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Strong-field magnetotransport in a normal conductor/perfect conductor/insulator disordered
composite material: Simulations of a discrete model
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We consider a two-dimensional disordered composite medium made of three constituents: a normal conductor,
a perfect conductor, and an insulator, and we examine its macroscopic electrical response in cases where it is
subject to a strong magnetic field applied perpendicular to its plane. To this end, we exploit a discrete network
model and apply a Monte Carlo procedure for sampling ensembles of finite-size three-constituent networks of
this kind. The simulations indicate that when the perfectly conducting and insulating constituents are below the
percolation threshold, such that the material has a finite, nonvanishing conductivity tensor, two distinct behaviors
of the macroscopic magnetoresistance appear, according to whether the normal conductor by itself is below
or above the percolation threshold. When the area fraction of the normal conductor is below that threshold,
the macroscopic induced magnetoresistance is found to keep increasing with the magnetic field, without any
saturation, whereas when that area fraction is above the percolation threshold, the magnetoresistance is found
to saturate. Thus, the percolation threshold of the normal conductor is identified as a critical point. This critical
phenomenon is associated with both a geometrical percolation and the presence of a large Hall effect. Its origin
can be qualitatively understood by noticing the surprising fact that, in the strong-field limit, a perfectly conducting
inclusion surrounded by a normally conducting neighborhood tends to expel currents almost like an insulating
inclusion. The simulations also provide insights into difficulties that arise when simulating finite-size conducting
networks at strong magnetic fields.
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I. INTRODUCTION

In a binary composite medium where the two constituents
are characterized by an extreme contrast of their electrical
conductivities, the behavior of the macroscopic electrical
response depends on whether the microstructure is such that
the better conductor percolates. This is the case in a normal
conductor/insulator or a normal conductor/perfect conductor
composite. The critical behavior of the macroscopic electrical
response of such binary composites is associated with the
phenomenon of geometrical percolation.1

A different kind of critical behavior of the macroscopic
response can be found in a three-constituent composite where
the constituents are, again, characterized by a sharp contrast
of their conductivities and when the composite is subject to
a strong magnetic field. In such cases, a singular behavior is
associated with both geometrical percolation and the presence
of a large Hall effect due to the applied magnetic field.2–5

In this paper, a case of the latter kind is considered. Explic-
itly, we consider a two-dimensional (2D) disordered composite
medium consisting of the following three constituents: a
normal conductor (denoted M), a perfect conductor (S) and an
insulator (I). A strong magnetic field is applied perpendicular
to the plane of the medium, thus inducing a classical Hall
effect in the normal conductor. The notation S for a perfect
conductor is used due to its association with a superconductor,
but it must be emphasized that the term means here simply
a classical electrical conductor characterized by a vanishing
resistivity, no other properties associated with superconduc-
tivity being implied. We note, in this respect, that the theory
we employ is irrelevant to recent experiments with disordered
superconducting films that exhibit a superconductor-insulator
transition, as those reported, for example, in Refs. 6–8. The
magnetotransport properties of these films are determined by

quantum effects associated with superconductivity, whereas
the macroscopic response exhibited by the kind of disordered
composites studied in this paper is determined by effects
pertaining to the classical regime of electromagnetism and
to the phenomenon of geometrical percolation.

The combined area fraction of the normal conductor and
perfect conductor constituents is kept above the percolation
threshold, such that the material necessarily conducts. The
presence of the insulating constituent renders it possible to
ensure that the perfectly conducting constituent does not perco-
late even when the normal conductor is below the percolation
threshold. Hence, the macroscopic resistivity tensor is always
finite and nonvanishing.

This M/S/I composite was examined in the past using an
asymptotic analysis of the self-consistent effective medium
approximation (SEMA).3,5 The SEMA analysis predicts the
appearance of a critical point when the area fraction of the M
constituent is equal to the percolation threshold. The depen-
dence of the macroscopic induced magnetoresistance on the
field changes abruptly from a nonsaturating to a saturating one
when this point is crossed. Because SEMA is an uncontrolled
approximation it is, naturally, desirable to provide independent
evidence for predictions based upon it. In this paper, we
report on numerical results obtained by exploiting a discrete
model9,10 for simulating the 2D M/S/I composite. These results
lend support to the SEMA prediction mentioned above. This
numerical study also provides indications that even rather
mild physical conditions would suffice for experimentally
observing the critical behavior, relaxing the requirements to
use a strict perfect conductor (or superconductor) for the S
constituent and to apply an extremely strong magnetic field.

