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In this paper, we study quantum Sp(N ) antiferromagnetic (AF) Heisenberg models by using the Schwinger-
boson representation and the path-integral methods. We consider both the two-dimensional (2D) system at
vanishing temperature and the 3D system at finite temperature (T ). An effective field theory, which is an
extension of the CPN−1 model in 3D, is derived and its phase structure is studied with the 1/N expansion. We
also introduce a lattice gauge theoretical model of CPN−1 bosons, which is a counterpart of the effective field
theory in the continuum, and study its phase structure by means of Monte Carlo simulations. For SU(N) AF
magnets on the 2D square lattice, which is a specific case of the Sp(N ) model, we introduce a spatial anisotropy
in the exchange couplings and show that a phase transition from the ordered Néel state to the paramagnetic phase
takes place as the anisotropy is increased. On the other hand for the 3D Sp(N ) system at finite T , we clarify
the global phase structure. As a parameter that controls explicit breaking of the SU(N) symmetry is increased, a
new phase, which is similar to the spiral-spin phase in frustrated SU(2) spin systems, appears. It is shown that
at that phase transition point, a local SU(2) gauge symmetry with composite SU(2) gauge field appears in the
low-energy sector. This is another example of the symmetry-enhancement phenomenon at low energies. As it is
expected that the Sp(4) AF magnets are realized by cold spin-3/2 fermions in an optical lattice, the above results
might be verified by experiments in the near future.
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I. INTRODUCTION

The study of quantum antiferromagnets has been one of the
most active areas in condensed matter physics. In particular,
in the last decade, much attention has been paid to exotic
phases and exotic phase transitions for which Landau’s classic
paradigm cannot be applicable.1,2 It is expected that investi-
gation of such exotic states is useful to understand anomalous
properties of underdoped high-Tc materials.3 Furthermore
recent developments in technologies of ultracold atoms and
optical lattice traps elevate purely academic quantum spin
models to realistic ones, and these cold-atom systems are
sometimes regarded as a final simulator for strongly correlated
electron systems. Quantum SU(N ) antiferromagnets are one of
these examples. Theoretically these models can be studied by
using the Schwinger-boson methods and the 1/N expansion.4

In seminal papers,5 it was shown that spin-(N − 1)/2 (N
is an even integer) cold-atom systems in an optical lattice
with one atom per quantum well can be regarded as quantum
Sp(N ) antiferromagnets. There are two parameters J1, J2 in
the Hamiltonian of the Sp(N ) magnets and when J1 = J2,
the symmetry is enhanced to SU(N ) ⊃ Sp(N ) and an SU(N )
quantum antiferromagnet is realized.

In the present paper, we shall study Sp(N ) quantum
antiferromagnets by using the slave-boson (Schwinger-boson)
representation and the path-integral methods.6 We first derive
an effective field theory for the Sp(N ) Heisenberg model.
This field theory is an extension of the CPN−1 model for the
SU(N ) antiferromagnetic (AF) Heisenberg model. Then we
investigate its phase structure by using the 1/N expansion.
We also study numerically its lattice-gauge-model counterpart
by means of Monte Carlo (MC) simulations.

This paper is organized as follows. In Sec. II, we shall
derive the effective field theory for the Sp(N ) AF Heisenberg
model by using CPN−1 representation of (pseudo)spin degrees
of freedom. We consider the 2-dimensional (2D) system at

vanishing temperature (T ) and also the 3-dimensional system
at finite T , whose effective field theory is a gauge theory
of CPN−1 bosons in 3D. In Sec. III, we study the effective
field theory by the 1/N expansion. We focus on the quantum
phase transition in the 2D system at T = 0 and the finite-T
phase transition in the 3D system. We first show that in the
SU(N ) AF magnets with anisotropic exchange couplings on a
square lattice, a quantum phase transition from the AF Néel
state to the paramagnetic state takes place as the anisotropy
is increased. This transition can be regarded also as a finite-T
phase transition in the 3D system; i.e., the long-range AF
order is destroyed by the thermal fluctuations. The above
two states persist in the Sp(N ) system in the vicinity of the
SU(N ) symmetric point J1 = J2. As J2/J1 is decreased to
some critical value, a phase transition to a new phase with
a composite vector-field condensation takes place and a new
kind of spin order appears. In Sec. IV, we study a lattice
version of the obtained field theory and show the results of
the numerical study for the Sp(4) case. The obtained phase
diagram is qualitatively in agreement with that obtained by the
1/N expansion, but we also find some discrepancy between
the 1/N expansion and the numerical study, e.g., order of the
phase transition, etc. Section V is devoted to our conclusions.

