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Canted-spin-caused electric dipoles: A local symmetry theory
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A pair of magnetic atoms with canted spins Sa,Sb can give rise to an electric dipole moment P. Several forms
for the behavior of such a moment have appeared in the theoretical literature, some of which have been invoked to
explain experimental results found in various multiferroic materials. The forms that require canting of the spins
are P1 ∝ R × (Sa × Sb),P2 ∝ Sa × Sb, and P3 ∝ SaR · Sa − SbR · Sb, where R is the relative position of the
atoms and Sa,Sb are unit vectors. To unify and generalize these various forms, we consider P as the most general
quadratic function of the spin components that vanishes whenever Sa and Sb are collinear, i.e., we consider the
most general expressions that require spin canting. The study reveals new forms. We generalize to the vector
P, Moriya’s symmetry considerations regarding the (scalar) Dzyaloshinskii-Moriya energy D · Sa × Sb (which
led to restrictions on D). This provides a rigorous symmetry argument that shows that P1 is allowed no matter
how high the symmetry of the atoms plus environment, and gives restrictions for all other contributions. The
analysis leads to the suggestion of terms omitted in the existing microscopic models, suggests a new mechanism
behind the ferroelectricity found in the “proper screw structure” of CuXO2, X = Fe,Cr, and predicts an unusual
antiferroelectric ordering in the antiferromagnetically and ferroelectrically ordered phase of RbFe(MoO4)2.
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I. INTRODUCTION

The great deal of recent interest in multiferroic
materials,1–34 in which magnetic ordering of various sorts
induces ferro- or ferrielectricity, forces one to understand
the microscopic foundation for this surprising, and possibly
useful, effect. Broadly, there are two sources of this fasci-
nating effect. One, found in many materials, depends on the
canting of the spins in an essential way (often referred to
as “antisymmetric dependence of the dipole moment on the
spins”).1–31 The other13,27,30–34 derives from ordering that may
or may not involve canted spins, i.e., any canting is incidental
(“symmetric dependence”). For clarity of presentation, the
present paper deals exclusively with the case in which canting
is essential. This case embodies the meaning of our term
“canted-spin-caused electric dipoles.”

One microscopic approach to this effect, due to Katsura,
Nagaosa, and Balatzky (KNB),4 is derived by considering a
model containing a pair of magnetic ions whose average spins
Sa,Sb are constrained to be in arbitrary directions. Such a
constraint is imagined to result from exchange and anisotropy
fields originating from the long-range-ordered magnetic state
of the crystal. For example, the magnetic state might be a
spiral, and the ion pair considered would be any neighboring
pair participating in the spiral (with canted spins). In Ref. 4,
it is found that the electron density becomes distorted by a
combination of spin-orbit coupling VSO and interionic electron
hopping t . To leading order in t and VSO, an electric dipole
moment is found, given by

cR × (Sa × Sb), (1)

where R is the displacement of one ion relative to the other,
and c is a coefficient, discussed below.

Sergienko and Dagotto9 also considered a pair of magnetic
atoms with canted spins, and noted that the Dzyaloshinskii-
Moriya (DM) term, D · Sa × Sb, in the superexchange energy
also gave the same form when the intervening oxygen ion was

allowed to move off center. This is referred to as spin-lattice
interaction, or magnetostriction.

A different approach is based on the complete crystal
with spiral-like spin ordering; it has led to results consistent
with (1). A derivation in this vein based on spin-lattice
interactions by Harris et al.10 has been given; they consider
magnetostriction both of the type coming from the DM
coupling, which originates in the antisymmetric part of the
exchange tensor, and that coming from the symmetric part;
see also Ref. 31. There are also phenomenological derivations
of magneto-ferroelectricity using symmetry arguments via
Landau theory3,16,24,33 and Landau-Ginzburg theory.8

Also relevant here is a model [11] that is closely related
to the KNB approach, again involving a pair of atoms, small
hopping, and spin-orbit coupling. In Ref. 11(a), the expression
(1) was found, where the assumption was made that the spatial
symmetry of the situation was the symmetry of a pair of points
in space, an assumption also made in Refs. 4 and 9. However,
in Ref. 11(b), a lower symmetry was studied, which led to the
possibility of another component of the dipole, namely in the
direction

Sa × Sb, (2)

thus questioning the generality of (1). [The lower symmetry
caused by orbital ordering was considered in Ref. 13, yet no
additional terms like (2) were found. An explanation of this
apparent dilemma can be found in Sec. II, Case 1, example
(c).] This question was also raised, considering extended
systems, in Refs. 12 and 21. In Ref. 12, experimental evidence
in CuFeO2 (Ref. 20) for this new possibility, occurring in
the proper screw structure, was noted; a symmetry argument
based on the observed spiral was given (Ref. 12), as well as
a suggested microscopic mechanism behind the observation
(to be discussed further below). A similar situation was found
in CuCrO2.28 In connection with Ref. 21, the question was
answered in Ref. 16, where it was shown by an experimental
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example, RbFe(MoO4)2 (RFMO), and a Landau theory anal-
ysis, that this Sa × Sb component can exist.