In Sec. II, we describe the M/S/I system in more detail, and
in Sec. III we review the discrete model used to simulate it.
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Section IV focuses on the characteristic distributions of the
macroscopic conductances of the sampled random networks.
We explain how certain effects lead to an emergence of
double-peaked distributions of the Ohmic conductances. The
conductances of the two parts of these distributions differ by
orders of magnitude. We note the conditions that must be
imposed on both network size and field strength in order for the
networks to adequately mimic a real large composite sample.
In Sec. V, the numerical results for the field dependence of
the macroscopic resistivity tensor are presented. In particular,
it is shown that the behavior of the macroscopic Ohmic
resistivity indeed exhibits a transition when the fraction of the
M constituent crosses the percolation threshold. The results
are summarized and discussed in Sec. VI.

II. PHYSICAL CONSIDERATION OF THE M/S/I SYSTEM

The 2D M/S/I composite under consideration is character-
ized by a disordered microstructure, i.e., its three constituents
are distributed randomly and isotropically over the area consti-
tuting the medium. We assume that the typical spatial scale of
any homogeneous region within that medium is much larger
than any microscopic length scale (for example, the mean
free path of a charge carrier). Accordingly, the homogeneous
regions, as well as the inhomogeneous medium, may be char-
acterized by similar physical concepts and properties which
are defined within the scope of continuum electrical transport,
particularly, by an electrical conductivity or resistivity tensor
of a continuous medium. In addition, we assume that quantum
effects are negligible, i.e., that the circumstances are such that
classical continuum electromagnetism holds. In particular, the
S constituent just has a vanishing resistivity and lacks any of
the other special properties of a real superconductor.

The normal conductor constituent is assumed to be isotropic
and to exhibit a linear electrical response. When a magnetic
field is applied perpendicular to the composite, a classical Hall
effect is induced in the M constituent. Its resistivity tensor
ρ̂M then has antisymmetric off-diagonal components and is
given by

ρ̂M = ρ0

(
αM −βM

βM αM

)
≡ ρ0αM

(
1 −H

H 1

)
. (1)

Here, ρ0 is a physical resistivity factor, αM is the dimen-
sionless Ohmic resistivity of the M constituent, and βM is
its dimensionless Hall resistivity. The parameter H ≡ βM/αM

denotes the Hall-to-Ohmic resistivity ratio, which can also be
expressed in terms of the Hall mobility of the M constituent,
μH, and the physical magnetic field, B: H = μH|B|. Thus,
H is a dimensionless measure of the strength of the externally
applied magnetic field, and the regime of strong magnetic fields
translates into the condition |H | � 1. In a simple free-carrier
conductor, neither αM nor μH depends on B. However, the
results to be presented are not restricted to this case and remain
valid even when the M constituent is a more complicated
isotropic conductor, provided αM saturates with increasing B.
The resistivity tensor of the perfect conductor vanishes: ρ̂S =
ρ0αSÎ , αS = 0; and that of the insulator diverges: ρ̂I = ρ0αIÎ ,
αI → ∞ (here Î is the unit tensor).

The area fractions of the three constituents are assumed
to satisfy the conditions pI �= 0, pS < pc, and pM + pS � pc,

pc being the percolation threshold. The macroscopic (or bulk-
effective) resistivity tensor is then finite and nonvanishing.
Because the microstructure is statistically isotropic, this tensor
is isotropic and may be written in the form

ρ̂e = ρ0

(
αe −βe

βe αe

)
. (2)

Here, αe is the dimensionless macroscopic Ohmic resistivity
and βe is the dimensionless macroscopic Hall resistivity. For
simplicity, we will adhere to these dimensionless representa-
tions of resistivities throughout the paper.