II. MODEL AND EFFECTIVE FIELD THEORY

A. Sp(N) Heisenberg model

In this paper, we shall study a system of fermions in 2D
and 3D optical lattices. As we consider the case of one atom at
each well, the quantum Hamiltonian of the system is given by
Heisenberg models that describe dynamics of the spin degrees
of freedom. Although the case of spin-3/2 fermions is the most
realizable, we consider the general spin-(N − 1)/2 (N is an
even integer) cold atoms in the present paper. As in the usual
spin-1/2 case, the exchange couplings are antiferromagnetic
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FIG. 1. (Color online) (a) Correlation of �ab. (b) Correlation of �a .

in these systems. The Hamiltonian of the Heisenberg model
is given in terms of the spin operators �Si = (Si,x,Si,y,Si,z) at
site i, which satisfy the usual commutation relations of the
angular momentum. In previous papers,5 it was shown that in
the system of spin-3/2 fermions, the spin SU(2) symmetry
is enlarged to Sp(4) symmetry as a result of the s-wave
dominance of the scattering amplitude of fermions in a well.
Therefore cold fermions in an optical lattice is an ideal system
for study of the quantum Sp(N ) AF magnets.

In this subsection, we consider the anisotropic Sp(N )
Heisenberg model on a square lattice; i.e., exchange couplings
in the x and y directions are different. Then the Hamiltonian
is given as follows in the most general form with Sp(N )
symmetry, which is a generalization of HAF = ∑

J i,j �Si · �Sj ,

H =
∑
〈i,j〉

{
J

i,j

1

∑
a,b

�ab
i �ab

j − J
i,j

2

∑
a

�a
i �

a
j

}
, (2.1)

where i,j denote lattice sites and �ab ∈ sp(N ) [the Lie algebra
of Sp(N )] have N(N+1)

2 components. On the other hand,
�a ∈ su(N )/sp(N ), and there are (N+1)(N−2)

2 components.
Hereafter in most cases, we consider the nearest-neighbor
(NN) couplings and set the exchange couplings J

i,j

1 and J
i,j

2
as follows,

J i,i+x̂
n = Jn,x, J i,i+ŷ

n = Jn,y (n = 1,2), otherwise 0,

where x̂ (ŷ) is the unit vector of the x (y) direction. For the
N = 4 case,7 the above generators are related to the (4 × 4)

FIG. 2. (Color online) Phase diagram in γ -g and γ /g-g planes.

FIG. 3. (Color online) Lattice gauge model AL in Eq. (5.1) is
defined on layered triangular lattice.

spin matrices �S as

�1 = 1√
3

(SxSy + SySx), �2 = 1√
3

(SzSx + SxSz),

�3 = 1√
3

(SzSy + SySz), �4 = 1√
3

(
S2

z − 5

4

)
, (2.2)

�5 = 1√
3

(
S2

x − S2
y

)
,

and

�ab = 1

2i
[�a,�b]. (2.3)

The Sp(4) case corresponds to the spin-3/2 system, and �a

involves even powers of the SU(2) spin matrices, whereas �ab

involves odd powers of the spin matrices. Then the long-range
order of �a indicates a spin-nematic order.

It is useful to introduce the matrix J , which has the
following properties and is a generalization of the time-reversal
matrix iσ 2 in the SU(2) spin case,

J t =−J , J 2 =−1, J�abJ = (�ab)t , J�aJ =−(�a)t .

(2.4)

To study the model (2.1) by means of field-theoretical
methods, we introduce the Schwinger boson operator b̂α (α =
1, . . . ,N) and represent the spin operators in the Hamiltonian
(2.1) in terms of them, �̂ab

i = b̂
†
i,α�ab

αβ b̂i,β , �̂a
i = b̂

†
i,α�a

αβ b̂i,β .

As in the spin-1/2 case, states in the Hilbert space of the
Schwinger boson correspond to the states of spin-(N − 1)/2
as

|Sz = (N − 1)/2〉S = b̂
†
N |0〉, . . . ,|Sz = −(N − 1)/2〉S = b̂

†
1|0〉,
(2.5)

where |0〉 is the empty state of the Schwinger boson, whereas
| · 〉S represents a state in the spin space. In terms of the
Schwinger boson, the Hamiltonian H in Eq. (2.1) is rewritten
as

H =
∑
〈i,j〉

{
2
(
J

i,j

1 − J
i,j

2

)
K̂

†
ij K̂ij − 2

(
J

i,j

1 + J
i,j

2

)
Q̂

†
ij Q̂ij

}
,

(2.6)

where Q̂ij = Jαβ b̂i,αb̂j,β and K̂ij = b̂
†
α,i b̂α,j . The operator

Jαβ b̂j,β is the conjugate spinor of b̂j,β and then Q̂ij repre-
sents pairing of spins on the lattice sites i,j , whereas K̂ij

corresponds to the Schwinger boson (spinon) hopping. Both
Q̂ij and K̂ij are invariant under Sp(N ) transformations.
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FIG. 4. (a) Energy E as a function of c1 for c2 = c3 = 0. There exists a discontinuity at c1 = 4.5. (b) Specific heat C as a function of c1 for
c2 = c3 = 0. There exists a sharp peak at c1 = 4.5. System size L = 20.

