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Vortex lattice melting in two-dimensional superconductors in intermediate fields
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To examine the field dependence of the vortex lattice melting transition in two-dimensional (2D) super-
conductors, Monte Carlo simulations of the 2D Ginzburg-Landau (GL) model are performed by extending the
conventional lowest Landau level (LL) approximation to include several higher LL modes of the superconducting
order parameter with LL indices up to six. It is found that a nearly vertical melting line in lower fields, which is
familiar within the elastic theory, is reached just by including higher LL modes with LL indices less than five, and
that the first-order character of the melting transition in higher fields is significantly weakened with decreasing
the field. Nevertheless, a genuine crossover to the consecutive continuous melting picture intervened by a hexatic
liquid is not found within the use of the GL model.
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I. INTRODUCTION

The vortex phase diagram in type II superconductors has
been extensively studied in relation to the high Tc cuprates
in magnetic fields which is a typical three-dimensional (3D)
system with strong fluctuation. The vortex lattice melting
transition in 3D systems in clean limit has been examined as a
first step for understanding phenomena in real superconductors
with quenched disorder and is now believed to be of first
order in any magnetic field. In contrast, understanding of the
phase diagram in the two-dimensional (2D) case in nonzero
magnetic fields has not progressed sufficiently. This is partly
because the resulting vortex lattice is nonsuperconducting.
No state with zero resistance is reached1 in clean limit.
Further, a weak but nonvanishing disorder destroys the quasi-
long-range order of vortex positions, and a vortex glass, i.e,
a superconducting vortex phase, is never realized at finite
temperatures, implying that there will be no phase transition
in real 2D superconductors with disorder in finite fields and
finite temperatures.2,3

However, the field-temperature vortex phase diagram in
a 2D superconductor remains unresolved, even theoretically.
Based on the elastic theory, there are at least two possibilities,
a direct first-order melting and the defect-unbinding melting
composed of two consecutive continuous transitions and a
hexatic liquid crystal phase intervening between them.4 In
high fields where the pair-field ψ is limited to the modes
in the lowest Landau level (LL), however, the 2D melting
transition is of first order, according to the direct Monte
Carlo simulation of the Ginzburg-Landau (GL) model.5,6

Then, it will be valuable to clarify whether this first-order
transition is changed to the consecutive continuous melting
scenario in lower fields or not. In fact, the character of the
melting transition has been assumed in previous studies to
be independent of the strength H of the magnetic field. In
addition, when considering the real disordered case, clarifying
this issue on the field dependence of the melting mechanism
would improve understanding of the 2D vortex states in the
following sense: In real superconducting thin films with weak
quenched disorder, a first-order melting in clean limit is not
suggested in thermodynamic and resistive data. Note that such
experiments are usually performed in much lower fields than
Hc2(0), where roles of quenched disorder are believed to be

weaker.2 The fact that no first-order melting has been suggested
so far in physical quantities in real 2D thin films might be
understood if the melting transition in clean limit is continuous
or a highly weak first order one in such lower fields.

Based on such a background on the 2D vortex states, in the
present work, the previous numerical analysis limited to the
LLL modes of ψ is extended to the case with several higher LL
modes to address the nature of the vortex lattice melting in the
GL model in lower fields. This paper is organized as follows. In
Sec. II, the model and the procedures used for the analysis and
simulations are explained. In Sec. III, the obtained numerical
results are explained and discussed. Section IV includes a
summary of the present work and a comparison with other
theoretical works.

II. MODEL AND PROCEDURES

Our starting model, the 2D GL Hamiltonian, takes the form

H = s

∫
d2r[ε0|�(r)|2 + ξ 2

0 |(−i∇ + 2|e|A)�(r)|2

+ b

2
|�(r)|4], (1)

with the partition function Z = Tr exp(−H/T ), where ξ0 is
the coherence length at T = 0, ε0 = −1 + T/Tc0, �(r) is the
pair-field, s is the film thickness, and the Landau gauge A =
(0,Hx,0) will be used hereafter. The magnetic screening due to
the fluctuation of the gauge field A will be neglected based on
the familiar reasoning that the effective penetration depth7 � =
λ2/s defined in the Meissner state is, in most cases, beyond
the system size, where λ is the London penetration depth.