At first thought, one might expect that in such a composite
the behavior of the macroscopic response would depend on
the combined area fraction of the M and S constituents,
pM + pS, in a qualitatively similar fashion to the behavior in an
M/I composite, namely, a vanishing macroscopic conductivity
for pM + pS < pc and a single type of behavior of the
nonvanishing, finite conductivity for pM + pS > pc. However,
a more careful reflection shows that this is not the case in
the regime of a strong applied magnetic field. In order to
understand why, consider a section of the composite where a
perfectly conducting inclusion is entirely surrounded by the
normal conductor constituent. The current density and electric
field at any point of the interface between the M and S phases
can be decomposed into components normal and tangential
to the interface. Because the M conductor is isotropic, the
tangential component of the electric field on the M side of
the interface, E

(M)
t , can then be related to the tangential and

normal components of the current density, J
(M)
t and J (M)

n ,
by the resistivity tensor given in Eq. (1), namely, E

(M)
t =

ρ0(αMJ
(M)
t − βMJ (M)

n ). But because the electric field in the
perfect conductor vanishes, and the tangential component
of the electric field at the interface between the phases is
continuous, it follows that E

(M)
t = 0, and one is led to the

result ∣∣J (M)
n

∣∣∣∣J (M)
t

∣∣ = αM

|βM| = 1

|H | at an M/S interface. (3)

One then concludes that in the strong-field limit, when |H | �
1, the components of the current at the M/S interface satisfy
|J (M)

n |/|J (M)
t | � 1; to leading order, currents tend not to flow

through S inclusions embedded in M surroundings, and the
behavior of these S inclusions resembles that of insulating
ones. In such a state of affairs, currents will flow mainly
through regions occupied by the M conductor, avoiding any
isolated S inclusions. Consequently, it is of great significance
whether a percolating backbone entirely consisting of the
normally conducting phase exists in the system. Accordingly,
the behavior of the macroscopic response is expected to depend
not on the combined area fraction pM + pS, but only on
pM itself. In the strong-field limit it is thus expected that,
when pM < pc, αe will be much greater than when pM > pc,
because in the former case all current paths necessarily pass
through both M and S regions, where the S inclusions tend to
increase the resistance to current flow! This suggests that when
pM = pc, there should appear an abrupt change in the behavior
of αe, i.e., that pM = pc is a critical point. The objective of the
presented numerical study was to test this conjecture.

174445-2



STRONG-FIELD MAGNETOTRANSPORT IN A NORMAL . . . PHYSICAL REVIEW B 83, 174445 (2011)

III. DISCRETE NETWORK MODEL

A common numerical approach employed for investigating
a disordered composite conductor is the introduction of a
discrete model that consists of a lattice of sites or bonds, upon
which resistor-like discrete circuit elements are positioned
randomly and independently, forming a random network.
It should be emphasized that one cannot expect such a
discrete model to produce the same value of the macroscopic
resistivity tensor as that of a continuum composite with
the same electrical and microstructural characteristics. It is
expected, however, that the model and the real continuum
composite which it is supposed to represent belong to the same
universality class of the investigated phenomenon. That is, it is
expected that, provided the model is properly designed, it will
exhibit the same types of macroscopic behavior as the actual
physical composite. In particular, if one considers critical
phenomena we expect that both systems will be characterized
by the same critical exponents. Finding an appropriate discrete
model for a composite with a spatially varying nonscalar
resistivity tensor is nontrivial. In fact, some models suggested
in the past turned out to be inadequate for representing systems
with a Hall effect.11–13

The model used in this study was first proposed by Sarychev
and co-workers.9,10 In this model, the discrete circuit element
is a cross-like resistor, as shown in Fig. 1. To each of the four
terminals of this circuit element there corresponds an electric
potential, and currents flow into or out of these terminals,
along the four bonds. The four potentials and currents are
linearly related by a resistance matrix that mimics the relation
between the local electric field and current density in a
continuous, isotropic homogeneous conductor that exhibits a
linear response. For an element representing the M constituent,
the resistance matrix r̂M is given by

r̂M = ρ0αM

⎡⎢⎢⎢⎣1

2

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ + H

4

⎛⎜⎜⎜⎝
0 −1 0 1

1 0 −1 0

0 1 0 −1

−1 0 1 0

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

(4)