As we are studying the system with one atom at each lattice
site, we impose the following subsidiary condition,

N∑
α=1

b̂
†
i,αb̂i,α|phys〉 = |phys〉, (2.7)

as the physical-state condition. Then �̂a
i form a vector rep-

resentation of the Sp(N ) group, whereas �̂ab
i form an adjoint

representation. Furthermore, �̂a
i and �̂ab

i together form a set of
generators of the SU(N ) Lie group. We redefine the exchange
couplings as Ji,j ≡ 2(J i,j

1 + J
i,j

2 ), J ′
i,j ≡ 2(J i,j

2 − J
i,j

1 ),

FIG. 5. Energy distribution N [E] for the pure CP3 model. At
c1 = 4.498, N [E] has double-peak shape, whereas it has single peak
at c1 = 4.496 and 4.500. System size L = 20.

then

H =
∑
〈i,j〉

{−J ′
i,j K̂

†
ij K̂ij − Ji,j Q̂

†
ij Q̂ij }. (2.8)

From Eq. (2.8), it is obvious that when Ji,j = 0 (J ′
i,j = 0), the

model has the global SU(N ) symmetry.5 For the case Ji,j = 0,
the spin at each site is in the fundamental representation of
SU(N ), whereas for the case J ′

i,j = 0 spins on one sublattice
are in the fundamental representation and those on the other
sublattice are in the antifundamental representation of SU(N ).

In the following subsections, we shall derive the effective
field theory for the system (2.8) by using the path-integral
methods.

B. Effective field theory at T = 0

In this subsection, we shall derive the low-energy effective
field theory of the Hamiltonian (2.8). To this end, we use
the coherent path-integral methods. For the Schwinger boson,
we use the CPN−1 boson that satisfies z̄i · zi = ∑

α z̄i,αzi,α =
1 corresponding to the condition (2.7). Then the partition
function is given as

Z =
∫

Dz̄Dzδ(z̄ · z − 1) exp

[∫ β

0
dτA(τ )

]
,

(2.9)
A(τ ) = −

∑
i,α

z̄i,αżi,α − H(z,z̄),

where β = 1/(kBT ), żi ≡ ∂zi

∂τ
, and H(z,z̄) is obtained from

Eq. (2.8) by replacing b̂i,α → zi,α and b̂
†
i,α → z̄i,α ,

H(z,z̄) =
∑
〈i,j〉

{−J ′
i,j |z̄izj |2 − Ji,j |ziJ zj |2}, (2.10)

with z̄izj = ∑
α z̄i,αzj,α , etc. In order to derive the effective

field theory from Eq. (2.9), we integrate out half of the CPN−1

variables, e.g., those at odd sites assuming a short-range AF
order. Details of the calculation are similar to those of the
SU(2) spin case given in Ref. 8. After the integration, we
can consider a continuum limit of the effective model, as
the remaining variables zj at even sites can be regarded as a
smoothly varying field z(r) (r0 = τ,r1 = x,r2 = y). Hereafter
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FIG. 6. (Color online) (a) C for c2 = 2.0, c3 = 0. System size is L = 16, 20, 30. (b) Scaling function φ(x) in finite-size scaling (5.4).
Critical exponents and critical coupling are estimated as ν = 0.8, σ = 0.11, and c1c = 2.23.

we explicitly set the exchange couplings between adjacent
spins as follows,

Jx = J0, Jy = λJ0, (2.11)

where λ is the parameter for the anisotropy between x and
y directions. Then we obtain the action of the effective field
theory for anisotropic SU(N ) AF magnets in two dimensions
at T = 0 as

S0 = 1

2g

∫
d3r(D̄μz̄Dμz + σ (|z|2 − 1)), (2.12)

where Dμ = ∂μ − z̄∂μz, and we have put the speed of light
c = √

2(1 + λ)J0a to unity. In S0, σ is the Lagrange multiplier
for the CPN−1 constraint, and the coupling constant g is given
by

g = 1 + λ√
2λ

a, (2.13)

where a is the lattice spacing. From Eq. (2.13), it is obvious
that the effective coupling g has the minimum at the isotropic
point λ = 1. As we see in the following section, this means
that the anisotropy tends to break the AF order of the ground
state.