Our simulations have been performed by fixing8 the number
of vortices Ns in the manner commensurate with the triangular
lattice

LxLy = 2πr2
HNs,

Lx

Ly

=
√

3

2
, (2)

where rH = (2|e|H )−1/2, Lj is the system size in each
direction, and N

1/2
s is assumed to be an integer. Thus, in our

simulations, each system size Lj increases with decreasing H .
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Further, the quasiperiodic boundary condition for the pair-field
�(r)

�(x,y + Ly) = �(x,y), (3)

�(x + Lx,y) = �(x,y) exp
( − ir−2

H Lxy
)

(4)

is assumed to be satisfied. Due to this, any gauge-invariant
quantities such as |�(r)|2 becomes periodic in the perfect
vortex lattice.

The pair-field � will be expanded in terms of the LL
eigenfunctions ψn,l in the way5,8

� =
√

T

s

Ns−1∑
n=0

∑
l

cn,lψn,l(r). (5)

Then, Eq. (2) becomes H̃ [bT /s] = H [bT /s]/T , where

H̃ [bT /s] =
∑
n,l

(t − 1 + (2n + 1)h)|cn,l|2 + bT

2sLxLy

∑
mx

∑
N1N2

∑
{ni }

∑
{li }

cn1,l1c
∗
n2,l2

cn3,l3c
∗
n4,l4

δl1+l3+Ns (N1+N2),l2+l4

×Ln2,n1

(
k+√

2
rH

)
Ln4,n3

(
− k+√

2
rH

)
exp

[
− k2

x + k2
y

2
r2
H − i kxkyr

2
H

]
. (6)

Here, k+ = kx + iky , and

kx = 2π

Lx

mx, ky = 2π

Ly

(l1 − l2 + NsN1), (7)

with integers mx , l1, l2, and N1. Further, the quartic term has
been rewritten according to the treatment used elsewhere9 and
in terms of the expression

Lp,q(z) =
min(p,q)∑

n�0

√
p!q!

(p − n)!(q − n)!n!
zp−n(−z∗)q−n. (8)

In the regime where the phenomenological GL model is
applicable, the coefficient b is given, in terms of the GL
parameter κ and the depairing field Hc2(0) at T = 0, by

b = 8π
κ2

H 2
c2(0)

. (9)

As numerical values of material parameters, we use hereafter
those typical of optimally doped high Tc cuprates, Tc0 =
102[K], ξ0 = 10[Å], and s = 15[Å]. Then, bT /(LxLys) is
expressed by W (t,h)/(πNs), where

W (h,t) = κ2 × 10−5 t h, (10)

t = T/Tc0, and h = H/Hc2(0). By performing the scale
transformation

{cn,l} → {cn,l}/
√

W (h,t), (11)

Eq. (6) finally becomes

H̃red = 1

W (h,t)
H̃

[
2r2

H

]
, (12)

with Z = Tr exp(−H̃red), which will be used for numerical
simulations.

As thermodynamic evidence of a first-order transition, we
focus on the hysteresis �E of the internal energy, which can
be defined by8

�E = 1

LxLy

[〈H̃ 〉dec − 〈H̃ 〉inc], (13)

where the indices “dec” and “inc” denote cooling and warming
processes, respectively, and 〈· · ·〉 implies the thermodynamic
average. In the warming process, the vortices is assumed to
form the triangular lattice at a low enough temperature. This
condition can be expressed as5,8

cn,l = (−1)m(m+1)/2

(
πN

1/2
s

βA

)1/2

δl,0δn,N
1/2
s m/2 (14)

for 0 � m < 2N
1/2
s but is zero otherwise, where βA denotes the

Abrikosov factor (=1.1596) of the perfect triangular lattice.
On the other hand, the initial condition cn,l = 0 will be used
for the cooling process.

III. NUMERICAL RESULTS

In our simulations, the field dependence has been examined
at the fixed number of field-induced vortices Ns and by
changing Lj following our previous work in LLL,8 because
numerical results become much clearer than those under fixed
Lj and a field-induced change of Ns . We have performed three
simulations with Ns = 36 and six LLs (0 � n � 5), Ns = 64
and the six LLs at only h = 0.1 and 0.3, and Ns = 36 and
seven LLs (0 � n � 6). We have not found any Ns-dependent
essential differences in the hysteresis data and snapshots of the
vortex configurations. Hereafter, we will primarily show the
data resulting from the use of six LLs and Ns = 36.

Simulations have been performed by creating Markov
chains of the coefficients cn,l according to the METROPOLIS

algorithm. Monte Carlo (MC) steps of the range between
5.0 × 105 and 1.0 × 106 were used to ensure approach to
the thermodynamic equilibrium, and, afterward, additional
5.0 × 104 MC steps were used to take a statistical average
of physical quantities.

