to play a key role in
the pseudogap phase of underdoped cuprates.15 In quasi-two-
dimensional superconducting films and Josephson-junction
arrays they are known to be the dominant fluctuations.16

In this paper we study the heat transport and thermoelec-
tric response in two-dimensional granular superconductors
or Josephson-junction arrays, using two widely employed
models for the dynamics: (i) relaxational model-A dynamics,
described by a Langevin equation, or (ii) resistively and
capacitively shunted Josephson-junction (RCSJ) dynamics.
These are well suited for numerical simulation studies,
and have been used extensively to calculate electric and
magnetic static and dynamic properties, and to study vortex
dynamics under the influence of electric currents.17–20 The
calculation of thermoelectric properties is, however, less
straightforward. Previous simulation studies have used time-

dependent Ginzburg-Landau theory,5 phase-only XY models8

with Langevin dynamics, or vortex dynamics.9 They have been
limited to rather narrow parameter regimes with a focus on
explaining the large Nernst effect seen in the pseudogap phase
of underdoped cuprates. Here we present a comprehensive
study of heat conductivity, thermoelectric effects, and resis-
tivity for a broad range of parameters. We also investigate the
effects of a granular structure. The models are defined on a
discrete lattice and can be experimentally realized in granular
superconductors and artificially fabricated Josephson-junction
arrays. At low magnetic fields discreteness effects become less
important so that our results in this regime are relevant also
for homogenous bulk superconductors. On the other hand,
in granular superconductors transport properties are strongly
affected by discreteness and geometric frustration effects.21

This is particularly true at high magnetic fields when the
intervortex distance becomes comparable to the granularity.
This leads to a rich structure in, e.g., the Nernst signal as
the magnetic field is varied, with anomalous sign changes
occurring in the vicinity of special commensurate fillings.22

To start with, let us first recall that the heat current density
JQ and electric current density J are related to the thermody-
namic forces, the electric field E and the temperature gradient
−∇T , by the standard phenomenological linear relations

(
JQ

J

)
=

(
κ̃ α̃

α σ

)(−∇T

E

)
, (1)

where the thermoelectric and electrothermal tensors obey the
Onsager relation α̃ = T α. The Nernst coefficient ν is defined
as the off-diagonal response of the electric field Ey to an
applied temperature gradient ∇xT in a transverse magnetic
field Bz,

ν = eN

Bz

= 1

Bz

Ey

(−∇xT )
, (2)
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where eN is the so-called Nernst signal. Both the Nernst effect
and the heat conductivity are measured under the condition of
zero electric current, such that

eN = αxyσxx − αxxσxy

σ 2
xx + σ 2

xy

, (3)

κ = κ̃ − α̃σ−1α. (4)

In a system with no Hall effect (σxy = 0), which is the case for
the models studied below, Eq. (3) reduces to eN = αxy/σxx .

In a phase-fluctuating superconductor, mobile vortices,
either thermally excited or induced by an applied magnetic
field, may significantly affect transport properties. An applied
electric current J will exert a perpendicular force on the
vortices and their motion will generate a transverse electric
field E = −v × B parallel to J, thus causing a finite flux-flow
resistivity. Vortex motion can also be caused by a temperature
gradient, thereby generating an electric field perpendicular
to both the magnetic field and the temperature gradient. The
Nernst coefficient defined in Eq. (2) can be seen simply as
the diagonal response v = −ν∇T of the vortex velocity to the
temperature gradient. For this reason it is plausible that a large
Nernst signal is expected in the vortex liquid phase.

Via an Onsager relation a heat current can then be generated
from an applied electric current. The vortices therefore also
contribute to the heat conductivity, although other heat carriers,
e.g., phonons or quasiparticles, probably dominate. From the
vortex point of view it is natural to consider the applied current
as the driving force and the electric field, which is proportional
(but perpendicular) to the vortex current, as the response. This
yields an alternative, but equivalent, formulation of the linear
relations in Eq. (1)(

JQ

E

)
=

(
κ β̃

β ρ

)(−∇T

J

)
, (5)

where β = −β̃/T = −σ−1α. This is the approach employed
in our simulations. Instead of calculating eN through other
transport coefficients, i.e., using Eq. (3), we obtain the
Nernst signal directly as eN = βyx = β̃xy/T for J = 0. The
longitudinal heat conductivity is just the diagonal components
of the tensor κ in Eq. (5), and ρ = σ−1 is the resistivity.

The picture described above applies when the vortices are
free to move in response to the driving forces. Pinning of
vortices to material defects, grain boundaries, etc., can lead to
dramatic changes of the transport properties.

The paper is organized as follows. In Sec. II we introduce
the models and their dynamics, Langevin or RCSJ, on general
two-dimensional (2D) lattices. In Sec. III we derive an
expression for the heat current for the models studied. This
has over the years proven to be a subtle task, especially in
the presence of a magnetic field. We present two separate
routes to finding the explicit form of the heat current for
Langevin and RCSJ dynamics. In addition we show, using
a functional integral approach, that the Nernst signal indeed
can be calculated from a Kubo formula involving the heat
current. Section IV discusses the thermal conductivity at zero
magnetic field in the low temperature limit, where a spin wave
approximation is applicable. Our analytic calculations reveal
a logarithmic system size dependence of κ in this regime for
the RCSJ case. In Sec. V we give some technical details of our

numerical simulations, and in the last part, Sec. VI, the results
of our numerical simulations on square and irregular lattices
are presented. We consider the case of zero and weak magnetic
fields as well as the high field limit, where the transport
coefficients are severely affected by geometric frustration.
In the weak magnetic field limit the results are discussed in
relation to previous theoretical works and experiments.

II. MODELS

We model a 2D granular superconductor (of size L × L) as
an array of superconducting grains connected by Josephson
junctions. These grains may or may not be ordered and
connected in a regular fashion. The supercurrent flowing
between two superconducting grains i and j is given by the
Josephson current-phase relation

I s
ij = I c

ij sin γij , (6)

γij = θi − θj − 2π
�0

Aij , Aij = ∫ rj

ri
A · dr, (7)

where I c
ij is the critical current of the junction, �0 = h/2e

is the superconducting flux quantum, and θi is the supercon-
ducting phase of grain i. The grains are assumed to be small
enough (� the coherence length) that the phase is constant
over each grain. Further, A is the vector potential, which we
here separate into two parts

A(r,t) = Aext(r) + �0
2π

�(t), (8)

where Aext(r) is constant in time and corresponds to a uniform
magnetic field B = ∇ × A perpendicular to the array, and
�(t) = (�x(t),�y(t)) is spatially uniform but time dependent
and is necessary to include in order to describe temporal
fluctuations in the average electric field Ē = −�0

2π
�̇, when

periodic boundary conditions are used.19,20 Local fluctuations
in the magnetic field B and hence A are ignored.

A. Langevin dynamics

The Langevin dynamics represents a phase-only description
of the time-dependent Ginzburg-Landau dynamics (TDGL) in
uniform magnetic field. The phenomenological equations of
motion for {θ} and � are of the local relaxation type

γ θ̇i = −1

h̄

∂H

∂θi

+ ηi, (9)

γ��̇ = −1

h̄

∂H

∂�
+ ζ , (10)

H = −
∑
〈ij〉

Jij cos γij , (11)

where the time constant γ is dimensionless and γ� = γL2,
H is the XY model Hamiltonian, and ηi and ζ are Gaussian
stochastic white noise processes.

These equations can be cast in the form of circuit equations
for an electric circuit built up using the elements displayed
in Fig. 1, where each site i is connected via a resistor R0 =
h̄/4e2γ to ground:

γ θ̇i = Vi

2eR0
= − 1

2e

∑
j∈Ni

I s
ij + ηi, (12)
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j

R0

i Iij
c

R0

FIG. 1. Equivalent circuit model for Langevin dynamics. The
cross denotes the Josephson junction with critical current IC

ij .

γ��̇ = 1

2e

⎛
⎝∑

〈ij 〉
I s
ij rji − L2J̄ext

⎞
⎠ + ζ . (13)

The sum in the first equation is taken over the set Ni of
superconducting grains connected to i and is equivalent to
a lattice divergence. In the second equation 〈ij 〉 denotes a sum
over all links in the system. The vector rji = rj − ri goes
from site i to site j and J̄ext is a fixed external current density.
The Gaussian white noise terms ηi and ζ , which now can be
interpreted as Johnson-Nyquist noise in the resistors R0, have
the correlations

〈ηi(t)〉 = 0, 〈ηi(t)ηj (t ′)〉 = 2kBT γ

h̄
δij δ(t − t ′), (14)

〈ζ (t)〉 = 0, 〈ζμ(t)ζν(t ′)〉 = 2kBT γ�

h̄
δμνδ(t − t ′). (15)

B. RCSJ dynamics

In the RCSJ model each Josephson junction with critical
current I c

ij is shunted by both a resistor Rij and a capacitor
Cij , see Fig. 2. The RSJ model is obtained as a special case
when setting Cij = 0. We write the total current from site i to
site j as a sum of the super-, resistive, capacitative, and noise
currents

I tot
ij = I s

ij + IR
ij + IC

ij + I n
ij

= I c
ij sin γij + Vij

Rij

+ Cij V̇ij + I n
ij , (16)

where the voltage between grain i and j is

Vij ≡ Vi − Vj − Ȧij = h̄

2e
γ̇ij , (17)

and the Johnson-Nyquist noise in the resistors has zero mean
〈I n

ij 〉 = 0 and covariance

〈
I n
ij (t)I n

kl(t
′)
〉 = 2kBT

Rij

(δikδjl − δilδjk)δ(t − t ′). (18)

Iij
c

ji

Rij

Cij

FIG. 2. Equivalent circuit model for RCSJ dynamics.