There also exists a Berry phase in the action,

SB = −1

6

√
2λ

1 + λ

∫
d3rεμνρDμ(D̄ν z̄Dρz). (2.14)

The Berry phase (2.14) with the fractional coefficient de-
pending on the anisotropy λ does not suppress effects of the
instanton in contrast to that with an integer coefficient; i.e., SB

does not give any substantial effects on the phase structure and
critical behavior.9 For the case of the SU(2) AF magnets on
a 2D lattice with anisotropic couplings, this observation has
been verified directly by numerical study.10

C. Effective field theory for finite-T phase transition

In this subsection, we consider the quantum spin system
(2.8) in a 3D cubic lattice, and focus on the isotropic
NN coupling Ji,j = J, J ′

i,j = J ′. The effective field theory
describing the finite-T phase transition of the system (2.8) is
derived in the following way. In Eq. (2.9), we first ignore the
time-derivative term z̄i żi and then the partition function Z3D

is given as

Z3D =
∫

Dz̄Dzδ(z̄ · z − 1) exp [−βH3D(z,z̄)] , (2.15)

where

H3D(z,z̄) =
∑
〈i,j〉

{−J ′|z̄izj |2 − J |ziJ zj |2}, (2.16)

and i, j denote sites in the 3D cubic lattice. Due to the
above approximation, numerical simulations of lattice CPN−1

boson model (2.15) become tractable as we see below.

FIG. 7. (Color online) (a) C for c2 = 2.0, c3 = 1.0. System size is L = 14, 20, 30. Critical coupling is estimated as c1 = 2.35. (b) C for
c1 = 3.0, c2 = 2.0. System size is L = 18. There are two phase transitions at c3 = 3.7 and 5.2.
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FIG. 8. (Color online) Phase diagram in (c3 − 1
c1

) plane for c2 =
2.0. Solid lines are phase transition lines obtained by measurement
of E and C. Dots denote phase transition points actually observed by
measurement. Spin correlation functions exhibit different behavior in
regions I–VI.

Physical meanings and the reliability of the approximation
were discussed in detail in previous papers.11

To obtain the effective field theory for the lattice model
(2.15), we first change variables as zi → J z̄i for i ∈ odd site,
and take a continuum limit by converting the difference on the
lattice to a derivative in the continuum. Then we have

Sγ = 1

2g

∫
d3r(D̄μz̄Dμz − γ (z̄J D̄μz̄)(zJDμz)

+ σ (|z|2 − 1)), (2.17)

where
1

g
∼ βJ/a, γ = J ′/J, (2.18)

and μ in Eq. (2.17) denotes 3D spatial directions. It should
be noted that Sγ in Eq. (2.17) reduces to S0 in Eq. (2.12) for
γ = 0. In the following sections, we shall study the field theory
Sγ by means of both analytic and numerical methods.

III. PHASE STRUCTURE: ANALYTICAL STUDY

A. 1/N expansion: Case of small γ

The partition function of the effective field theory is given
as

Z =
∫

DzDz̄Dσ exp

(
− N

2g

∫
d3r[D̄μz̄Dμz

−γ (z̄J D̄μz̄)(zJDμz) + σ (|z|2 − 1)]

)
, (3.1)

where we have introduced the factor N in front of the
action to perform the 1/N expansion in the analytical
study.14 At γ = 0, the system (3.1) has the global SU(N )
symmetry, z(r) → V z(r), V ∈ SU(N ). We first consider
the case of small γ , and put the following parameteriza-
tion for z, z = z0 + u + iv, where z0 = (n0,0, . . . ,0), u =
(0,u2, . . . ,uN ), and v = (0,v2, . . . ,vN ). The fields u and v are
real vectors. Then from Eq. (3.1), effective action Seff(n0,σ ) is
obtained by integrating over u and v as

Z =
∫

Dn0Dσ exp[−Seff(n0,σ )], (3.2)

Seff(n0,σ ) = (N − 1)Tr log
( − ∂2

μ + σ
)

+ N

2g

∫
d3xσ

(
n2

0 − 1
)
.

(3.3)

As the γ term generates only higher order terms of u and v, it
does not give any effect in the leading order of 1/N .

From Seff(n0,σ ) in Eq. (3.3), gap equations are obtained as

δSeff(n0,σ )

δσ
= (N − 1)

∫
d3k

(2π )3

1

k2 + σ
+ N

2g
(n2

0 − 1) = 0,

(3.4)
δSeff(n0,σ )

δn0
= N

g
σn0 = 0. (3.5)

We use the Pauli-Villars regularization with a cutoff � for the
integral (3.4), and obtain the critical coupling gc by putting
σ = n0 = 0,

1

gc

= �

2π
, (3.6)

where the cutoff � is related to the lattice spacing a of the
original lattice as � ∼ π/a. There are two phases, i.e., a
strong-coupling phase for g > gc,

√
σ0 = 2π

N

(
1

gc

− 1

g

)
, n0 = 0, σ0 = 〈σ 〉, (3.7)

and a weak-coupling phase for g < gc,

n2
0 = 1 − g

gc

, σ0 = 0. (3.8)

FIG. 9. (Color online) Spin correlation functions in I and II in phase diagram Fig. 8. Both Gn(r) and Gs(r) have no long-range order in I
and II; however in II Gs(r) exhibits a short-range spiral order.
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For g < gc, Sp(N ) symmetry is spontaneously broken and both
spins �ab and �a have long-range order. In a later section, the
above result will be verified by the numerical study of the
lattice model for the effective field theory.