The matrix r̂M is thus a sum of two terms. The first term
represents Ohm’s law. The second term imitates the Hall
effect by requiring that a current along a bond of a given
M element induces a potential drop across the perpendicular
bond of that element. A perfect conductor is modeled by a
circuit element having an extremely low resistance relative to
that of the element modeling the normal conductor, the Hall
term being excluded:

r̂S = ρ0αS
1

2

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ , αS � αM. (5)

As illustrated in Fig. 1, the network is formed by randomly
placing the centers of the three kinds of circuit elements at the
sites of a simple square lattice and electrically connecting the
adjacent terminals of neighboring elements. The percolation

FIG. 1. A typical 4 × 4 section of the random network used for
modeling the 2D M/S/I composite. The centers of discrete circuit
elements with a cross-like shape are randomly placed at the sites of
a simple square lattice, adjacent terminals of neighboring elements
being electrically connected. Black crosses represent S elements; gray
crosses, M elements; and voids, I elements. The potentials at the four
terminals of a conducting element and the currents flowing into each
of those terminals are related to each other by a resistance matrix
given by Eq. (4) for an M element and by Eq. (5) for an S element.
This kind of network has the advantage of enabling the construction
of a dual network with the same microstructure. Such a network will
satisfy a discrete analog of the duality relation of local electrical
responses that is automatically satisfied in any real 2D continuous
conducting medium. This is required to ensure that the network and
the physical medium it models are members of the same universality
class of critical behavior; see Ref. 10 for a more detailed discussion
of this property.

threshold for this independent random-sites square lattice is
pc = 0.592 746.1

Ensembles of finite-size networks with prescribed values of
the electrical properties of circuit elements and area fractions
were constructed by a Monte Carlo sampling procedure. The
conductance properties of each network were obtained using
the transfer matrix method. This method was originally devised
by Derrida and co-workers for computing effective electrical
properties of networks consisting of ordinary resistors.14–16 We
modified the original algorithm and adapted it to the structure
of the discrete model used in this study and to the presence of
a Hall effect. For the application of the method, the resistance
matrices (4) and (5) of the M and S circuit elements were
transformed into corresponding conductance matrices. By
setting values that satisfy the condition αS � αM, the resulting
finite conductance of the S element is much greater than the
resulting Ohmic and Hall conductances of the M element.
The conductance of the I element is set to zero. To calculate
the conductance properties of a given network, the following
boundary conditions were imposed: all external terminals at
one edge of the square L × L network were grounded, whereas
all external terminals at the opposite edge were maintained
at the same fixed potential. This is equivalent to applying
a prescribed average voltage between these opposite edges.
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FIG. 2. (Color online) Distributions of Ohmic conductances GO in ensembles of M/S/I networks simulated at various magnetic fields:
H = 0,1,10,102,103,104. The size of these networks was L = 10, and they were simulated at pM = 0.4, pS = 0.3. The histogram columns
represent the relative occurrence frequency of the different sampled values. When |H | becomes large compared to L, the sampled Ohmic
conductances split into two sets differing by orders of magnitude. (Note that the abscissa shows the base 10 logarithm of GO.) A double-peaked
distribution is then formed in which the location of the right peak is field independent, while the location of the left peak decreases with the
field. Compare to the distributions shown in Figs. 3 and 4.

Periodic boundary conditions were imposed on the external
terminals at the other two edges of the network. The total
current flowing between each pair of opposite edges was
calculated and used to obtain the macroscopic Ohmic and
Hall conductances of the network. The distributions of these
conductances for ensembles of networks having the same finite
size were recorded and used to calculate average values as
functions of magnetic field and network size.

IV. RESULTS FOR THE DISTRIBUTIONS OF
SYSTEM-SPANNING PATHS AND CONDUCTANCES

Three kinds of percolating M/S/I finite-size networks with
a finite conductance can be distinguished according to their
system-spanning paths: (a) a network in which all system-
spanning paths consist entirely of M circuit elements (to be
referred to as an M network), (b) a network in which all system-
spanning paths consist of both M and S elements (an MS
network), and (c) a network in which both kinds of paths exist
(an M&MS network).