In overlapping time frames, a paper by Jia et al.13 followed
the basic approach of Katsura et al., considering a system with
two magnetic atoms. In addition to giving a serious estimate
of the coefficient c in (1), more general considerations added
to (1) two additional terms. One is the well-known exchange
striction (which does not concern us here because it does not
require spin-canting), while the other is a new type of term,
proportional to

(R · Sa)Sa − (R · Sb)Sb, (3)

where Sa,Sb are unit vectors. It is seen that this gives nonzero
p only if the spins are not collinear, which conforms to our
general idea, in fact the precise definition, of a “canted-spin-
caused” electric dipole. One notices that unlike the previous
forms, which are bilinear in the two spins, this falls under
the general heading of being quadratic in the spins. Arima12

refers to this result, and generalizes it in a way that leads to a
polarization parallel to the spiral wave vector Q in a “proper
screw structure” (a spiral where the spin plane is normal to Q).
[Since Q||R in his case, (3) clearly would give zero for such a
spiral.] We will point out (in Sec. IV) a different microscopic
mechanism that also gives p in the direction of Sa × Sb, which
may be responsible for the behavior observed in the proper
screw structure, and that also applies to RFMO (which is not
a proper screw structure). (This mechanism is linear in the
spin-orbit coupling strength while Arima’s is quadratic.)

Thus we see a veritable zoo of forms for the canted-spin
caused dipole moment. One must ask, what others might
exist? A common theme in all those mentioned is that they
are quadratic in the pair of spins. The theory presented
here considers the most general quadratic function that
represents canted-spin-caused dipoles, and analyzes various
forms allowed under whatever symmetry is “seen” by the pair
of magnetic ions.35 Since it includes the cases already known,
it represents a general unified picture of the possible forms. The
theory is model-independent and local (treating a single pair of
magnetic ions or atoms). It is closely analogous to an argument
leading to the conditions on the DM vector D (Moriya’s rules)
imposed by the symmetries of the magnetically disordered
crystal.36

The results show that forms far more general than (1), (2),
and (3) are to be expected in general, and which symmetries,
or, rather, their absence, are required for the more general
forms. The theory also offers an explanation for the fact
that (1) is found in many materials whereas the other forms
have been found in relatively few (as far as we are aware).
The analysis leads to the suggestion of new terms omitted
from the microscopic theories. And it predicts an unusual
antiferroelectric ordering in the antiferromagnetically and
ferroelectrically ordered phase of RbFe(MoO4)2.

To apply this local theory to solids, one must determine
how p for a single bond propagates through the crystal. This
is discussed through a few examples.

Section II reviews an analysis of the scalar quantity
D · (Sa × Sb) that derives symmetry restrictions on the DM
vector D (Moriya’s rules), and applies an analogous analysis
to the dipole moment p, which is of course a vector. Essential to

the latter is expressing p as a general homogeneous quadratic
function of Sa and Sb. This restriction is made in the spirit of
leading-order perturbation theory treating the hopping, spin-
orbit coupling, and/or magnetostrictive atomic displacements
as small. It applies to the approaches of KNB and related, as
well as to the spin-lattice interaction approach of Ref. 9 and
the corresponding work of Harris et al.,10 and to the problem
of CuXO2, where X = Fe,Cr.12,20,28 Section III presents
examples in crystals, some ideal, and some corresponding
to the structures of real multiferroic crystals. Section IV
contains some concluding remarks. Appendix A discusses the
general bilinear function of two spins, with matrix B of the
quadratic form for each component of p. It shows that the
most general spin-canted-caused dipole form originates from
the antisymmetric part of B, and is linear in Sa × Sb. We also
consider, in the text, the most general quadratic function of
the spins, and find additional contributions to p, a special case
of which is of form (3). Thus the overall results generalize all
known forms. Appendix B describes the simple microscopic
model11 and its application as a check on the results of the
abstract model-independent symmetry arguments.