The existence of the critical coupling gc indicates that at
T = 0 there is a critical anisotropic parameter λc for the SU(N )
AF magnets in the square lattice, beyond which AF long-range
order disappears.12 On the other hand for the 3D AF magnets at
finite T , there exists a critical temperature Tc ∼ Jgc/a, below
which the AF long-range order exists.

B. Case γ ≈ 1: Auxiliary fields

In this subsection, we shall consider the case γ ≈ 1. It is
useful to introduce two kinds of auxiliary vector fields λμ and
ωμ to investigate the phase structure of the model. The partition
function in (3.1) is rewritten as

Z =
∫

DzDz̄DσDλμDω̄μDωμ exp

(
− N

2g

∫
d3r L

)

(3.9)

where

L = z̄
( − ∂2

μ + iλμ

↔
∂ μ +λ2

μ + γ |ωμ|2 + σ
)
z

−z(γ ω̄μJ ∂μ)z − z̄(γωμJ ∂μ)z̄ − σ, (3.10)

with

z̄λμ

↔
∂ μ z = λμ(z̄ · ∂μz − ∂μz̄ · z).

1. Strong-coupling region

First we shall study the model (3.9) in the strong-coupling
region g > gc, in which n0 = 0, 〈σ 〉 > 0. In particular, we are
interested in the possibility of the condensation of ωμ. As the
Lagrangian L in Eq. (3.10) is a quadratic form of z, integration
over z can be done. For smoothly varying configurations of ωμ,
the effective action is obtained as

N

∫
d3p

(2π )3
ω̄μ(p)

[ γ 2

16π
√

σ
(p2δμν − pμpν)

+ γ (1 − γ )�δμν

]
ων(p), (3.11)

where ωμ(p) is the Fourier-transformed field of ωμ and � is a
constant. From Eq. (3.11), it is obvious that ωμ behaves like a
massive vector field for γ < 1, for γ = 1 it becomes massless
and behaves like a kind of gauge field, and finally for γ > 1 its
nonvanishing condensation is expected to occur. More detailed
study on the case γ = 1 will be given in a later section, and it
is shown there that an SU(2) gauge model really appears.

Let us study the case γ > 1 somewhat in detail in
the large-N limit. Condensation of ωμ apparently breaks
the rotational symmetry of the space (or π

2 -rotation of
the square lattice) and also the U(1) gauge symmetry to
Z2.2,15 Here we assume 〈ωμ〉 = ωδμx(ω �= 0) without loss
of generality.16 We also assume that ω is real by the gauge
symmetry of the system. Then in the phase with condensation

of ωx , the action of z(r) is given as follows from (3.10):

Sz = N

2g

∫
d3r

[ − z̄∂2
μz − γω(zJ ∂xz) − γω(z̄J ∂xz̄)

+ σ (|z|2 − 1)
]
, (3.12)

and it can be diagonalized by introducing field ξ (r) as

z(r) = 1√
2
{e−iγ ωxξ (r) + eiγωx[iJ ξ̄ (r)]}, (3.13)

Sξ = Sz = N

2g

∫
d3r

{
ξ̄
( − ∂2

μ + γ (1 − γ )ω2)ξ

+ σ (ξ̄ ξ − 1)}. (3.14)

From Eq. (3.14), it is obvious that the field ξ (r) acquires its
mass squared σ ′ = σ + γ (1 − γ )ω2.

From Sξ in Eq. (3.14), we can derive a gap equation and
determine the critical coupling gc as in the previous case,

√
σ ′ = 2π

(
1

gc

− 1

g

)
, (3.15)

1

gc

= �

2π
. (3.16)

The above critical value gc is the same with that obtained for
the case of small γ .

In the large-N limit, spin correlations are obtained from
Eq. (3.13) for g > gc, see Fig. 1.

2. Weak-coupling region

Finally we shall consider the weak-coupling region g <

gc, in which the condensation of z(r) occurs. As in the
strong-coupling region discussed in the previous subsection,
we expect the condensation of ωμ for large γ . However as
the condensation of z(r) gives an effective mass for ωμ by
the Anderson-Higgs mechanism [see Eq. (3.10)], the critical
value γc is γc > 1. The value of γc can be estimated by detailed
calculation.