Simulations performed with networks of size L = 60,
where the M constituent was below, at, and above pc and
the S constituent was not too close to pc, yielded the following
distribution of system-spanning paths. For pM < pc, all the
networks were MS networks. For pM = pc, about 40% were

MS networks while the rest were M&MS networks. For
pM > pc, about 0.5% were MS networks, the rest being
M&MS networks. No perfectly conducting networks were
found, nor were M networks found.

These results are in accordance with what one would
expect to find in a real macroscopic M/S/I composite for the
cases where pM + pS > pc and pS < pc, i.e., that the sample
necessarily has a nonvanishing finite conductance, and that
system-spanning paths consisting of both M and S regions
necessarily exist in the sample. Such results are invariably
found when the simulated networks are large enough. Relying
on these findings for L = 60 networks, the M/S/I networks of
much greater size L = 250, which were eventually simulated
for studying the strong-field response in the different regimes
of pM, were all assumed to be of the MS or M&MS kind and
not of the M kind (networks of the latter kind, if they appeared,
would have to be excluded from the calculations).

To investigate the distributions of network conductances,
simulations were performed of networks at given constituent
compositions for different values of network size L and
magnetic field strength H . Figures 2, 3, and 4 depict some of
the data collected from these simulations. The distributions of
Ohmic conductances GO in each figure correspond to networks
with a given size L simulated at six different values of H ,
ranging from H = 0 to H = 104.
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FIG. 3. (Color online) Distributions of Ohmic conductances GO obtained from simulations similar to those described in Fig. 2, but where
the size of the networks was L = 50.
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FIG. 4. (Color online) Distributions of Ohmic conductances GO obtained from simulations similar to those described in Fig. 2, but where
the size of the networks was L = 200.
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FIG. 5. (Color online) Logarithmic plot of the macroscopic Ohmic resistivity αe as a function of the field strength H for M/S/I networks
of size L = 250 and various constituent compositions. The networks were simulated at H = 1,2,5,10,14,20,40. The relative statistical errors
of the effective Ohmic resistivities themselves are of the order of 1% (error bars are not shown). The curves are merely guides to the eye. The
numerical results that correspond to the restricted range of moderate fields, 10 � H � 40, imply that, in the asymptotic limit, αe saturates
when pM > pc; that αe increases as a function of the magnetic field when pM � pc; and that this increase is more rapid when pM < pc than
when pM = pc.

It is clear that when |H | becomes large compared to L,
the distribution of Ohmic conductances is double peaked, with
the two peaks characterized by distinct orders of magnitude.
The larger conductances are distributed around a peak which
is found to be field independent, whereas the smaller conduc-
tances are distributed around a peak which decreases with the
field. When L is relatively small compared to |H |, neither of
the two peaks has negligible weight. Obviously, if one had
to consider such a double-peaked distribution, in which two
parts of comparable weights differ by orders of magnitude, it
would be unreasonable to regard the mean of the distribution
as representing the physical properties of a real macroscopic
sample. One would naturally like to consider only one of the
two peaks, hoping that it represents the real system behavior
in the limit L → ∞, and that the other peak does not appear
in that limit. The data suggest that this is indeed the case. For a
given value of |H |, the weight of the conductances distributed
around the field-independent peak diminishes considerably
with increasing L, as can be seen in the figures. In fact,
the M/S/I networks of size L = 250, which were simulated
for the examination of the assumed critical behavior, did not
exhibit a splitting of the ensemble Ohmic conductances into a
double-peaked distribution.

The distributions of Hall conductances do not exhibit a
double-peaked character. However, at very large values of
|H |, notably when pM < pc, the widths of these distributions
broaden out, sometimes ranging over two orders of magnitude.