The equations of motion for the phases {θi} and the twists
� are obtained from local current conservation at each grain∑

j∈Ni

(
I tot
ij − I tr

ij

) = 0. (19)

Here we introduced a “transport current” I tr
ij , which is a static,

divergence free current distribution, satisfying any external
boundary conditions, but is otherwise arbitrary. One may, for
instance, connect some nodes to fixed external current sources
or sinks. In the present work we will usually use periodic
boundary conditions instead, together with the condition of a
fixed average current density J̄ext in the system,∑

〈ij 〉
I tot
ij rji =

∑
〈ij 〉

I tr
ij rji = L2J̄ext. (20)

For model purposes we may define a local current density on
the links of the lattice as

J(r) =
∑
〈ij 〉

∫ rj

ri

I tot
ij δ(r − r′) dr′, (21)

which directly leads to Eq. (20) when averaged over the system.

C. Lattice structure

We are interested in modeling both regular and random
granular superconductors. At low magnetic fields the vortex
separation is large compared to the granules and the lattice
structure does not matter much. In this regime the models ap-
proximate bulk superconductors. In the opposite limit of high
magnetic fields the lattice structure is important as frustration
effects strongly influence the transport properties. Note that
the formulation of the models defined above is independent of
lattice structure. We will limit ourselves to two dimensions in
the present work. In our simulations presented below in Sec. VI
we consider not only square lattices, but also random lattices
appropriate as models of random granular superconductors.
These irregular lattices are constructed by generating a set
of randomly distributed points ri = (xi,yi) with unit density
on a square and connecting nearest neighbors by Delaunay
triangulation. To control the randomness we use the parameter
dmin, which is the shortest allowed distance between any two
points in the system. Large values of dmin will thus create a
relatively ordered lattice structure, whereas lattices with small
dmin values are more disordered. For example, a given value of
dmin = {0.0,0.4,0.6,0.8} corresponds to a distribution of grain
size diameters with standard deviation {0.30,0.23,0.15,0.08},
respectively. Examples can be seen in Fig. 15. For the random
lattices we use two different models, one where the critical
current of every junction is set to a constant I c

ij = I c and one
where the critical current is proportional to the contact length
d⊥

ij between the grains, I c
ij ∼ d⊥

ij (in the RCSJ case we also take

R−1
ij ∼ d⊥

ij and Cij ∼ d⊥
ij ). This length is simply the distance

between the points in the dual Voronoi lattice, see Fig. 3.

D. Transport coefficients

In the models defined above, the only nonzero transport
coefficients are the Nernst signal eN , the diagonal thermal
conductivity κ and the electrical resistivity ρ. These may be
obtained from equilibrium correlation functions using Kubo
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FIG. 3. (Color online) Part of a random lattice with the length d⊥
ij

and the vector rji defined. The dark (green) lines make up the direct
Delaunay lattice and the light (orange) structure is the dual Voronoi
lattice.

formulas.23,24 While ρ relates E to a mechanical perturbation,
eN and κ give the response to a nonmechanical property,
namely, a temperature gradient, and the applicability of a
standard Kubo formula is not evident. Nevertheless, we show
in the next section that the transport coefficients can be
expressed in standard form as

eN = �

kBT 2

∫ ∞

0

〈
Ēy(t)J̄ Q

x (0)
〉
dt, (22)

κ = �

kBT 2

∫ ∞

0

〈
J̄ Q

x (t)J̄ Q
x (0)

〉
dt, (23)

ρ = �

kBT

∫ ∞

0

〈
Ēy(t)Ēy(0)

〉
dt, (24)

where � = LxLy is the area of the system. In these equations
Ēy = −(�0/2π )�̇y is the average electric field in the y

direction and

J̄ Q
x = 1

�

∑
〈ij〉

(
xji

1

2
(Vi + Vj ) − xc

ij Ȧij

) (
I tot
ij − I tr

ij

)
(25)

is the average heat current in the x direction, with xji = xj − xi

and xc
ij = (xi + xj )/2. This form of the heat current, which is

one of our main results, will be explicitly derived in the next
section for the specific models under consideration.

III. HEAT CURRENT

To calculate thermoelectric effects and heat conductivity, an
expression for the heat current is needed. Several microscopic
derivations of the heat current in superconductors have been
given in the literature.25–28 The presence of a magnetic field
yields a complication in that the total energy and charge
currents consist of magnetization currents in addition to the
transport currents.29,30

Rather than relying on these microscopic expressions, we
derive here, within the framework of the models defined in
Sec. II, an expression for the heat current that can be used
consistently in our calculations. Below we will first derive
the energy current by considering the continuity equation for
the energy density. This gives the heat current after subtracting
the nondissipative energy transport, except for a magnetization
contribution, which is calculated separately in Sec. III A 3.

Since we are interested in the response of the system to
an applied temperature gradient, which is a nonmechanical
thermodynamic force, the standard derivation of a Kubo
formula does not hold. One approach is to follow Luttinger,24

and introduce a “gravitational” field, which couples to the
energy density, and then proceed with the calculation of the
response to perturbations in that field. For the present models,
however, there is an alternative route. With the dynamics
governed by stochastic equations, Eqs. (12) and (13) or (19)
and (20), in which the temperature enters via the strength of the
stochastic noise, it is possible to introduce local temperature
variations, such as a temperature gradient, and calculate the
resulting response. This calculation, done in Sec. III B, gives
us both the Kubo formula [Eq. (22)] and the heat current
[Eq. (25)]. Note that in this setting, each point in the model,
or more precisely, each resistor in the circuit, is in contact
with a local heat bath. For finite gradients, one cannot expect
the heat current to be automatically conserved, since the
resistors act as sinks and sources. For an infinitesimal thermal
gradient, the heat current will, however, be conserved on
average. Alternatively, one could adjust the local temperatures
to make sure that heat is conserved on average also for finite
temperature gradients. Such self-consistent temperatures have
been employed in studies of heat conductivity in harmonic
lattices.31 For the problem at hand, however, the temperature
profile is determined by the total heat transport, including
phonons, etc., so an externally imposed temperature gradient
is probably more realistic. For the linear response the form of
the profile should not matter as long as it is smooth. We will
use a linear temperature profile below.

A. Heat current from continuity equations

In this section we will derive the heat current expressions
for granular superconductors described by Langevin and RCSJ
dynamics, as used in our simulations. First, however, it is useful
to discuss briefly the continuum formulation. Starting from the
thermodynamic relation

T ds = de − μdn − H · dB − E · dD (26)

for a superconductor in a magnetic field H and electric field
E, where s and e are the entropy and energy densities, μ the
chemical potential, and n the density of charge carriers (with
charge q), one obtains for the heat current density

JQ = JE
tot − μ

q
J − E × H, (27)

where J is the electric transport current density. The total
energy current density is the sum of two parts, a nonmagnetic
part and Poynting’s vector,

JE
tot = JE + 1

μ0
E × B, (28)

and the transport heat current density therefore also has two
contributions4,5,28,32

JQ = JE − μ

q
J + E × M, (29)

where M = B/μ0 − H is the magnetization. The latter part
can be rewritten as

E × M = (−∇φ − Ȧ) × M

= −∇ × φM + φJM − Ȧ × M, (30)
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where JM = Jtot − J = ∇ × M is the magnetization current,
and φ the electric potential. The first term on the second
line is purely rotational and will not contribute to the heat
transport when integrated over the system. The second term
φ(Jtot − J) combined with the nonelectromagnetic part is the
standard expression JE

tot − (ξ/q)J, where ξ = μ + qφ is the
electrochemical potential. The last piece −Ȧ × M is with our
gauge choice [Eq. (8)] spatially constant. Therefore it cannot
be uniquely determined via the continuity equations below, but
will have to be added separately later.

Note the dual role played by the subtraction E × H in
Eq. (27). It contains the subtraction φJ (but in a gauge invariant
way). At the same time it subtracts the magnetic field energy
transported by the vortex current, since Hz�0 can be viewed as
a magnetic contribution to the vortex chemical potential, while
the electric field E is proportional (but transverse) to the vortex
current Jv = E × ẑ/�0. In principle one should also subtract
the nonelectromagnetic energy transported by vortices μvJv .
In the present models, however, μv = 0. In fact, the chemical
potential μ for the charge carriers is also zero. We will now
derive the analogous expressions for the discrete models.

1. Langevin dynamics

It is instructive to study a slightly more general model which
includes the charging energy of the grains, described by a
circuit model with capacitors C0 added in parallel with the
resistors R0 to ground. This modification, besides being more
general, makes the derivation more physically transparent,
while leaving the final results unchanged. The total energy
for this model can be written

E = −
∑
〈ij〉

Jij cos γij +
∑

i

1

2
C0V

2
i , (31)

with γij = θi − θj − 2π
�0

Aij being the gauge invariant phase

difference between site i and j and Vi = h̄θ̇i/2e the voltage at
site i to ground. With the site i we associate a local energy

ei = −1

2

∑
j∈Ni

Jij cos γij + 1

2
C0V

2
i . (32)

The time derivative of this is

ėi = 1

2

∑
j∈Ni

Jij γ̇ij sin γij + C0ViV̇i . (33)

In the first term we may identify Jij γ̇ij sin γij = Vij I
s
ij . The last

term contains the current through the capacitor I
C0
i = C0V̇i ,

which is eliminated using Kirchhoff’s law∑
j∈Ni

I s
ij + I

C0
i + I

R0+n
i = 0, (34)

where I
R0+n
i is the current through the resistor to ground,

including the noise current. This results in

ėi =
∑
j∈Ni

1

2
(Vi − Vj − Ȧij )I s

ij + Vi

⎛
⎝−

∑
j∈Ni

I s
ij − I

R0+n
i

⎞
⎠

= −
∑
j∈Ni

1

2
(Vi + Vj )I s

ij −
∑
j∈Ni

1

2
Ȧij I

s
ij − ViI

R0+n
i . (35)

This is on the form of a continuity equation for the local energy,
since the sum over neighbors j ∈ Ni is the lattice analog
of a divergence, and the source term ViI

R0+n
i represents the

dissipated work done by the system on the environment. The
term involving the vector potential Aij will be canceled when
the magnetization contribution is dealt with in Sec. III A 3. The
energy current is identified as

IE
ij = 1

2 (Vi + Vj )I s
ij , (36)

and by subtracting the transport current we obtain the heat
current

I
Q
ij = 1

2 (Vi + Vj )
(
I s
ij − I tr

ij

)
(37)

for Langevin dynamics (excluding the magnetization contri-
bution).