For γ > γc, the dynamics of z(r) is described by Sz in
Eq. (3.14). Effective coupling gc for the condensation of
z(r) and ξ (r) is estimated as before and the same result is
obtained with (3.16). For g < gc and γ > γc, ξ (r) condenses
and nontrivial correlations of the spin operators �̂ab appear as
a result of 〈ωμ〉 �= 0. In this phase,

〈�̂ab(r)〉 = 〈z̄(r)�abz(r)〉 = nab
1 cos(2γωx) + nab

2 sin(2γωx),

(3.17)

where nab
1 = Re[〈ξ 〉J�ab〈ξ 〉], nab

2 = Im[〈ξ 〉J�ab〈ξ 〉]. On
the other hand, 〈�̂a(r)〉 = 〈ξ̄〉�a〈ξ 〉. Therefore 〈�̂ab(r)〉 ex-
hibits the spiral order, whereas 〈�̂a(r)〉 exhibits the ordinary
long-range order.

IV. SU(2) GAUGE THEORY AT γ = 1

In the previous section, we found that the composite vector
field ωμ behaves like a massless gauge field at γ = 1, and
for g < gc it acquires mass squared proportional to 〈z̄ · z〉 as
a result of the Anderson-Higgs mechanism. In this section,
we shall explicitly show that the three real vector fields
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FIG. 10. (Color online) Spin correlation functions in III and IV in phase diagram Fig. 8. Gn(r) has long-range order in both III and IV. In
IV, Gs(r) exhibits a long-range spiral order, whereas it has the usual long-range order in III.

(λμ,ωR
μ,ωI

μ) form an SU(2) gauge field minimally coupled with
z at γ = 1, where ωμ = ωR

μ + iωI
μ. This is another example

of the symmetry-enhancement phenomenon, i.e., an emergent
symmetry at low energies.

We start with the action Lγ=1 in Eq. (3.10),

Lγ=1 = z̄
( − ∂2

μ + iλμ

↔
∂ μ + λ2

μ + |ωμ|2 + σ
)
z

− z(ω̄μJ ∂μ)z − z̄(ωμJ ∂μ)z̄ − σ, (4.1)

where we have put γ = 1. Hereafter we explicitly consider
the CP3 case but generalization to an arbitrary N is straight-
forward. We first redefine the CP3 field Z(r) from the original
z(r) as Z(r) = (z1(r),z2(r),z̄4(r), − z̄3(r))t . It is easily verified
that Z(r) is a CP3 field; i.e.,

∑4
i=1 |Zi(r)|2 = 1.

It is straightforward to verify the following equation,

z̄
↔
∂ μ z = Z̄�3

↔
∂ μ Z, (4.2)

where

�3 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ . (4.3)

Similarly

ω̄μ(zJ ∂μ)z + ωμ(z̄J ∂μ)z̄

= iωR
μ (Z̄�2

↔
∂ μ Z) + iωI

μ(Z̄�1
↔
∂ μ Z), (4.4)

where

J =

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠ , �2 =

⎛
⎜⎝

0 0 i 0
0 0 0 i

−i 0 0 0
0 −i 0 0

⎞
⎟⎠ ,

�1 =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ . (4.5)

It is obvious that �i(i = 1,2,3) satisfy the SU(2) algebra. Let
us define the SU(2) gauge field �Aμ as �Aμ = (ωI

μ,ωR
μ,λμ), then

the Lagrangian (4.1) can be rewritten as follows,

Lγ=1 = |(∂μ + i �� · �Aμ)Z|2 + σ |Z|2 − σ. (4.6)

The lattice gauge model corresponding to the above SU(2)
gauge theory (4.6) is under study and the result will be reported
in a future publication. However phase structure of the system
can be inferred by qualitative discussion. As in the usual
CPN−1 model coupled with the U(1) gauge field, there exists a
phase transition that separates ordered and disordered phases.
However, as the SU(2) gauge field fluctuates the hopping of
the spinon Z(r) more strongly than the U(1) gauge field, the
critical coupling gc(γ = 1) is expected to be smaller than
gc(γ = 0). From this consideration, we expect that the critical
coupling gc(γ ) is a decreasing function of γ for γ < γc,
although in the previous discussion for small γ � 1 by the

FIG. 11. (Color online) Spin correlation functions in V and VI in phase diagram Fig. 8. Both Gn(r) and Gs(r) exhibit the same behavior in
V and VI.
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1/N expansion we did not find any γ dependence of gc.
As γ exceeds γc, the condensation of ωμ tends to occur
and fluctuations of ωμ are suppressed. Moreover the original
U(1) gauge symmetry reduces to Z2 gauge symmetry by the
Anderson-Higgs mechanism and fluctuations of λμ are also
suppressed. Then gc(γ ) starts to increase at γ = γc. The above
expectation will be confirmed by the numerical study of the
lattice-gauge model in the following section. The expected
phase diagram is shown in the γ -g plane in Fig. 2.

In the following section, we shall introduce a lattice model
for the effective field theory with a general value of γ , and
study it by means of MC simulations.