A similar splitting of Ohmic conductances of random-
resistor networks sampled at strong magnetic fields was found
in past simulations of three-dimensional (3D) M/I percolating
systems.17 This is most probably the result of boundary
effects related to the intersection of conducting paths in
the form of loops and blobs with the external equipotential
boundaries. Such intersections are known to enhance the
typical conductivity of regions adjacent to the boundary in
comparison to the typical conductivity evolving in the rest of
the network at strong magnetic fields.17

When simulating finite-size networks at strong magnetic
fields, one encounters another problematic effect. It is known
from theoretical considerations (see, for example, Refs. 18
and 19) that in an inhomogeneous conductor where Hall effects
exist, they induce strong distortions of current flows. The linear
scale of these distortions may greatly increase as |H | increases
to very large values. Furthermore, the study of 3D M/I random-
resistor networks reported in Ref. 17 suggested that the current
fluctuations are governed by a typical magnetic correlation
length |H |νH (νH is a characteristic exponent), and that the
macroscopic response of a finite network is governed by a
scaling function of the scaling variable L/|H |νH . If |H |νH is
very large compared to L, particular local microstructures may
strongly affect the macroscopic behavior despite the random
distribution of constituents. Particular distorted current flows
of this kind might then extend over relatively large spatial
scales which can exceed the percolation correlation length
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FIG. 6. (Color online) Semilogarithmic plot of βe/βM as a function of H at pM � pc (top) and pM < pc (bottom) for H = 1,2,5,10,20,40,
as obtained from the simulations described in Fig. 5. The symbols used to mark the points refer to the same constituent compositions that were
shown in Fig. 5. The relative statistical errors of the effective Hall resistivities are of the order of 1% for pM < pc and of the order of 0.1% for
pM � pc. The numerical results imply that, in the asymptotic limit, one should expect that βe ≈ βM for pM � pc and βe ≈ kβM with 0 < k < 1
for pM < pc.

or might even extend over the entire network, significantly
affecting its effective resistivity. Such occurrences result in a
network that is not self-similar and make it inappropriate for
representing a real material, where all typical length scales are
much smaller than the total system size.

We could detect quantitatively the undesirable conse-
quences of this effect by exploiting the same model for
simulating a 2D composite made of two normal conductors
and comparing the numerical results to the known exact
results for the special case where these two conductors have
equal area fractions.20,21 The comparison revealed deviations
of the effective resistivity tensor of finite networks from the
true macroscopic properties already at a field corresponding
to H ≈ 400, in spite of the network size being as large
as L = 250. The deviations were found to be even greater
for binary networks of smaller size L = 60, where they
appeared already at a field corresponding to H ≈ 100. It can
be expected that, for M/S/I networks, the value of |H | beyond
which such undesirable effects occur will be smaller than the
corresponding one for binary networks. In a network where
all the circuit elements conduct, effects ensuing from few
large-scale current distortions might be compensated by other
currents flowing in the system. But in an M/S/I network there
are fewer current-carrying paths, and therefore a fluctuation of
this kind appearing in one of them will have a much greater
effect on the overall electrical response.

V. DEPENDENCE OF THE MACROSCOPIC RESISTIVITY
TENSOR ON THE MAGNETIC FIELD

To study the field dependence of the macroscopic resistivity
tensor of the M/S/I composite, networks of size L = 250
were simulated, in which pM was below, at, and above pc,
the networks being subject to various magnetic fields. This
network size was the largest that still afforded a practical time
consumption of the computations. Due to the problematic
effects of far-reaching current fluctuations obscuring the
macroscopic electrical response, as explained in Sec. IV, we
were compelled to regard only networks that were simulated at
moderate values of |H |. Only then are the length scales of such
fluctuations tolerable in comparison with the network size,
which is necessary in order that those networks can reliably
mimic the behavior of a real macroscopic composite.