2. RCSJ dynamics

As in the Langevin case it is convenient to add a capacitance
C0 to ground to the usual RCSJ model. The energy for such a
model is

E = −
∑
〈ij 〉

Jij cos γij +
∑
〈ij 〉

1

2
CijV

2
ij +

∑
i

1

2
C0V

2
i , (38)

where Vij = h̄γ̇ij /2e = Vi − Vj − Ȧij is the voltage across
the junction between site i and j . This implies a local energy
of the form

ei = 1

2

∑
j∈Ni

(
− Jij cos γij + 1

2
CijV

2
ij

)
+ 1

2
C0V

2
i , (39)

with a time derivative

ėi = 1

2

∑
j∈Ni

(Jij γ̇ij sin γij + CijVij V̇ij ) + C0ViV̇i . (40)

The last term is, as in the Langevin case, eliminated using
current conservation∑

j∈Ni

(
I s
ij + IR+n

ij + IC
ij

) + I
C0
i = 0, (41)

where the supercurrent I s
ij = I c

ij sin γij , the current through

the shunting resistor (including the noise) is IR+n
ij , the parallel

capacitance current IC
ij = Cij V̇ij , and the current through the

capacitance to ground I
C0
i = C0V̇i . We get

ėi =
∑
j∈Ni

(
1

2
Vij − Vi

) (
I s
ij + IC

ij + IR+n
ij

) − 1

2

∑
j∈Ni

Vij I
R
ij ,

(42)

and by introducing the total current I tot
ij = I s

ij + IR+n
ij + IC

ij

flowing from i to j , and rearranging

ėi+
∑
j∈Ni

1

2
(Vi + Vj )I tot

ij = −
∑
j∈Ni

1

2
Ȧij I

tot
ij −1

2

∑
j∈Ni

Vij I
R+n
ij .

(43)

These terms have interpretations similar to the Langevin case.
The second term on the left-hand side is the lattice divergence
of the energy current, the first term on the right-hand side will
be canceled by the magnetization contribution, and the last
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one represents the work done on the environment. The energy
current is thus

IE
ij = 1

2 (Vi + Vj )I tot
ij , (44)

and the heat current

I
Q
ij = 1

2 (Vi + Vj )
(
I tot
ij − I tr

ij

)
(45)

for RCSJ dynamics (again excluding the magnetization contri-
bution). The result is very similar to the Langevin case, except
that the total current appears instead of just the supercurrent.

3. Magnetization contribution to the heat current

The models defined in Sec. II are formulated in the limit
where fluctuations in the vector potential are completely
suppressed, except for the uniform part ∼�. Even so, the latter
will, perhaps surprisingly, contribute to the heat current. We
will derive this contribution in a more general setting where
local fluctuations in the vector potential A are allowed. To write
down the magnetic energy, we first split the total current flow-
ing between sites i and j into transverse and longitudinal parts

I tot
ij = I tr

ij + μI − μJ + λi − λj (46)

(this is the lattice analog of writing a vector field as the sum
of a gradient and a curl). The variables μI are defined on the
plaquettes of the lattice, i.e., on the dual lattice, and are often
referred to as loop currents, see Fig. 4. The remaining part
λi − λj is the loop current of the loop i → j → ground → i,
which can be nonzero in the presence of resistors R0 and/or
capacitors C0 to ground. Without loss of generality we set
I tr
ij = 0, so that the heat and energy currents coincide. The

loop currents can be used to express the magnetic fluxes
through the corresponding loops, via the self- and mutual
inductances of the equivalent circuit diagrams (Figs. 1 and 2),

�I ≡
∑
J∈NI

Aij =
∑

J

LIJ μJ + �ext
I , (47)

�ij0 ≡ Aij = Lij (λi − λj ), (48)

where we have chosen our gauge such that Ak0 = 0, where
0 denotes the ground, and �ext

I is the applied flux. The sum
over J ∈ NI is a sum over adjacent plaquettes separated by
the link (ij ), with i and j defined by Fig. 4. With this the
magnetization energy is

EM = 1

2

∑
I

�IμI + 1

2

∑
〈ij〉

�ij0(λi − λj ). (49)

To simplify the argument we only included the
self-inductances Lij of the loops connecting the ground
in the last term.

We may associate a local energy eI with the plaquette I ,
whose time derivative is

ėI = �̇IμI + 1

2

∑
J∈NI

�̇ij0(λi − λj )

= 1

2

∑
J∈NI

Ȧij (μI − μJ + λi − λj ) + Ȧij (μI + μJ )

=
∑
J∈NI

1

2
Ȧij I

tot
ij +

∑
J∈NI

1

2
Ȧij (μI + μJ ). (50)

FIG. 4. (Color online) On each plaquette I and J , defined with
respect to the direct lattice points i and j , there are loop currents μI

and μJ . The difference between these loop currents μij = μI − μJ

is the transverse part of the total current on the link from i to j .

The first term in the last line cancels exactly the corresponding
contribution in Eqs. (35) and (43). The summation in the
last term represents the energy flowing into the plaquette I

from the adjacent plaquettes, and we can therefore identify the
magnetization contribution to the energy current and hence the
heat current

I
Q
IJ = − 1

2 Ȧij (μI + μJ ). (51)

It is not hard to see that this result holds also in the presence
of an electric transport current, if the μI are defined as in
Eq. (46). Equation (51) is the discrete analog of the last term
of Eq. (30).

4. Full heat current

Averaging Eqs. (37) or (45) over the system and adding the
magnetization contribution Eq. (51) gives the full average heat
current density in the x direction

J̄ Q
x = 1

�

∑
〈ij〉

xji

1

2
(Vi + Vj )

(
I tot
ij − I tr

ij

)

− 1

�

∑
〈ij〉

[(
xc

ij − xI

)
μI − (

xc
ij − xJ

)
μJ

]
Ȧij , (52)

where xji = xj − xi is the x component of the difference
vector from site i to j , xc

ij = (xi + xj )/2, and xI the plaquette
centers (the vertices of the Voronoi graph). In the limit where Ȧ
is spatially uniform, the last term simplifies to −ȦyMz, where
Mz = ∑

I μI�I/� is the average magnetization density [�I

is the area of the (Voronoi) cell I ], in agreement with Eq. (30).
A more practically useful form is obtained below in Sec. III B 4
by expressing the loop currents μI in terms of the total currents
I tot
ij , which results in the expression in Eq. (25).

B. Heat current from Kubo formula

It is useful to see how the heat current enters the linear
response arising from an applied temperature gradient via a
Kubo formula. We will do this starting from the stochastic
equations of motion of either Langevin [Eq. (12)] or RCSJ
[Eq. (19)] dynamics. The temperature enters these equations
only via the strength of the Gaussian noise correlation function,
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which now gets a spatial dependence T (x) = T0 − T ′x.33 T ′
is considered a weak perturbation, and we are interested in
calculating the response of some dynamical variable A to such
a perturbation. We assume open boundary conditions in the
x direction, i.e., in the direction of the applied temperature
gradient, while in the transverse y direction they can be arbit-
rary. With no net electric current flowing through the sample
the heat current is equal to the energy current.

For concreteness we consider the response of the electric
field Ey perpendicular to the temperature gradient and the
magnetic field, which gives the Nernst signal eN = δ〈Ey〉/δT ′.
Our goal is to express this linear response using a Kubo formula

eN = �

T 2

∫ ∞

0

〈
Ēy(t)J̄ Q

x (0)
〉
dt, (53)

where J̄ Q
x then can be identified with the heat current (the

overbar denotes a spatial average), and � = LxLy is the
system size.

To this end it is convenient to reformulate the problem using
functional integrals34 and write ensemble averages as

〈A(t)〉 = 1

Z

∫
A(θ (t))e−S[θ]J [θ ][dθ ], (54)

where e−S is the statistical weight of a given realization of the
stochastic process θ (t). The Jacobian J [θ ] in Eq. (54) comes
from the transformation from the Gaussian noise ζ to θ ,34

but since it plays no role in the following it will be dropped
henceforth. The linear response of A to a temperature gradient
can now be expressed (assuming time translation invariance)
as

R(t − t ′) = δ〈A(t)〉
δT ′(t ′)

= 〈A(t)Q(t ′)〉, (55)

where

Q(t ′) = − δS[θ ]

δT ′(t ′)

∣∣∣∣
T ′=0

. (56)

We are interested in the response to a static perturbation in a
stationary state given by

R =
∫ ∞

−∞
〈A(t)Q(0)〉dt. (57)

Despite the similarity with Eq. (53), we cannot immediately
identify 2T 2Q(t)/� with JQ(t) at this stage, because of their
different symmetry properties, an issue into which we now
digress.