V. NUMERICAL STUDY

A. Lattice CP3 model

In this section we formulate the effective field theory (3.1)
on a 3D lattice and investigate its phase structure by means of
numerical methods. If one tries to perform numerical studies
of the original system Eq. (2.9) directly by means of the
MC simulations, one immediately encounters difficulty in
the importance-sampling procedure, since the first term of
A(τ ), z̄i∂τ zi , is purely imaginary. In Sec. II B, we derived the
effective field theory by analytically integrating out CPN−1

variables at all odd sites. As a result, the derived field-theory
model has the real-valued action Eq. (2.12).17 On the other
hand in Sec. II C, we considered the 3D system at finite T and
derived the effective field theory that describes finite-T phase
transitions.

In the present section, we explicitly consider the Sp(4)
model whose action AL is given as follows:

AL = c1

∑
r,μ

z̄r+μUrμzr + c.c.

+ c2

∑
r,μ,ν

UrμUr+μ,νŪr+ν,μŪrν + c.c.

+ c3

∑
r,μ

|zrJ zr+μ|2 + c4

∑
r

|zrJ zr+1+2|2, (5.1)

where r denotes the cubic lattice site; μ = (1,2,3) is the
direction index and it also denotes the unit vector in the μ

direction. Field zr are CP3 variables and Urμ is a U(1) gauge
field defined on link (r,μ), Urμ ∼ eiλμ(r). The parameters c1 ∝
a/g, c3 ∝ γ /g, and the c2 term is the lattice Maxwell term
(the so-called Wilson term) corresponding to (∂μAν − ∂νAμ)2

in the continuum space-time.18 We have also added the c4

term on the diagonal lines in the 2D layers that correspond to
the exchange couplings between spins like Q̂

†
i,i+1+2Q̂i,i+1+2.

Therefore, the model AL is defined on the layered triangular
lattice. See Fig. 3.

The partition function ZL is given as follows:

ZL =
∫

[DU ][DzDz̄]CP eAL, (5.2)

where [DzDz̄]CP denotes the integration over CP3 variables.
As AL is real and has the lower bound, the MC simulations for
Eq. (5.2) can be performed without any difficulty.

For the MC simulations, we used the standard Metropolis
algorithm of local update. The typical statistics was 105 MC

FIG. 12. (Color online) Specific heat on line c3 = c4 with c1 =
6, c2 = 0. Result indicates two phase transitions on the line. L = 8
and 14.

steps per sample, and the averages and errors were estimated
over ten samples. The typical acceptance ratio was about 50%.
We also used multihistogram methods to obtain reliable results
near the phase transition point.19

B. Case of c3 = c4 = 0

We first consider the case of the pure CP3 model with
c2 = c3 = c4 = 0, which corresponds to the anisotropic SU(4)
AF magnet.13 We calculate the internal energy E = 〈AL〉/L3

and the specific heat C = 〈(AL − E)2〉/L3 to study phase
structure, where L3 is the lattice size and we impose the
periodic boundary condition in most of calculations. In
Fig. 4, we show E and C as a function of c1. It is obvious that
E has a discontinuity at c1 � 4.5 and C has a very large peak
at c1 � 4.5, which indicates a first-order phase transition. In
order to verify this observation, we calculated density of states
N [E] that is defined as

N [E] =
∫

[DU ][DzDz̄]CP δ(AL − E) eAL. (5.3)

The result in Fig. 5 shows that N [E] has a double-peak shape at
c1 = 4.498, whereas it has a single peak at the other couplings.
This confirms the existence of the first-order phase transition in
the CP3 model, although the corresponding phase transitions
in the CP1 and CP2 models are of second order. Study of
the correlation functions of the spin operators given later on
verifies that the phase transition from Néel to paramagnetic
states takes place at c1 = 4.498.

The CPN−1 model in 3D space-time was studied with
the 1/N expansion and it was suggested that there existed
a second-order phase transition from ordered to disordered
phases as the coupling constant is increased. However the
present investigation by means of the MC simulations shows
that the order of the phase transition varies as a function of the
parameter N . A similar phenomenon was recently observed
with some related models, e.g., the multi-Higgs U(1) gauge
model in 3D.20 We also studied finite but small c2 cases and
found that the phase transition is still of first order. However at
an intermediate value of c2, C exhibits the finite-size scaling
(see Fig. 6); i.e., the data of C(c1,L) for system size L and
c2 = 2.0 can be fitted as follows with a scaling function φ(x):21

C(c1,L) = Lσ/νφ(L1/νε), ε = (c1 − c1c)/c1c, (5.4)
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FIG. 13. (Color online) Spin correlation functions for c1 = 6.0 and c2 = 0.

where c1c is the critical coupling at infinite system size
and estimated as c1c = 2.23. This fact means that the phase
transition becomes of second order as the value of c2 is
increased.

C. Effect of c3 term and phase diagram

Let us turn on the c3 term and see how the location of the
phase transition varies. We studied the system by varying the
value of c1 with fixed c3 and found a clear signal of phase
transitions; see, e.g., C for c2 = 2.0, c3 = 1.0 in Fig. 7(a). We
also investigated the phase structure of the system with c1 fixed
and c3 varied, and found that there is another phase transition
line. See Fig. 7(b).