II. SYMMETRY ANALYSIS OF THE ELECTRIC DIPOLE
PRODUCED BY TWO CANTED SPINS

We begin by reviewing an argument leading to Moriya’s
rules. (Moriya36 states “the rules are obtained easily”; he also
gives an explicit formula for D. It is not clear if he obtained the
rules through his formula or some other way.) One considers
the possible existence of a term in the energy of the form
EDM = D · (Sa × Sb), where Sa and Sb are the spins at sites A

and B, respectively. D is “a constant vector,” to quote Moriya.36

Its sign obviously depends on the (arbitrary) order chosen to
write the spins in the cross-product. If one adheres to a choice,
e.g., spin at position A × spin at position B, then D is a
constant. That is, it is a property of the structure, atom-pair
plus surroundings, exclusive of magnetic ordering and spin-
orbit coupling. One explores the conditions imposed on D by
possible symmetries of the structure (without spin ordering),
i.e., rotations that return the two sites plus surroundings to
itself, with the requirement that EDM be unchanged (as a term
in a Hamiltonian, it is a scalar under such operations). It is
important that D is fixed in the structure (as seen in Moriya’s
mathematical expression for it), so that D is the same before
and after the operation, emphasizing again that the order of the
spins remains, spin at A × spin at B.

As a first illustration, inversion about the coordinate origin
O in Fig. 1 simply interchanges Sa and Sb, so that for the
new spin at site A, S′

a = Sb and S′
b = Sa . Assuming inversion

is a symmetry of the structure, one concludes D · Sa × Sb =
D · S′

a × S′
b = −D · Sba × Sb for arbitrary Sa,Sb. Moriya’s

Rule 1 follows: Given this inversion symmetry, D = 0. Next
consider Rule 2. Suppose a mirror plane perpendicular to AB

passes through O. Then the transformed spins are

S′
a = x̂Sbx − ŷSby − ẑSbz,

(4)
S′

b = x̂Sax − ŷSay − ẑSaz,
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FIG. 1. The coordinate system and an example of the two spins.
The z direction out of the paper.

which yields

S′
a × S′

b = −x̂(Sa × Sb)x + ŷ(Sa × Sb)y + ẑ(Sa × Sb)z.

(5)

Again, equating D · Sa × Sb = D · S′
a × S′

b gives Dx = 0
(Rule 2). This procedure can be seen to yield all five rules. (We
have used the axial-vector property of the spins; the results are
unchanged if they are considered vectors.)

Now consider the electric dipole moment p, a vector. (We
find it convenient to use a different notation from that in the
abstract.) As motivated above, we consider p caused by a pair
of spins as the general quadratic function,

p =
∑

γ,i,j,ν,μ

γ̂ Bγ ijνμSiνSjμ, (6)

where γ, ν, and μ run over the Cartesian coordinates, x,y,z,ν̂

being the corresponding unit vectors with ν̂ · μ̂ = δνμ, and i,j

run over the site or spin labels, a,b. We consider separately
the two cases, i �= j and i = j .

Case 1: i �= j. Equation (6) becomes

p =
∑
γ,ν,μ

γ̂ BγνμSaνSbμ, (7)

where Bγνμ = Bγabνμ + Bγbaμν. In Appendix A it is shown
that for this function (which is bilinear in the spins) to represent
a canted-spin-caused dipole, it must be a function of Sa × Sb ≡
W that is linear homogeneous in W, its most general form
being

p =
∑

Cνμν̂μ̂ · W ≡ ⇒
C ·W. (8)

Here Cνx = Ba
νyz, Cνy = Ba

νzx, Cνz = Ba
νxy , with Ba

γνμ =
(Bγνμ − Bγμν)/2. The form (8) also applies to the spin-lattice

mechanism via the DM term (
⇒
C is related to the derivatives of

the DM vector D with respect to lattice distortions from the
nonmagnetic crystal structure).

The symmetric contribution, from Bs
γ νμ = (Bγνμ +

Bγμν)/2, is also important to multiferroics in general. But for
simplicity, we focus in this paper on the canted-spin-caused
part.

To connect with existing literature, we write Cνμ = Sνμ +
Aνμ, where S and A are the symmetric and antisymmetric
parts of the matrix C, allowing the separation of p into the
corresponding terms: p = pS + pA. (There is a very different
sense in which p is written as a sum ps + pa . Namely, in
Ref. 31 and elsewhere, ps is attributed to that obtained from
the spin-lattice interaction associated with the symmetric part

of the exchange tensor, pa , to the antisymmetric part. In the
present work, for the model of spin-lattice interaction, both pS
and pA originate from the antisymmetric part of the exchange
tensor.) In particular, from (8) it follows that

pA = x̂(AxyWy + AxzWz) + ŷ(AyxWx + AyzWz)

+ ẑ(AzxWx + AzyWy). (9)

It is easily verified that this is

pA = d × W,
(10)

d = −(x̂Ayz + ŷAzx + ẑAxy).