1. Symmetry relations of transport coefficients
and correlation functions

Before continuing the derivation of the heat current from
the Kubo formula we discuss some general properties of linear
response in classical statistical systems. It is well known that
time reversal symmetry implies symmetry relations among
the transport coefficients and among correlation functions. In
the presence of a magnetic field H the time reversal operation
should also reverse that. Consider now the correlation function
CEyQ(t,H ) = 〈Ey(t)Q(0)〉 entering Eq. (55), which in general
also depends on the magnetic field H . The electric field Ey

is even under time reversal, while Q is neither even nor odd.

Instead we may split Q = Qe + Qo into even and odd parts.
By parity symmetry the correlation functions CEyQe,o

are odd
in H , so that

CEyQe
(t,H ) = CEyQe

(−t, − H ) = −CEyQe
(−t,H ), (58)

CEyQo
(t,H ) = −CEyQo

(−t, − H ) = CEyQo
(−t,H ). (59)

This leads to the following symmetry of the response

R(t,H ) = CEyQe
(t,H ) + CEyQo

(t,H )

= −CEyQe
(−t,H ) + CEyQo

(−t,H ). (60)

For t < 0 causality implies that R(t,H ) = 0, hence
CEyQo

(−t,H ) = CEyQe
(−t,H ), so that the response can be

written solely in terms of the odd part of Q as

R(t,H ) = 2�(t)CEyQo
(t,H ), (61)

where �(t) is the Heaviside step function. For the Nernst signal
we then get

eN =
∫ ∞

0
2CEyQo

(t) dt =
∫ ∞

−∞
〈Ey(t)Qo(0)〉 dt. (62)

Thus, in order to evaluate the response it is enough to consider
the odd part of Q(t).

Let us also make the following observation: At finite times
the response will contain transients, which we will not be
interested in and which do not contribute to the stationary
response. Indeed, any contribution to Qo(t) of the form of a
total time derivative df/dt will contribute a term∫ ∞

−∞
〈Ey(0)

df (t)

dt
〉dt = 〈Ey(0)f (∞)〉 − 〈Ey(0)f (−∞)〉

(63)

to eN , which vanishes provided f (t) is stationary in equi-
librium. We will now treat the Langevin and RCSJ cases
separately.

2. Langevin dynamics

For the case of Langevin dynamics the dynamical action
S obtains from substituting η using Eq. (12) in the Gaussian
noise probability distribution

P [η] ∝ exp

(
−

∫ ∑
i

h̄

4γ Ti

η2
i (t)dt

)
, (64)

resulting in

SLang. =
∫ ∑

i

h̄

4γ Ti

(γ θ̇i − Fi)
2dt, (65)

where

Fi = −1

h̄

∂H

∂θi

= − 1

2e

∑
j∈Ni

I s
ij , (66)

and correspondingly

Q(t) = −
∑

i

h̄xi

4γ T 2
(γ θ̇i(t) − Fi(t))

2. (67)
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Since θ̇i = 2eVi/h̄ is even and I s
ij is odd under time reversal,35

the odd part of Q is

Qo(t) = 1

2T 2

∑
i

xih̄θ̇iFi

= − 1

2T 2

h̄

2e

∑
i

xi θ̇i

∑
j∈Ni

I s
ij

= − 1

2T 2

h̄

2e

∑
〈ij〉

(xi θ̇i − xj θ̇j )I s
ij . (68)

Putting xc
ij = (xi + xj )/2 we may rewrite this as

2T 2Qo(t) = −
∑
〈ij 〉

xc
ij (Vi − Vj − Ȧij )I s

ij

+
∑
〈ij〉

(
1

2
xji(Vi + Vj ) − xc

ij Ȧij

)
I s
ij . (69)

The first term is a total time derivative of xc
ij times a local

energy eij

d

dt

∑
〈ij〉

xc
ij eij = −

∑
〈ij〉

xc
ij

d

dt
Jij cos γij , (70)

and will therefore not contribute to static response functions.
The remaining part can be identified with the heat current in
the Langevin model,

J̄ Q
x = 1

�

∑
〈ij〉

(
1

2
xji(Vi + Vj ) − xc

ij Ȧij

)
I s
ij . (71)

This form of the heat current is directly formulated using
the currents and potentials, and therefore simpler to use than
Eq. (52). To show the equivalence of Eqs. (71) and (52) it is
necessary to go through some further steps. Before doing that,
however, we consider the RCSJ case.

3. RCSJ dynamics

It is convenient to reformulate the equations of motions for
RCSJ dynamics Eq. (19) as

I tot
ij = IC

ij + I s
ij + IR

ij + I n
ij = I tr

ij + λi − λj + μij , (72)∑
j∈Ni

λi − λj = C0V̇i , (73)

where λi − λj is the longitudinal part of the total current
flowing through the links of the lattice, and μij = μI − μJ

is the transverse part, with the μI defined on the dual lattice
sites, i.e., on the plaquettes, adjacent to the bond ij as in Fig. 4.
The μI are often referred to as loop currents. Neither of these
contribute to the transport current I tr

ij . As in the Langevin case
we set I tr

ij = 0, whereby the heat current equals the energy
current.

The dynamical action corresponding to Eqs. (72) and (73)
can be expressed as

S ′
RCSJ =

∫ ∑
〈ij〉

{ Rij

4Tij

(
I n
ij

)2+iηij

(
I tot
ij − λi+λj − μij

)}
dt.

(74)

The first term represents the Gaussian distribution of the white
noise current I n

ij , and ηij is a Lagrange multiplier to enforce
the constraints Eq. (72). In a temperature gradient the local
temperatures are position dependent, Tij = T − T ′xc

ij .
The functional integration is over the variables θ , I n

ij , ηij ,
λi , and μI . Integrating over I n

ij and ηij we get

SRCSJ =
∫ ∑

〈ij〉

Rij

4Tij

(
IC
ij + I s

ij + IR
ij − λi + λj − μij

)2
dt,

(75)

and

Q(t) = − 1

4T 2

∑
〈ij〉

xc
ijRij

(
IC
ij + I s

ij + IR
ij − λi+λj − μij

)2
.

(76)

Again only the part which is odd under time reversal
contributes to the heat current,

2T 2Qo = −
∑
〈ij 〉

xc
ijVij

(
IC
ij + I s

ij − λi + λj − μij

)
, (77)

since IR
ij = Vij /Rij is even, while the other currents are odd.

In this expression we may identify a contribution

∑
〈ij 〉

xc
ijVij

(
IC
ij + I s

ij

) = d

dt

∑
〈ij 〉

xc
ij eij , (78)

where

eij = 1
2CijV

2
ij − Jij cos(θi − θj − 2π

�0
Aij ) (79)

is the local energy defined on the links of the lattice. Being
a total time derivative this does not contribute in a stationary
state. The remaining part can be rearranged into∑

〈ij〉
xc

ijVij (λi − λj + μij )

=
∑

i

xiVi

∑
j∈Ni

(λi − λj + μij )

+
∑
〈ij〉

[
xji

1

2
(Vi + Vj ) − xc

ij Ȧij

]
(λi − λj + μij ).

The second line equals
∑

i xiC0ViV̇i = d
dt

∑
i xi

1
2C0V

2
i , again

a total time derivative which does not contribute. Finally, λi −
λj + μij = I tot

ij , so that the heat current for the RCSJ model
becomes

J̄ Q
x = 1

�

∑
〈ij〉

(
xji

1

2
(Vi + Vj ) − xc

ij Ȧij

)
I tot
ij . (80)

4. Magnetization contribution

Equations (52), (71), and (80) apparently differ. We will
now show the equivalence of these formulations. We split the
current into transverse and longitudinal parts as in Eq. (46),
with the μI defined on the dual lattice, whose sites are denoted
by rI = (xI ,yI ). With this it is possible to rewrite the last term
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in Eqs. (71) and (80) as

−
∑
〈ij 〉

xc
ij Ȧij I

tot
ij = −

∑
〈ij 〉

xc
ij Ȧij (λi − λj + μij )

= −
∑
〈ij 〉

xc
ij Ȧij (λi − λj ) −

∑
I

xIμI

∑
J∈NI

Ȧij

−
∑
〈ij 〉

[(
xc

ij − xI

)
μI − (

xc
ij − xJ

)
μJ

]
Ȧij .

The first term is a total time derivative of
∑

〈ij 〉 x
c
ij e

M
ij , where

eM
ij = 1

2Aij (λi − λj ) is the local magnetization energy of the
loops to ground [cf. Eq. (49)]. The second term is a total time
derivative of

∑
I xI e

M
I , involving the magnetization energy

eM
I = 1

2μI�I of the loops of the lattice. The remaining
part corresponds exactly to the last term of Eq. (52). Note
that for the models discussed initially Ȧ = (�0/2π )�̇, i.e.,
only spatially uniform fluctuations are included in the vector
potential. Then ėM

ij = ėI = 0 exactly, and Eqs. (52) and (71),
(80) become identical (for open boundary conditions). In the
more general case where local fluctuations are allowed, they
differ only by a total time derivative, which does not contribute
to the transport coefficients.

C. Additional remarks

The two derivations of the heat current given in Secs. III A
and III B above agree. The latter one shows, in addition, the
validity of the standard Kubo formula Eq. (22) for calculating
the Nernst response of the transverse electric field to an applied
temperature gradient (in the absence of an electric transport
current). The resulting expression should also give, via an
Onsager relation, the response of the heat current to an applied
transverse electric current. This holds provided the electric
transport current I tr

ij is subtracted from the current in Eqs. (71)
and (80), showing that Eq. (25) is indeed the correct form.