Now, let us explain our numerical results. Figure 1 expresses
the hysteresis, Eq. (13), accompanying the first-order melting
transition at tm(h) ≡ Tm(H )/Tc0 at two different magnetic
fields, (a) h = 0.3 and (b) h = 0.6, on sweeping the tempera-
ture in the LLL approximation (upper figures) and in the case
with higher LLs with n � 5 (lower figures). It is found that,
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FIG. 1. Numerical t (= T/Tc0) vs. �E curves in (a) h = 0.3 and
(b) h = 0.6 taken at the fixed Ns = 36. For both, the upper figures
are the result in the LLL approximation, while the lower figures were
obtained by taking account of the six LLs with 0 � n � 5.

compared with the familiar LLL results, inclusion of higher
LLs depresses tm and reduces the hysteresis around tm. In
h = 0.3, these higher LL effects are clearly seen, while the
LLL approximation seems to be valid even quantitatively in
h = 0.6.

Prior to a further discussion on the field dependence of the
hysteresis, higher LL effects on the h-t phase diagram will be
explained here. In Fig. 2, the melting transition curve (solid
curve with open circles) following results from the present
work is shown together with the corresponding results (dashed
curve) in the LLL approximation. The melting temperature at
each h value has been defined as the t value at which the
hysteresis becomes maximal. In obtaining these curves, we
have used the value κ = 61 for the GL parameter. In LLL
approximation, the reduced melting temperature tm yields

solid

Hm(t)

liquid

Hc2(T)

h

 0.4 0
 0

 0.2  0.6  0.8

 0.2

 0.4

 0.6

 0.8

FIG. 2. Resulting melting transition curve tm(h) (solid curve with
open circles) from the simulation with six LLs incorporated. The
dashed curve is the corresponding curve in the LLL approximation.
The thin dotted curve is the Hc2(T ) line, while the thick dotted curve
is the estimated boundary above which the thermally induced vortex-
pairs appear.

the LLL scaling 1 − tm − h ∝ (tm h)1/2,10 and the results in
Fig. 2 show that

1 − tm − h = c−1
2

√
W (tm,h)

π
, (15)

with5 c2 = 0.0989. The right hand side of Eq. (15) is
proportional to (ht)1/2, and the resulting t-h relation is called
the LLL scaling.10 On the other hand, in low enough fields,
the relation

1 − tm − h = W (tm,h)

2πc′h
(16)

is expected to be satisfied.10 Reflecting the fact that the
right hand side of Eq. (16) is h-independent, the resulting
melting curve in lower fields is nearly vertical in the t vs. h

phase diagram. One can verify that, in Fig. 2, the weak field
dependence of the solid curve in such low fields is a reflection
of the field dependence of Tc2(h) rather than the neglect of
other higher LLs (n � 6). In contrast to the LLL approach,
however, there is no well-established value of c′ in Eq. (16).
Figure 2 suggests that tm = 0.3 in low enough fields, which
implies that c′ = 0.0025. Namely, the relation c′ = 0.25c2

2 is
approximately satisfied in the results shown in Fig. 2.

Here, we will compare the solid curve in Fig. 2 with the
corresponding one following from the elastic theory. To do
this, the results in the elastic theory1,11 should be reviewed.
In any approach based on the elastic energy of the vortex
lattice, the field dependence of the melting temperature Tm(H )
is determined by that of the shear elastic modulus C66,
which depends on the magnitude of the reduced applied
field h ≡ H/Hc2(0), where Hc2(T ) is the depairing field in
the orbital limit, even in the low-field regime where the
phase-only model is useful. Then, C66 ∝ H in lower fields,
while C66 ∼ (H − Hc2)2 in higher fields.12 Consequently,
Tm(H ) is H -independent in low fields, while Tm(H ) obeys the
lowest LL scaling.1 Clearly, the low-field portion of the solid
curve in Fig. 2 is comparable with the H -independent Tm(H )
curve in the London limit. The above-mentioned tm(H ) curve
in the elastic theory can be described by the single expression

C66r
2
H

Tc0
= αtm, (17)

implying a comparison between the elastic and thermal
energies by assuming that the mechanism of the vortex
lattice melting is universal and uniquely given irrespective
of the magnetic field strength, where the coefficient α is
h-independent. The vortex shear modulus C66 is expressed, in
the case of the triangular lattice, as Hc2(T )H/(32πκ2) in the
low-field London regime and 0.708(Hc2(T ) − H )2/(32πκ2)
in the high-field LLL regime,12 where the value βA = 1.1596
for the triangular lattice was used. Then, we find that the
elastic model leads to the relation c′ = 0.704c2