The obtained phase diagram in the (c3 − 1
c1

) plane is shown
in Fig. 8. There are four phases, which are identified by the
measurement of E and C. We also investigated the behavior
of the correlation function of the spin operators,

Gn(r) =
∑

a

〈
�a

r ′+r�
a
r ′
〉
, Gs(r) =

∑
a,b

〈
�ab

r ′+r�
ab
r ′

〉
. (5.5)

As we expected that a phase transition to a spiral state would
take place as the parameters were increased, we took the free
boundary condition in the two spatial directions. We found
that the correlators exhibit different behavior in the six regions
I–VI shown in Fig. 8. It is obvious that not only simple AF
correlations but also ferromagnetic (FM) correlations appear
in these correlators. For example, in the regions I and II (III
and IV), the correlation of the nematic order Gn(r) exhibits
the same behavior, but the spin correlator Gs(r) behaves
differently in I and II (III and IV), see Fig. 9 (Fig. 10). We
have observed no phase boundary between the I and II (III and
IV) regions on which the internal energy E and specific heat
C exhibit anomalous behavior. However, from the result of
the spin correlation function Gs(r), we expect that the phases
〈ωμ〉 �= 0, 〈ξ (r)〉 = 0 and 〈ωμ〉 �= 0, 〈ξ (r)〉 �= 0 are realized
in the regions II and IV, respectively. On the other hand, there
are no phases in the effective field theory that correspond to
phases V and VI (Fig. 11) of the FM long-range order in the
lattice model. This result is plausible because the effective
field theory in the continuum space(-time) has been derived by
assuming smooth configurations of zi having short-range AF
order, and therefore it cannot describe the phase with the FM
order.

D. Effect of c4 term

Finally we turn on the c4 term in addition to the c3 term.
Numerical study of the system was performed along the line

c3 = c4 with c1 = 6.0 and c2 = 0 in the phase diagram. The
observed C as a function of c3 = c4 is shown in Fig. 12. There
are two phase transitions, one at c3 = c4 � 0.7 and the other at
c3 = c4 � 6.0. In order to understand these phase transitions,
we calculated the spin correlation functions in each phase,
which are shown in Fig. 13. From the result, it is obvious
that the AF order disappears first and then at the second
transition the spiral state appears. This state corresponds to
the state with nonvanishing 〈ξ (r)〉 �= 0 studied in the previous
sections. Some related models of Sp(N ) spins on an anisotropic
triangular lattice were studied in the large-N limit, and a phase
with an incommensurate spin order, similar to the above, was
found.22

VI. CONCLUSION

In the present paper, we have studied the Sp(N ) AF
Heisenberg models that are expected to be realized in cold-
atom systems in an optical lattice. We first focused on the
ground-state structure of the system in 2D and derived the
effective field theory for the system. Then we considered
finite-T properties of the Sp(N ) AF Heisenberg magnets in
3D and derived the effective field theory, which is a kind
of extension of the CPN−1 nonlinear σ model. We studied
the phase structure and critical behavior of the effective
field theory by using the 1/N expansion. We found that the
spatial anisotropy induces a phase transition from the ordered
state to the paramagnetic state. As the explicit breaking of the
SU(N ) symmetry increases, the system exhibits a spiral order
of the adjoint representation of the Sp(N ) group. This state
also has a nematic order of vector representation of the Sp(N )
group.

We also introduced a lattice gauge-model counterpart of the
effective field theory and studied its phase structure by means
of the MC simulations. We found a similar phase diagram to
that of the field theory, but the order of the phase transitions is
different in the two systems.

In Ref. 23, a finite-temperature phase diagram of the Sp(N )
model was studied by using Ginzburg-Landau theory in terms
of gauge-invariant spin fields, φab = z†�abz, φa = z†�abz.
There the quantum phase transition of the Sp(4) spin system
in a 3D stacked square lattice was also discussed. The phase
transition from the CP3 Néel ordered state to the photon
liquid state was predicted. In the present study, the (3+1)D
counterpart of the lattice model (5.1) describes the quantum
phase transition of the Sp(4) spin system in a 3D stacked square
lattice. It is expected that a deconfined photon phase exists for
sufficiently large c2. In fact, the U(1) gauge theory of the CP1

field in (3+1)D was studied previously,24 and it was found
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that the phase transition from the CP1 Néel ordered state to
the photon liquid state actually takes place and is of second
order.

It is interesting to study the effects of hole doping on
the Sp(N ) AF magnets and investigate how the long-range
orders are broken and whether a new phase with hole-pair
condensation appears. This system is an extension of the t-J
model for high-temperature superconductivity. This problem

is under study and we hope to report the results in a future
publication.
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