In both the Langevin and RCSJ cases, the heat current is
given by similar expressions, but in the RCSJ case the current
I tot
ij includes also capacitative, resistive, and noise currents in

addition to the supercurrent.
As mentioned, Eq. (25), being directly formulated in the

currents and phases, has a clear advantage over Eq. (52).
They are equivalent for systems with open boundary condi-
tions along the temperature gradient. In simulations, periodic
boundary conditions are convenient to use in order to eliminate
surface effects. This, however, makes things more subtle, as
then the magnetization is not uniquely determined by the
currents: adding a constant to every μI does not change I tot

ij

in Eq. (46). One logical possibility seems to be to impose an
extra condition on the average magnetization, e.g., define it to
be zero at any moment, or

∑
I μI = 0, so that no magnetization

contribution should be added in this case. Another option is
to fix one particular μI , and in effect use Eq. (25) also for
periodic boundary conditions. We opt for this latter condition,
since it stays closer to the experimental open system situation,
while getting rid of surface effects. This choice can be further
justified by comparing analytic results for open and periodic
boundary conditions obtained in a spin wave approximation,
to be discussed next.

IV. HEAT CONDUCTIVITY AT LOW TEMPERATURE AND
ZERO MAGNETIC FIELD

At low enough temperatures and zero magnetic field, the
fluctuations will be small so that it is sufficient to consider
linearized versions of the models introduced earlier. The only
nonlinear circuit element is the Josephson junction, and by
linearizing the Josephson relation I s

ij = I c
ij sin γij ≈ I c

ij γij , the
models are reduced to a network of capacitors, resistors, and
inductors, with effective inductances Lij = (h̄/2eI c

ij ). In this
spin wave approximation vortices are absent, hence there will
be no Nernst effect, but the thermal conductivity will still be
nonzero. For the Langevin case, the resulting model can be
mapped to one of heat conduction by phonons in a harmonic
crystal coupled to local heat baths, which has an analytic
solution.31 For a 2D infinite square lattice, the spin wave heat
conductivity is independent of temperature and given by

κsw = kBIc

2eγ

∫ 1

0

∫ 1

0

sin2(πx)

4 sin2
(

πx
2

) + 4 sin2
(

πy

2

)dxdy

=
(

1

2
− 1

π

)
kBIc

2eγ
≈ 0.1817

kBIc

2eγ
. (81)

We now turn to the heat conductivity of the linearized RCSJ
model on a 2D square array of size � = LxLy and unit lattice
constant. In this case, the heat current [Eq. (80)] includes
the total current I tot

ij = IC
ij + IR

ij + I s
ij + I n

ij , which is purely
transverse due to Eqs. (19) and (20). In this sum, IC

ij and
IR
ij have no transverse component, so that I tot

ij = I s⊥
ij + I n⊥

ij .
The transverse part of the supercurrent I s⊥

ij is entirely due
to vortices and vanishes in the spin wave approximation,
so that the total current only consists of the transverse
component of the noise current, I tot

ij = I n⊥
ij . More explicitly,

this result can be derived from the equations of motion. On
a square lattice it is convenient to label the links by the
coordinate r and direction μ = x,y, and introduce forward
and backward difference operators ∇μf (r) = ∇μf (r + μ̂) =
f (r + μ̂) − f (r). Introducing rescaled variables φi = h̄θi/2e

and �̃ = h̄�/2e the equations of motion (19) and (20) are in
this limit∑

μ

∇μ∇μ(Cφ̈r + 1

R
φ̇r + 1

Lφr) =
∑

μ

∇μIn
rμ, (82)

C ¨̃�μ + 1

R
˙̃�μ + 1

L�̃μ = 1

�

∑
r

I n
rμ. (83)

Multiplying Eq. (82) with the lattice Green’s function G

(solving −∇∇Grr′ = δr,r′) gives

Cφ̈r + 1

R
φ̇r + 1

Lφr = −
∑
r′ν

Grr′∇νI
n
r′ν . (84)

Using (84) and (83), the total current on a square lattice is

I tot
rμ = IC

rμ + IR
rμ + I s

rμ + I n
rμ

= I n
rμ +

∑
r′ν

∇μGrr′∇νI
n
r′ν − 1

�

∑
r′

I n
r′μ. (85)

We can here identify the longitudinal part of the noise
current I

n‖
rμ = −∑

r′ν ∇μGrr′∇νI
n
r′ν , and the average (k = 0
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component) I n0
μ = 1

�

∑
r I n

rμ. The total current is thus just the
transverse part of the noise current

I tot
rμ = I n

rμ − I n‖
rμ − I n0

μ = I n⊥
rμ . (86)

The heat current in the x direction can then be written as

J̄ Q
x = 1

�

∑
rν

χrνI
n⊥
rν , (87)

χrν = 1

2
(φ̇r + φ̇r+x̂)δνx −

(
x + 1

2
δνx

)
˙̃�ν. (88)

This result is intriguing because the dynamics of the system
is completely independent of I n⊥

rμ , as seen from the equations
of motion. Correspondingly, the correlation function which
enters the Kubo formula Eq. (23) factorizes:

〈
J̄ Q

x (t)J̄ Q
x (0)

〉 = 1

�2

∑
rμ,r′ν

〈
χrμ(t)I n⊥

rμ (t)χr′ν(0)I n⊥
r′ν (0)

〉

= 1

�2

∑
rμ,r′ν

〈χrμ(t)χr′ν(0)〉〈I n⊥
rμ (t)I n⊥

r′ν (0)
〉
.

(89)

Furthermore, the transverse noise current correlation function〈
I n⊥

rμ (t)I n⊥
r′ν (0)

〉
= 2kBT

R
δ(t)

1

�

∑
k �=0

(
δμν − KμKν

K2

)
eik·(r−r′), (90)

where Kμ = 2 sin(kμ/2), K2 = ∑
μ K2

μ, kμ = 2πnμ/Lμ, and
nμ = 0, . . . ,Lμ − 1. Since this is proportional to δ(t), the
correlation function 〈χ (t)χ (0)〉 has to be evaluated at t = 0
when inserted into the Kubo formula, i.e., it is given by an
equilibrium correlation function.

In the more general case the total current contains also the
transverse part of the supercurrent, which is determined by
the vortices. Clearly the vortex contribution appears on top of
the spin wave background calculated in this section. We may
evaluate the correlation function 〈χrμχr′ν〉 for the full model,
including a capacitance C0 to ground and cosine interaction.
On a square lattice the RCSJ Hamiltonian Eq. (38) is

H =
∑

r

1

2
C0V

2
r +

∑
r,μ

1

2
C(Vr − Vr+μ̂ − ˙̃�μ)2 + f (φ,�̃),

(91)

where Vr = φ̇r and f (φ,�̃) is the “potential energy” involving
the cosine interaction. Switching to Fourier space

H = 1

�

∑
k

1

2
(C0 + CK2)V−kVk

+ 1

2
C�

( ˙̃�
2

x+ ˙̃�
2

y

) + f (φ,�̃). (92)

From here it is easy to calculate the required averages, since
the partition function factorizes at the classical level and the
averages are just Gaussian integrals. We get

〈V−kVk〉 = kBT

C0 + CK2
, 〈�̇μ�̇ν〉 = kBT

C�
δμν, (93)

independent of f (φ,�̃), so that

〈χrxχr′x〉 = 1

�

∑
k

eik·(r−r′) 1

4
|1 + eikx |2〈VkV−k〉

+
(

x + 1

2

)(
x ′ + 1

2

)
〈 ˙̃�x

˙̃�x〉, (94)

〈χryχr′y〉 = xx ′〈 ˙̃�y
˙̃�y〉, (95)

〈χrxχr′y〉 = 〈χryχr′x〉 = 0. (96)

Performing the sum over r,r′ in Eq. (89) and using Eqs. (90),
(93)–(96) the heat conductivity becomes

κsw = κ ′ + κ ′′, (97)

κ ′ = kB

RC

1

�

∑
k �=0

(
1 + 1

4K2
x

) (
1 − K2

x

K2

)
C0/C + K2

, (98)

κ ′′ = kB

RC

L2
x − 1

12�
. (99)

The second term κ ′′ originates from 〈 ˙̃�y
˙̃�y〉 and corresponds

to the magnetization contribution.
The resulting heat conductivity Eq. (97) has some notable

properties. First, it is proportional to 1/RC so that it is well
defined only for finite C. In this respect the RSJ model, without
shunting capacitors, i.e., with C → 0 is pathological. Second,
when C0 = 0 the sum over k in Eq. (98) is logarithmically
divergent in the infinite system L → ∞ (in 2D). For finite large
L the heat conductivity has a logarithmic size dependence

κsw ∼ 1
4πRC

ln L
a
, (100)

where a is the lattice spacing. κ is thus not a bulk property of
the RCSJ model in 2D. It is interesting to note that several
other low dimensional models of heat conduction display
an anomalous size dependence, often tied to momentum
conservation.36,37 In the present case the diverging behavior is
most likely due to the long-range Coulomb interaction. A finite
C0 makes the charge-charge interaction exponentially small on
distances larger than the screening length λ = a

√
C/C0, and

also yields a system size independent κsw when L � λ. The
calculation above was done for periodic boundary conditions.
We have repeated it for open boundary conditions in the
x direction. The difference is very small and tends to zero
as 1/Lx when Lx increases.

As discussed above, the vortex contribution appears on top
of the temperature-independent spin wave background just
calculated. Computationally it is often convenient to project
out the spin wave contribution by excluding the transverse
noise current I n⊥ in Eq. (52) before the averaging in Eq. (23).