Thus we have connected to the important term (1), which is
a special case of (10) in which d = d||, along R, or x̂ in the
coordinate system of Fig. 1.

Recall that standard transformation theory in which we

apply a rotation
⇒
U ≡ ∑

Uνμν̂μ̂ to (8) gives

p′ ≡ ⇒
U ·p = ⇒

C
′
·W′,

where
⇒
C

′
= ∑

C ′
νμν̂μ̂, C ′ = UCU−1, and W′ = ⇒

U ·W(= S′
a ×

S′
b). We consider U as real and unitary. When U is a symmetry

operation, as described above, the matrix C is unchanged, i.e.,
C ′ = C. Thus our fundamental equation for applying symmetry
operations is

p′ =
∑

Cνμν̂μ̂ · W′. (11)

The relation C ′ = C is analogous to D being unchanged under
a symmetry operation.36

We now apply rotations that leave the structure, sites
A and B plus the magnetically disordered environment,
unchanged, and require p to satisfy its vector property. This
requirement is applied for each of Moriya’s list of (five)
rotations (all possibilities that take the sites A and B into
themselves).

(i) Inversion through O. As before, W′ = −W. Thus (11)
gives p′ = −p. This is precisely what a vector should do under
inversion. Thus inversion invariance gives no restriction on p.

(ii) Mirror ⊥ AB. The reflected W is given in (5):
(W ′

x,W
′
y,W

′
z) = (−Wx,Wy,Wz). Thus (11) becomes

p′ = (−CxxWx + CxyWy + CxzWz,

− CyxWx + CyyWy + CyzWz,

− CzxWx + CzyWy + CzzWz).

The vector property says p′ = (−px,py,pz), with pν from (8).
Therefore, C must have the form

C =
⎛
⎝Cxx 0 0

0 Cyy Cyz

0 Czy Czz

⎞
⎠ . (12)

We see that this symmetry requires the only contribution to
Aνμ be Ayz. Thus (10) gives d = −x̂Ayz, i.e., d||, parallel (or
antiparallel) to R.

(iii) Mirror includes AB. We can take the mirror as the xy

plane. Since this involves no interchange of Sa and Sb, W
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behaves as a pseudovector so W′ = (−Wx, − Wy,Wz). Then
(11) reads

p′ = (−CxxWx − CxyWy + CxzWz,

− CyxWx − CyyWy + CyzWz,

− CzxWx − CzyWy + CzzWz).

Comparing with the vector property p′ = (px,py, − pz) leads
to the restricted form

C =
⎛
⎝ 0 0 Cxz

0 0 Cyz

Czx Czy 0

⎞
⎠ . (13)

This result implies d lies in the mirror plane.
(iv) Twofold rotation axis ⊥ AB. We can take this as the z

axis, so that S′
a = (−Sbx, − Sby,Sbz) and a ↔ b. This gives

W′ = (Wx,Wy, − Wz).

Thus (11) becomes

p′ = (CxxWx + CxyWy − CxzWz,

CyxWx + CyyWy − CyzWz,

CzxWx + CzyWy − CzzWz).

Comparing with the vector property p′ = (−px, − py,pz)
yields the same C as (13). So this symmetry implies d ⊥
rotation axis.

(v) n-fold axis along AB, n � 2. Here W′ = (Wx,cWy −
sWz,sWy + cWz), where (c,s) ≡ (cos θ, sin θ ),θ = the rota-
tion angle. The vector property of p demands p′ = (px,cpy −
spz,spy + cpz). We again equate this expressed in terms of W
[using (8)] with the corresponding equation for p′ given by
(11). For n > 2, this leads to

C =
⎛
⎝Cxx 0 0

0 Cyy Cyz

0 −Cyz Cyy

⎞
⎠ for n > 2. (14)

While this result is valid for all n > 2, it changes for n = 2, as
follows: The conditions Czz = Cyy and Czy = −Cyz no longer
hold. The reason for the difference between n = 2 and n �= 2
is that for n = 2(θ = π ) there is no mixing between y and z

components, unlike the case n �= 2. In either case, the form
of C implies d = d||. In contrast to the dipole moment p, it is
interesting to note that the consequences of these symmetry
operations on the DM vector D are independent of n.36

These results were checked against the microscopic model
calculation in Ref. 11 (see Appendix B).