2 when tm(h)
in the above-mentioned two regimes is expressed by Eqs. (15)
and (16). That is, the present tm(H ) result shown in Fig. 2
suggests that the melting temperature in low fields where the
LLL approximation breaks down is overestimated in the elastic
theory. The main origin of this discrepancy consists in the
presence of higher LL fluctuations, which are not included in
the elastic theory, in the present numerical simulations of the
GL model. Since the mean-field solution of the triangular or
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hexagonal vortex lattice is described only by the LLs with LL
indices of multiples of six, reflecting its sixfold orientational
symmetry,13 the shear modulus in this state is also determined
by those LLs.14 In other words, the higher LLs with 1 � n � 5
are not incorporated in the relation of Eq. (17). On the other
hand, the n = 6 LL is not included in our computation leading
to Fig. 2, while the mean-field GL theory should reduce to the
London theory just by incorporating the higher LL modes with
LL indices of multiples of six. Namely, the nearly vertical tm(h)
line in lower fields in Fig. 2 has been obtained irrespective of
reduction to the London model due to the lowering of h. In
other words, the elastic model overlooks crucial fluctuation
effects and is not sufficient for describing the vortex lattice
melting as far as choosing the GL model as the starting model
is valid.

Returning to Fig. 1, one can see that the magnitude of
the hysteresis in the simulations including higher LLs has a
different field dependence from that in the LLL approximation.
The hysteresis curves following only from LLL indicate that,
as is seen from the upper figures in Figs. 1 and 3, the hysteresis
accompanying the transition increases with decreasing h. Once
the higher LLs are incorporated, however, the hysteresis peak
at the transition rather decreases with decreasing h, implying a
reduction of the first-order character of the melting transition
in lower fields. Of course, this field dependence correlates with
the corresponding h- dependence of the difference in the tm
value between the LLL curve (dashed curve) and the solid one.
However, this trend that the first-order transition is weakened
by decreasing the field is interesting in that it suggests the
possibility that, in lower fields, the first-order melting might be
transmuted to the two-step continuous melting scenairio.4 To
clarify this possibility within our GL study, the corresponding
hysteresis curves in lower fields are shown in Fig. 3, together
with the h dependence of the peak height of hysteresis at tm
[Fig. 3(a)]. Although the hysteresis reduces with decreasing
field even for lower h (0.1 and 0.05), the data suggest that
the reduction of hysteresis saturates with vanishing h. This
saturation of the peak height does not seem to be an artifact
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FIG. 3. Numerical t vs. �E data at (a) h = 0.1 and (b) h = 0.05.
The upper figure of (a) is the result in the LLL approximation, while
the lower one of (a) includes the solid curve in the case with six LLs
(n � 5) and the dashed one in the case with seven LLs (n � 6). The
figure (c) implies the h-dependence of �Em ≡ �E(t = tm). Data in
(b) and (c) result from the use of six LLs with n � 5.

due to the limitation to the LLs with n � 5: An additional
(dashed) hysteresis curve for h = 0.1 obtained by including
the n = 6 LL further is presented in Fig. 3(a). Although the
transition point has been slightly shifted to a lower temperature
by the n = 6 LL, which, as mentioned earlier, affects the elastic
energy of the mean field vortex lattice, the hysteresis at tm is
slightly bigger by including the n = 6 LL. Therefore, based
on the present simulation, we argue that the melting transition
remains of first order, even in low-field limit, although its
first-order character is significantly weakened with decreasing
the field.

Next, we explain the vortex states at various t values seen
in our simulation using the LLs 0 � n � 5. In Fig. 4, we have
shown snapshots of the distributions of the order parameter
amplitude |�| (upper figures) and the gauge-invariant gradient

∇� + 2π

φ0
A (18)

of the phase � of � (middle and lower ones). Before discussing
what the figures imply, the relation between � and the vortices
in the LLL approximation will be reviewed. As is well known,
the order parameter within the LLL satisfies15

�L(r) = exp

(
− x2

2r2
H

)
fNs

(y + ix) (19)

in the present gauge A = Hxŷ, where the function fm(z) is any
mth order polynomial of z. Thus, �L has Ns zero points rν =
(xν,yν) and takes the product form �ν[y − yν + i(x − xν)]

t = 0.2 t = 0.3 t = 0.4 t = 0.5

t = 0.6t = 0.2

FIG. 4. Snapshots of the spatial distribution of |�(r)| (top figures)
and the gauge-invariant gradient vector, Eq. (18) (middle and bottom
ones) at each t indicated in the figures. The bottom figure is the zoom
of the region specified by a square in the middle one at t = 0.6 and
shows the presence of one antivortex (circle) with a clockwise circular
current in contrast to others with a counterclockwise circular current.
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Then, it is staightforward to show that the phase � of �L