Figure 5 depicts the macroscopic Ohmic resistivity αe

as a function of H for various constituent compositions of
these simulated networks. As can be seen, the restriction to
moderate values of the magnetic field precludes an evaluation
of explicit exponents that characterize the asymptotic field
dependence of αe. That is because at such values of H the
asymptotic term does not yet dominate, and terms higher than
the leading one apparently contribute non-negligibly to the
effective response. Nonetheless, even at this range of moderate
magnetic fields, three distinct behaviors of αe can be clearly
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identified by focusing upon the data in the range 10 � H � 40.
For pM > pc, αe evidently saturates, and its saturation value
increases as pM approaches pc from above. By contrast,
for pM � pc there appears a nonsaturating dependence on
H . An inspection of the slopes of the curves shows that,
when pM < pc, the macroscopic magnetoresistance increases
more rapidly as a function of the magnetic field than when
pM = pc. These numerical results, therefore, provide evidence
for the expected critical point in the strong-field behavior
of αe which is determined by the percolation threshold of
the normal conductor. They corroborate the prediction of the
SEMA asymptotic analysis.3,5

Figure 6 depicts the ratio of the macroscopic Hall resistivity,
βe, to the Hall resistivity of the M component, βM, as
a function of H for the same simulated networks. Once
again, the restriction in the range of fields does not enable
an evaluation of the explicit asymptotic field dependence.
Nevertheless, it is rather clear from the plotted data that
these numerical results, too, are consistent with the asymptotic
SEMA predictions.3,5 The results indicate that for pM � pc,
βe ≈ βM, while for pM < pc, βe ≈ kβM with the positive
coefficient k < 1 depending on pM and pS.

VI. SUMMARY AND DISCUSSION

Our study exploited computer simulations of 2D M/S/I ran-
dom networks of four-terminal cross-like elements satisfying
pS < pc and pM + pS � pc in order to test the expectation
that the strong-field macroscopic magnetoresistance exhibits
a critical behavior that depends on the area fraction of the M
constituent by itself.

The major difficulty that was encountered in those simula-
tions is the effect arising from the appearance of large-scale
current distortions within a composite conducting medium
subject to strong magnetic fields. Because of the relatively
small number of current-carrying paths in M/S/I networks
where pM � pc, this troubling phenomenon seems to have a
greater undesirable influence on the electrical characteristics of
these networks than on the characteristics of similar networks
where pM > pc or, more generally, on networks where all the
circuit elements conduct.

The encountering of this problem, which compels the
consideration of networks at not very strong fields, precluded
an explicit quantitative evaluation of the asymptotic field
dependences of the elements of the macroscopic resistivity
tensor. Nevertheless, even the results corresponding to the
restricted range of moderate magnetic fields clearly indicate
the existence of the conjectured transition in the behavior of

the macroscopic Ohmic resistivity, a transition from a nonsat-
urating to a saturating dependence on the strong magnetic field
as pM crosses pc from below.

The results of this study should motivate experimental
work aimed to observe the predicted critical phenomenon.
The experimental sample would be a thin film with a thickness
much smaller than the typical size of the internal homogeneous
regions. The most obvious candidate that comes into mind
for the S component is a type II superconductor with a
high upper critical magnetic field. This would require an
experimental design at extremely low temperatures. However,
our simulations actually imply that in order to observe
the typical behavior, one is not bound to using a strict
superconductor as the S constituent. Rather, one may use
three constituents with resistivities that satisfy the following
more relaxed sequence of inequalities: 0 < αS, |βS| � αM �
|βM| � αI. Accordingly, a doped semiconductor with a large
Hall mobility—for example, a silicon-doped GaAs—can serve
as the M constituent; while a normal metal with a low Hall
mobility—copper, for instance—can serve as the S constituent.
Voids etched in the metallic layer would serve as the insulating
constituent. Moreover, the simulations indicate that even
moderate strengths of the applied magnetic field should suffice
for observing the main effects, even if the extreme asymptotic
limit will not be reached in such circumstances.

The sample size in experiments of this sort will have to be
relatively large for the reasons discussed before. However, it
will also be interesting to experiment on small-size samples in
order to observe the presumed effects of large-scale current and
electric field fluctuations, as well as the presumed boundary
effects, leading to the split of Ohmic conductances into two
sets differing by orders of magnitude when the magnetic field
is strong enough.

We note again that the characteristic spatial scale of the
three types of homogeneous regions constituting the M/S/I
composite we have studied is macroscopic, and that the
particular shape of any of these regions is unimportant.
This should make the fabrication of samples appropriate
for experimentation relatively simpler than the fabrication
of composite media with atomic or microscopic disorder or
composites with subtle periodic microstructures.
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