V. SIMULATION METHODS

The equations of motion for Langevin dynamics [Eqs. (12)
and (13)] are solved numerically using a simple forward
Euler discretization with a time step of �t = 0.02. The
RCSJ dynamical equations [Eqs. (19) and (20)] have a more
complicated structure and are also second order in time, which
makes the solution numerically more intensive. To solve these
we use a leap-frog type discretization scheme, with time step
�t = 0.04. For a system of N grains one then generally has
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to solve a system of N + 1 coupled equations in each time
step (N − 1 for the phases {θi} and 2 for the twists �). Note,
however, that the equation system is sparse, so an effective
way to solve them is to employ an LU factorization algorithm,
since the complexity of such a scheme goes as the number
of nonzero entries, which are of the order of N here. This is
far better than the direct method17,18 of multiplying with the
lattice Green’s function, which is here a dense matrix with
∼N2 nonzero entries. In both the Langevin and the RCSJ case
the sampling is performed during 4 × 105 units of time, after
an equilibration time of 10% of this.

We have simulated systems of sizes up to 120 × 120, but
except for the case of κ for RCSJ dynamics, finite size effects
are unimportant for systems larger than L � 20, and thus only
systems of size 20 × 20 are considered.

The transport coefficients are calculated from the Kubo
formulas Eqs. (22)–(24), where the upper limit in the time
integrals is replaced by a large enough time (� the correlation
time), such that the cumulative value of the integral has
stabilized its value. The Nernst signal eN obtained from the
Kubo formula in Eq. (22) is also compared with the value of
eN calculated in two other ways. The first is simply to apply
a small temperature gradient in the x direction and measure
the resulting electric field Ey , and the second is through the
Onsager relation eN = β̃xy/T , where β̃ is the response of the
heat current in the x direction to an applied electric current in
the y direction, as defined in Eq. (5). This gives an important
consistency check of our calculations. A similar check is
performed for the heat conductivity κ . The Kubo formula turns
out to be the most efficient way to calculate the response, since
one does not have to worry about nonlinear effects.

A. Units

In the simulations we redefine time and temperature to
make them dimensionless (we also measure length in units of
a lattice constant a). For both Langevin and RCSJ dynamics,
temperature is rescaled according to

T → T
2ekB

h̄I c
. (101)

The dimensionless time is obtained from the transformation

t → t
I c

2eγ
(102)

for Langevin dynamics. In the RCSJ case the rescaling is

t → t
2eRIc

h̄
. (103)

(In the case where the junction parameters vary from link to
link, I c, R, and C denote a characteristic magnitude.) From
this follows that for Langevin dynamics, the Nernst signal eN

is given in units of kB/2eγ , the thermal conductivity κ in units
of kBI c/2eγ , and the resistivity ρ in units of h̄/(2e)2γ . For
RCSJ dynamics the Nernst signal eN is measured in units of
2ekBR/h̄, the thermal conductivity κ in units of 2ekBRIc/h̄,
and the resistivity ρ in units of the shunt resistance R. The di-
mensionless parameter Q2 = 2eR2I cC/h̄ (the ratio of the two
times scales RC and h̄/2eRIc) controls the damping. For Q �
1 the system is underdamped and for Q � 1 it is overdamped.

B. Time discretization of the heat current

It is crucial to use a symmetric time discretization of the
heat current, Eq. (25), in the numerics. For Langevin dynamics,
while it is sufficient to use a forward Euler discretization for the
integration of the equations of motion, the voltage Vi = h̄θ̇i/2e

appearing in Eq. (25) has to be approximated by a centered
difference θ̇ (t) ≈ {θ (t + �t) − θ (t − �t)}/2�t . In the RCSJ
case the total electric current is (after rescaling time)

I tot
ij (t) = I c

ij (sin γij (t) + γ̇ij (t) + Q2γ̈ij (t)) + I n
ij (t). (104)

In the symmetric leap-frog scheme we use, θ is defined on
integer time steps t = n�t , while the first-order time derivative
θ̇ is defined only on half-integer time steps t = (n + 1/2)�t ,
so θ̇ (t) has to be calculated as the average of θ̇ at the two
adjacent time steps

θ̇ (t) ≈ 1
2 {θ̇ (t + �t/2) + θ̇ (t − �t/2)}. (105)

The second-order time derivative θ̈(t) is symmetrically defined
as

θ̈ (t) ≈ 1

�t
{θ̇ (t + �t/2) − θ̇ (t − �t/2)}. (106)

The same applies for the twist variables �. These definitions
make the heat current J̄ Q

x (t) as defined above naturally
symmetric around t . An interesting aspect here is that by
choosing the time step as �t = 2Q2, the RCSJ equations of
motion discretized by the symmetric leap-frog scheme actually
reduce exactly to the RSJ equations of motion discretized
using an asymmetric forward Euler scheme. Moreover I tot

ij (t)
becomes the sum of the super-, resistive, and noise currents
discretized by a forward Euler scheme as it should for the RSJ
model, while the voltages in Eq. (25) are kept symmetric due
to the definition Eq. (105). The RSJ model is therefore best
thought of as a special case of an overdamped RCSJ model with
Q2 = �t/2 (with our choice of �t = 0.04 this corresponds to
Q2 = 0.02).

We find that the heat current J̄ Q
x (t) is very sensitive to the

discretization used. In fact, it is critical to use the symmetric
way of defining J̄ Q

x (t) to obtain consistent results when
calculating the heat conductivity κ either using a Kubo formula
or by applying a small temperature gradient.

VI. RESULTS AND DISCUSSION

A. Zero field thermal conductivity

Figure 5 shows the thermal conductivity κ in zero magnetic
field for fairly underdamped RCSJ dynamics (Q = 10) for
different system sizes L. At low T it tends to the spin
wave value given by Eq. (100), which in dimensionless units
becomes κ ∼ (1/4πQ2) ln(L/a). For large Q this background
value is quite small. For smaller values of Q the background
increases and soon overwhelms the vortex contribution. In the
following it will therefore be subtracted.

The dependence on system size L for low temperatures can
be seen in the inset of Fig. 5. The dependence is logarithmic
and follows very well the form in Eq. (100), shown as the
red curve in the inset. In Fig. 6 we can see κ as a function
of temperature in the strongly overdamped limit C → 0
(corresponding to RSJ dynamics), but now with the harmonic
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FIG. 5. (Color online) Heat conductivity κ vs temperature T for
an L × L square lattice with underdamped RCSJ dynamics (Q = 10).
The different curves correspond to different system sizes L. The
inset shows the logarithmic dependence on system size L at low T

(T = 0.1). The circles are simulation data and the smooth red curve
is the analytic result obtained from a linearized model.

spin wave background subtracted. In RSJ dynamics where
C = 0, the spin wave contribution is formally proportional to
δ(0), which translates to 1/�t in the numerics, where �t is
the time step used in the discretization (remember that RSJ
dynamics with finite time step �t can be viewed as a special
case of RCSJ dynamics with Q2 = �t/2). What is left after
subtracting this part can be interpreted as coming mainly from
the motion of vortices. The curves of κ start out very small
for low temperatures, but increase rapidly on approaching the
Berezinskii-Kosterlitz-Thouless,16 temperature TBKT � 0.9,
where the unbinding of thermally induced vortex-antivortex
pairs makes a large contribution to the thermal conductivity.
At around T = 1.4, κ reaches its maximum value, followed by
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FIG. 6. (Color online) Heat conductivity κ vs temperature T for
an L × L square lattice with RSJ dynamics. Here the temperature-
independent spin wave background of κ has been subtracted. The
different curves correspond to different system sizes L. Inset: The
same curves but scaled with 1/ ln(L/0.7). The collapse is very good
over the entire temperature range, except from close to the transition
temperature TBKT � 0.9.

a slow decrease for higher temperatures. Note that κ , even after
subtracting the background, shows a logarithmic dependence
on the system size. The inset of Fig. 6 displays the curves
for different system sizes divided by the factor ln(L/a), with
a = 0.7. The collapse of the curves onto a single one is very
good over the entire temperature range (except from very close
to TBKT � 0.9, where small deviations are expectedly seen). In
the spin wave approximation the logarithmic size dependence
seems to be related to the long-range Coulomb interaction.
Screening can be introduced by adding capacitances to ground
on every grain, which removes the divergent behavior on length
scales larger than the screening length

√
C/C0. In a similar

spirit, it seems likely that the logarithmic size dependence
of the vortex contribution is tied to the unscreened Coulomb
interaction in the RCSJ model.

For Langevin dynamics, on the other hand, κ is only
weakly dependent on system size and quickly converges to
a size-independent bulk value (for L � 20). Moreover, the
finite size effects of eN and ρ are also negligible for L � 20,
for both Langevin and RCSJ dynamics. We will therefore stick
to lattices of size 20 × 20 in the remainder of this paper.

At low T for Langevin dynamics (see the lowest curve
in the middle panel of Fig. 7) κ goes to the spin wave
value of Eq. (81), but decreases slightly upon increasing
the temperature until temperature-induced vortices become
plentiful near the BKT transition, where κ increases again,
reaching a maximum around T ≈ 1.25, and then starts to
decrease.