satisfies the topological condition

∇ × ∇� = 2π

Ns∑
ν=1

δ(x − xν)δ(y − yν)ẑ, (20)

implying each zero point of |�L| is a vortex coordinate.
Equation (20) implies that, in �L, all of the Ns zero points
of |�L| correspond to the field-induced vortices and thus that
no antivortices can appear. That is, the thermally induced
vortex pairs are described not by the LLL modes but only
by the higher LL modes of �.10 Bearing this role of the
higher LLs in mind, one finds in Fig. 4 where h = 0.1 that,
below t = 0.5, the antivortices do not appear. As is seen in the
bottom figure, appearance of an antivortex and, thus, of one
vortex pair induced by the thermal fluctuation is verified just
above t = 0.5. By similarly defining the temperature, at which
the thermal vortex pairs begin to appear at different h values,
we obtain the crossover line, shown in Fig. 2 as the thick
dotted line, which separates the vortex liquid composed only
of the field-induced vortices from the state with the thermally
induced antivortices. This result is consistent with the picture
argued elsewhere10 that the higher LLs with antivortices
included become more important at higher temperatures and
push the melting transition curve down to lower temperatures
[see Fig. 2(a) in Ref. 10].

Finally, we note that, as is seen at the top of Fig. 4, the
snapshot taken just at tm(h = 0.1) = 0.3 does not include any
dislocation. This is strange at least within the conventional
picture based on the elastic theory that the melting transition is
driven, more or less, by thermally induced dislocations.4 From
the figure, we feel that spatial variations of the amplitude |�|
of the pair-field assist the nearly harmonic shear elastic modes
and that their cooperative roles result in the melting of the
vortex lattice. This view, arguing the necessity of the amplitude
fluctuation, does not contradict the conventional wisdom that
Goldstone modes in an ordered phase cannot become critical
modes for driving a thermal disordering. Nevertheless, we have
to mention that it is beyond the scope of the present work to
judge whether such a role of the fluctuation of the amplitude
|�| is essential or an artifact of the use of the GL model, which
is usually valid when |�| is small.

IV. SUMMARY AND DISCUSSION

In the present work, numerical simulations of the GL model
with not only the order parameter modes in LLL but also
those in five or six higher LLs have been performed. It has
been found that the nearly vertical melting curve, which has
been identified so far with the result following from the elastic

model in the London limit, is obtained simply by incorporating
the lower five higher LLs, which do not contribute to the
elastic model, and that the first-order character of the melting
transition diminishes with decreasing the field, although the
melting picture with two continuous transitions4 is not reached
even in the low-field limit. The weaker first-order transition
in lower fields suggests that the discontinuous nature of the
transition in clean limit is easily lost by a weak pinning effect
in real systems with quenched disorder and, thus, explains why
the first-order melting transition has not been reflected, e.g., in
transport data in real superconducting films in nonzero field.16

In contrast to the present result in the GL model showing
a small but nonzero hysteresis at the melting transition in
any magnetic field, a simulation work17 has recently been
reported indicating a continuous melting transition. There,
the authors have discretized the relation uj = r2

H (ẑ × ∇δ�)j ,
justified14,18 within the linear elastic theory, between the shear
displacement u and the phase fluctuation δ� to invoke a
starting lattice model for their numerical studies. However,
their starting model includes phase slips in the j direction
and the direction perpendicular to this on the same footing,
suggesting that thermally induced vortex pairs coexist with
the thermally induced dislocation pairs. That is, the model in
Ref. 17 is not compatible with the GL model in which the
vortex pairs never appear close to the melting transition (see
Fig. 2), and thus, it is not surprising that the present results
are not consistent with the continuous transition17 found in a
model that, in our opinion, is incompatible with the original
GL model.

On the one hand, we do not definitely conclude at this
stage the absence of the low-field regime in which the melting
transition is continuous4 with no thermally induced vortex
pairs. More or less, the main drawback of the present work is
the use of the GL model in addressing the low-field regime.
In such low fields and low temperatures, the amplitude |�| is
rigid enough to justify the phase-only model (with no thermally
induced vortex pairs). On the other hand, the fact that the
nearly vertical melting curve in low fields expected from
theoretical arguments is obtained simply by taking account
of five or six higher LLs’ modes suggests that the results are
not significantly affected by the truncation of the number of
incorporated LLs. Nevertheless, further theoretical progress
will be necessary to resolve this issue on the character of the
transition.
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