B. Low fields

We now turn to the case of a relatively weak applied
transverse magnetic field. In Figs. 7 and 8, we see a collection
of simulation results for fillings f = 0 to 0.05 on a 20 × 20
square lattice for Langevin and RCSJ dynamics (Q = 0.5),
respectively. The filling f = B〈Apl〉/�0, where 〈Apl〉 is the
average plaquette area, represents the average number of
magnetic field induced vortices per plaquette in the system.
The lowest nonzero filling f = 0.0025 = 1/202 corresponds
to one field induced vortex in the system. Increasing the filling,
i.e., raising the magnetic field, will cause the vortex density
to increase, but as long as the typical vortex separation is
much larger than the coherence length ξ (ξ can be thought
of as the short distance cutoff or lattice spacing a in our
model), the effects of discreteness are negligible and the
model should describe a continuous two-dimensional (or
quasi-two-dimensional) type-II superconductor. The case of
strong magnetic fields are discussed in Sec. VI C.

Focusing on the Nernst signal eN in Figs. 7 and 8, we notice
a very steep increase of eN at low temperatures to a maximum
between T = 0.10 and 0.15. At higher temperatures eN slowly
decreases and the tail persists up to about T = 2, which is
roughly twice the BKT transition temperature TBKT ≈ 0.9.
These features are qualitatively similar for both Langevin and
RCSJ dynamics. The main difference between the models in
the shape of eN is the plateau-like part of the curves present in
the RCSJ case around T = 0.7 for low fillings. The peak height
increases rapidly with filling, before it starts to decrease for
higher fillings. The position of the Nernst signal peak depends
slightly on the filling f and moves toward higher temperatures
for larger fillings.
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FIG. 7. (Color online) Nernst signal eN , heat conductivity κ , and
electrical resistivity ρ vs temperature T at different fillings f for a
20 × 20 square lattice with Langevin dynamics.

The qualitative features of the Nernst signal are in agree-
ment with experiments on several superconductors.1,2,38,39

A detailed comparison is, however, possible only if the
temperature and magnetic field dependences of the parameters
γ , R, I c are taken into account. For Josephson-junction
arrays made up of tunnel junctions the Ambegaokar-Baratoff
formula40 I c = (π�(T )/2eR) tanh(�(T )/2kBT ) can be used.
In bulk superconductors I c is proportional to the absolute
square of the superconducting order parameter |ψ |2, which
goes as ∼(T MF

c − T ), near T MF
c . The situation in the high-Tc

cuprates is more complicated, since a model for the relaxation
rate, γ (T )−1 in the Langevin case, or R(T ) in the RCSJ case, is
also required. The thermoelectric coefficient αxy = eN/ρ may
have an advantage here, since both eN and ρ are proportional
to the relaxation rate, which therefore drops out.5,8 We will
return to αxy in the next section.

In the second row of Figs. 7 and 8 the heat conductivity κ

is plotted as a function of temperature at different fillings
f (in the RCSJ case the spin wave background has been
subtracted). Note first how similar the low temperature part
of the curves of κ are to the Nernst signal. The onset and
the peak positions of the two quantities agree to a high
degree. For Langevin dynamics (Fig. 7) κ is finite in the limit
T → 0. For the two lowest fillings f = 0.0025 and 0.005,
κ increases quickly as a function of T and then falls off
slowly below the T → 0 value of ∼0.20 to suddenly increase
again around TBKT and reach a second maximum followed
by slow a decrease at higher temperatures. At fillings above
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FIG. 8. (Color online) Nernst signal eN , heat conductivity κ , and
electrical resistivity ρ vs temperature T at different fillings f for
a 20 × 20 square lattice with RCSJ dynamics (Q = 0.5). In the κ

plot, the temperature-independent spin wave background has been
subtracted.

f = 0.005 the thermal conductivity follows the same pattern,
but does not fall below the T → 0 value until temperatures
above TBKT. In the high temperature regime T � 1.5 all
curves, regardless of filling f , fall onto a single curve. The
curves for overdamped RCSJ dynamics with Q = 0.5 (Fig. 8)
share this feature of two maxima. In this case, however, the
falloff after the first maximum is even more pronounced and
persists up to higher fillings, at least f = 0.05. Note that the
temperature-independent background contribution to κ has
been subtracted in this figure.

The double-peak behavior seems to indicate two separate
contributions to the thermal conductivity at high and low
temperatures. The first maximum at low T is probably caused
by the increased mobility of the field-induced vortices, which
also gives the sharp rise of eN . This contribution diminishes
with increasing T , until the unbinding of temperature-induced
vortex-antivortex pairs around TBKT � 0.9 makes κ large
again. This latter contribution totally dominates the previous
one at higher temperatures, causing curves for different fillings
to converge.

Looking at the resistivity ρ, it displays not the same but
a qualitatively similar T dependence for Langevin and RCSJ
dynamics. For Langevin dynamics the effect of varying filling
f is somewhat more apparent, and the rise at TBKT is also a bit
steeper than for RCSJ dynamics.
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The results for the RCSJ model discussed previously have
been for the overdamped case Q = 0.5. Upon reducing the
damping and moving into the underdamped regime, eN is
effectively unchanged in the low temperature region (apart
from a trivial change of scale). However, κ and ρ change
slightly at high temperatures T � 1.5, in that κ decays
somewhat faster and the falloff starts at a lower temperature,
while ρ increases more quickly as a function of T than in the
underdamped case.

1. Vortex heat transport

In our models there is no Hall effect (σxy = 0), lead-
ing to eN = αxy/σxx = αxyρxx , and so we can obtain yet
another transport coefficient, the off-diagonal component of
the thermoelectric tensor αxy from eN and ρ. As mentioned,
one advantage with αxy is that, unlike eN and κ , it does
not depend on the time constants γ and R.5,8 This makes
comparison with experimental data easier. Furthermore, from
phenomenological theories of vortex motion αxy has the inter-
esting interpretation of the entropy per vortex,41 suggesting
that αxyT can be identified with the transported heat per
vortex. This can also be seen from the Onsager relation
α̃xy = αxyT together with the definition of the transverse
electrothermal conductivity α̃xy = JQ

x /Ey , which is measured
under conditions with no applied temperature gradient. Now,
since Ey is proportional to the transverse vortex current J v

x

through the relation Ey = �0J
v
x , the quantity JQ

x /Ey is just
the ratio between the heat current and the vortex current, i.e.,
a measure of the average transported heat per vortex.

Another way of calculating the heat transported per vortex,
or more precisely the ratio between the heat current and the
vortex current, is to simply divide the vortex contribution
κ of the longitudinal heat conductivity (i.e., with the spin
wave background subtracted) with the Nernst signal, κ/eN =
( J

Q
x

−∇xT
)/( Ey

−∇xT
) = JQ

x /Ey . Note, however, that in this context

the ratio JQ
x /Ey measures the transported heat per vortex in

a system driven by a temperature gradient ∇xT , as opposed
to the case of αxyT = JQ

x /Ey , where the driving force is a
transverse electric current Jy . An equality of κ/eN and αxyT

would imply a strict proportionality of the heat current JQ
x on

the vortex current J v
x .

In Fig. 9, κ/eN and αxyT from our simulations are plotted
as functions of temperature T . While they are not equal, they
do agree very well at low T (and for low fillings f ), so here
one can approximately speak about transported heat per vortex.
κ/eN is consistently larger than αxyT , and the difference grows
with increasing T (and increasing f ). A clue to why this
happens can be found considering the difference in what drives
the vortex motion in the two cases, as mentioned above. When
applying a temperature gradient, heat can be transported even
without a net flow of vortices, being mediated solely through
the interactions between vortices at different temperatures.
This is not possible when the driving force is the transverse
electric current, and naturally explains why κ/eN is always
greater than αxyT . The magnetic field (or filling f ) dependence
of κ/eN and αxyT at a low fixed temperature is shown in
the inset of Fig. 9. The plot is in linear-logarithmic scale
and clearly shows a logarithmic dependence at low fillings,
which is quite similar for both quantities. Such a logarithmic

0 0.2 0.4 0.6 0.8 1
T

0

1

2

JQ x / 
Jv xΦ

0

κ / eN @ f = 0.02

αxyT @ f = 0.02

0.001 0.01
f

0.6

0.8

1

1.2

1.4

JQ x / 
Jv xΦ

0

κ / eN @ T = 0.1

αxyT @ T = 0.1

FIG. 9. (Color online) Plot of κ/eN and αxyT vs temperature T for
RCSJ dynamics (Q = 0.5) on a square 20 × 20 lattice at filling f =
0.02. Both of these measure the heat transport per vortex (J Q

x /J v
x �0).

Inset: The f dependence of these two quantities at low T (T = 0.1).
The two smooth green curves are fits to the form a + b ln f (light
green: a = 0.11, b = −0.19; dark green: a = −0.14, b = −0.22).

dependence obtains from an ideal gas treatment of the vortices,
the Sackur-Tetrode entropy per vortex being ∼ − ln f . The
vortices are, however, strongly interacting. A crude way to
estimate the interaction effects on the transport entropy would
be to assume that the available volume per vortex is reduced
by a factor of N , the number of vortices. This then gives a
contribution ln �/N = − ln f to the configurational entropy,
i.e., also a logarithmic dependence.

Also notice that in the low temperature region of Fig. 9, up
to about T � 0.5, κ/eN and αxyT are only weakly temperature
dependent. This means that αxy roughly falls off as ∼1/T for
low temperatures. A fit to ∼1/T of αxy for RCSJ dynamics
(Q = 0.5) at f = 0.01 is displayed in Fig. 10. The inset in
log-log scale reveals that for temperatures above T � 0.8,
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FIG. 10. (Color online) Off-diagonal component of the thermo-
electric tensor αxy = eN/ρ vs temperature T for RCSJ dynamics
(Q = 0.5) on a square 20 × 20 lattice at filling f = 0.01. At low
T the curve follows the power law ∼1/T . In the high temperature
region the falloff is much faster, about ∼1/T 8.
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FIG. 11. (Color online) Nernst signal eN , heat conductivity κ ,
and electrical resistivity ρ vs filling f at different temperatures for a
20 × 20 square lattice with Langevin dynamics.

αxy falls off much faster, somewhere close to ∼1/T 8. These
features are valid also for Langevin and RSJ dynamics, as well
as for other types of lattices.

C. Intermediate and high fields: Effects of granularity

Going to higher magnetic fields the type of lattice structure
starts to play an important role, as geometric frustration will
affect vortex transport in this regime. The models at hand are
then more valid as descriptions of granular superconductors.

1. Square lattices

Figures 11 and 12 show simulation results as a function
of filling f for Langevin and RSJ dynamics (corresponds to
RCSJ dynamics with Q = √

0.02) on a 20 × 20 square lattice.
At low fillings the Nernst signal eN and the heat conductivity κ

both show a sharp increase culminating in a maximum around
f = 0.05–0.15, depending on temperature, followed by a de-
crease up to half-filling. This “tilted-hill” profile of the Nernst
signal seems to be generic and is found in a number of experi-
ments on cuprates and ordinary type-II superconductors.1,42

Note how eN is always zero at f = 0 and 1/2, due to
vortex-vacancy symmetry. The heat conductivity κ on the
other hand stays finite at f = 1/2. On a perfectly periodic
lattice all physical quantities are, because of the symmetry
of the XY model Hamiltonian [Eq. (11)], periodic in filling
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FIG. 12. (Color online) Nernst signal eN , heat conductivity κ ,
and electrical resistivity ρ vs filling f at different temperatures for a
20 × 20 square lattice with RSJ dynamics.

f , with period one, and also mirror symmetric (for ρ, κ) or
antisymmetric (eN ) around f = 1/2. Thus, all information is
contained in the region f = 0 → 0.5, which is displayed here.

Now, lowering the temperature the curves have significant
structure due to geometric frustration as the filling is varied

FIG. 13. (Color online) Contour plot of the Nernst signal eN for
a 20 × 20 lattice with Langevin dynamics in the temperature-filling
plane. The dashed white line joins the maxima of eN .
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through different commensurate values. At fillings such as f =
1/8, 1/5, 1/3, 2/5, all three transport coefficients eN , κ , and
ρ are reduced due to vortex pinning to the underlying lattice.
This is particularly apparent at the second lowest temperature
T = 0.2 (cyan colored curves) at f = 1/3 and 2/5. The
observant reader may also have noticed that the Nernst signal
actually goes negative in a region below half-filling. In fact
a small region of negative Nernst signal appears also right
below f = 1/3, and it is plausible that this occurs below
other commensurate fillings as well, over certain temperature
intervals. This sign reversal of eN is a new effect22 seen in
all our simulations independent of the type of dynamics used
(Langevin or over-/underdamped RCSJ) and persists also for
lattices with moderate geometric disorder (see e.g., Fig. 15). As
discussed in a previously published paper of ours,22 a negative
vortex Nernst signal [given the definition in Eq. (2)] implies
vortex transport in the direction opposite of heat transport. We
argue that this is possible, since around these special fillings
there is a temperature regime, where mobile vortex vacancies
can exist on top of a pinned vortex lattice. The vortex vacancies
then diffuse down the applied temperature gradient, creating
a net vortex flow in the opposite direction and thus a negative
Nernst signal.
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FIG. 14. (Color online) Nernst signal eN , heat conductivity κ and
electrical resistivity ρ vs filling f at T = 1 for random lattices of size
20 × 20 with dmin = 0.8, using Langevin dynamics. Results shown
are for two models with different critical current distributions I c

ij = I c

(red or gray) and I c
ij ∼ d⊥

ij (black). Each curve is an average over eight
disorder realizations.

Comparing the Nernst signal versus f for Langevin and RSJ
dynamics in Figs. 11 and 12, respectively, one sees an almost
exact agreement (as opposed to eN versus T at low fillings,
where Langevin and RSJ dynamics are less similar). Also,
increasing the damping parameter Q for RCSJ dynamics, i.e.,
going from the overdamped to the underdamped limit, results
in hardly any changes in the qualitative filling dependence of
eN , κ , and ρ. This should indicate that these quantities in this
regime are governed by geometric frustration effects and are
rather insensitive to model-specific details.

As a summary of the Nernst effect on a square lattice (for
Langevin dynamics) we provide in Fig. 13 a contour plot of
eN in the temperature-filling plane. The red regions indicate a
large Nernst signal and the blue ones a signal which is close
to zero, or even negative (the dark blue blob in the upper left
corner).

2. Random lattices

To model random granular superconductors we have carried
out simulations on randomly connected networks as defined
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FIG. 15. (Color online) Nernst signal eN , heat conductivity κ ,
and electrical resistivity ρ vs filling f at T = 1 for random lattices of
size 20 × 20 with different degrees of disorder set by the parameter
dmin using Langevin dynamics. Each curve is an average over 16
disorder realizations. The lower panel shows examples of Voronoi
lattices obtained from random packings of grains with different dmin.
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FIG. 16. (Color online) Contour plot of the Nernst signal eN in the
filling–grain-size standard deviation plane for random lattices with
Langevin dynamics at T = 1.

in Sec. II C. In Fig. 14 we compare eN , κ , and ρ as functions
of filling at T = 1 for two different models with Langevin
dynamics on a random lattice with dmin = 0.8. In the first
model (red or gray curve) we set the critical currents of every
junction to a constant I c

ij = I c. The second model (black curve)
has the critical currents proportional to the contact area (or
strictly contact length d⊥

ij in 2D) between the grains, I c
ij ∼ d⊥

ij ,
see Fig. 3.

In a geometrically disordered system without perfect
periodicity, the Nernst signal and the resistivity are no longer
periodic as a function of filling. We have therefore extended
the curves up to f = B〈Apl〉/�0 = 2 (〈Apl〉 = 1/2 for the
random lattices). The Nernst signal shows an even steeper
increase at low f and peaks even earlier than in the square
lattice case. We also see that eN is somewhat reduced in the
model with I c

ij ∼ d⊥
ij . The negative region is narrower, but

above f = 1 the curves are essentially the same. Looking at
the heat conductivity, the two models display quite similar
behavior as a function of temperature, although in the second
model the amplitude of κ is effectively halved. A more
dramatic difference can be seen in ρ though, where the model
with added disorder of the critical currents seems almost
like a smoothed-out version of the first one, for which ρ

has more dramatic features at high fillings. At very high
fillings f � 1 the flux through each plaquette modulo �0

becomes approximately random in [0,�0] making the Nernst
signal vanish and κ and ρ constant. The results for RCSJ
dynamics show a qualitatively similar behavior, with some
minor quantitative differences.

Results for different strengths of randomness (different
values of dmin, see Sec. II C) are shown in Fig. 15. From this
figure it is also apparent that much of the structure in eN , κ ,
and ρ as a function of filling is reduced as we move from less
toward more disordered lattices. (The apparent lack of visible
geometric frustration effects at specific fillings are, however,
in the case of these random lattices due to the fact that we
average over many (8 or 16) different disorder realizations.)

Figure 16 summarizes the Nernst effect in our random
lattices. It displays a contour map of the Nernst signal in
the filling–grain-size standard deviation plane. The large dark
(blue) region at the bottom corresponds to a negative eN ,
whereas the dark (red) region to the left represents a large
positive Nernst signal.

VII. CONCLUSIONS

We have modeled heat and charge transport in two-
dimensional granular superconductors. We have considered
regular square arrays and randomly connected networks.
Square arrays can be artificially fabricated using lithography,
while random arrays of varying degrees of disorder may occur
naturally in inhomogeneous thin-film superconductors. We
consider two models for the dynamics of the superconductors:
relaxational Langevin dynamics and RCSJ dynamics. An
expression for the heat current is derived from these models.
For the Langevin dynamics the heat current expression (25) is
consistent with previous expressions derived microscopically
or from time-dependent Ginzburg-Landau theory.25,27,28 For
the RCSJ model, however, it differs in that it contains the
total current, including the capacitative and resistive currents,
which shunt the supercurrent through the junction. The
expressions are used in numerical simulations to calculate
the heat conductivity, the resistivity, and the Nernst signal.
We find an anomalous logarithmic size dependence in the
heat conductivity for the RCSJ model in zero magnetic field.
This type of dependence is present also in the spin wave
approximation valid at low T . We also find κ to be divergent
in the limit when the shunting capacitor goes to zero, showing
that the RSJ model without capacitors is pathological from the
point of view of heat conduction. The Nernst signal and the
resistivity are still well behaved in this limit.

From our numerical simulations, we further find a highly
nontrivial nonmonotonous temperature dependence in κ

at low magnetic fields in both models. In this regime
granularity appears to have a negligible influence on the
transport properties, and our results should apply also to
two-dimensional phase-fluctuating bulk superconductors. For
low temperature T � TBKT ≈ 0.9 and magnetic fields it is
possible to define the transported heat per vortex, which is
found to depend logarithmically on filling f , while being
approximately temperature independent. Note, however, that
in our phase-only models the vortices are coreless. At higher
T thermally excited vortices and antivortices start to influence
the results and dominate the response.

At higher fields, granularity becomes important and geo-
metric frustration strongly influences the Nernst signal, heat
conductivity, and resistivity, leading to a highly intricate
magnetic field dependence as shown in Figs. 11 –16. These
signatures should be possible to obtain directly in experiments
on regular Josephson-junction arrays, similar to those carried
out for the resistivity in Ref. 43, or in patterned thin film
superconductors.
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