An important conclusion to be drawn from these results
is that the contribution to p coming from d|| × (Sa × Sb)
≡ pA,1 [the form (1)] is allowed in every one of the symmetry
operations. It is robust; no symmetry can deny its existence as
a contribution to the electric dipole moment. The other part
of pA, namely d⊥ × (Sa × Sb) ≡ pA,2, plus the contributions
from the symmetric part, S, of C, have restrictions imposed by
crystal symmetries that may exist.

The other special contribution, p ∝ Sa × Sb = W, dis-
cussed in the Introduction, is seen to be nonexistent if symme-
tries 3. or 4. exist. In general, contributions from

∑
ν̂CννWν

“contain” W, but are not in its direction. Exceptions occur

when W is in the x direction (along AB), and the symmetries
present are 2., and/or 5., in which case p ∝ W.

A few examples will illustrate the physical meaning of these
single-bond results.

(a) Suppose the only symmetry is 2., mirror ⊥ AB, in which
(12) holds. In this case, we see that d = d||. Consider W in turn
along the x,y,z directions. W = x̂ : p = x̂Cxx ; W = ŷ : p =
ŷCyy + ẑCzy ; W = ẑ : p = ŷCyz + ẑCzz. When W = ŷ or ẑ,
the contribution from d × W is the z component Czy or the y

component Cyz. That there is no requirement that d = 0, i.e.,
Cyz = Czy , makes sense, since symmetry 2. allows the xy and
xz planes to be nonequivalent.

(b) An example showing the new term d⊥: Suppose that the
only symmetry is Mirror, includes AB (3.). Assume W = ẑ.
Then one can read off from (13) that p = ŷCyz + x̂Cxz. The
respective terms are ∝ d|| × W and d⊥ × W.

(c) An example relevant to the present literature is the
following dilemma (mentioned earlier): In the case of orbital
ordering considered by Jia et al.,13 the bond symmetry is
rather low; so why does their calculation not yield one of
the new forms, e.g., p ∝ Sa × Sb? The answer is given nicely
by our results: The d orbitals at sites A and B are the eg

states 3x2 − r2 and 3y2 − r2, respectively. Such a charge
configuration has the bond symmetries, reflection in plane
containing AB (3.), and AB is a twofold axis (5.), and only
these. Looking at the corresponding C matrices (13) and the
appropriately modified (14) for n = 2, one sees that the only
possibility is p = d|| × W. That is, the particular lowering of
the bond symmetry caused by orbital ordering is not sufficient
to modify the form (1) for the dipole moment.

Case 2: i = j. Equation (6) now becomes

p =
∑
γ,ν,μ

γ̂ BγaνμSaνSaμ +
∑
γ,ν,μ

γ̂ BγbνμSbνSbμ. (15)

Only the symmetric part, Bγ iνμ + Bγ iμν of Bγ iνμ, for i = a

or b, contributes. In order that this represent a canted-spin-
caused dipole, i.e., that it is zero for collinear spins of arbitrary
direction, one sees that

Bγaνμ + Bγbνμ = 0.

That is, the part of (15) that gives a canted-spin-caused electric
dipole is of the form

p0 =
∑

γ̂ Bγ νμ(SaνSaμ − SbνSbμ)

≡
∑

γ̂ Bγ νμ�νμ, (16)

where Bγνμ = Bγaνμ. Clearly �νμ = �μν. It will be seen that
this contains the form (3) as a special case.

We now apply the symmetry procedure to (16).
(i) Inversion through O. Again, S′

a = Sb,S′
b = Sa . Thus the

right-hand side of (16) changes sign, so inversion invariance
places no restriction on Bγνμ.

(ii) Mirror ⊥ AB. From (4) one readily sees that

�′
νν = −�νν, �

′
xy = �xy, �

′
xz = �xz, �

′
yz = −�yz.
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Using these relations and demanding the vector property p′
0= (−px,py,pz) yields

⎛
⎝Bxxx 0 0

0 Bxyy Bxyz

0 Bxyz Bxzz

⎞
⎠ ,

⎛
⎝ 0 Byxy Byxz

Byxy 0 0
Byxz 0 0

⎞
⎠ ,

⎛
⎝ 0 Bzxy Bzxz

Bzxy 0 0
Bzxz 0 0

⎞
⎠ , (17)

where the three matrices represent Bγνμ for γ = x,y,z,
respectively, reading from left to right.

(iii) Mirror includes AB. Taking the mirror as the xy plane,
we have

�′
νν = �νν, �′

xy = �xy, �′
xz = −�xz, �′

yz = −�yz.

This plus invoking the vector property of p yields
⎛
⎝Bxxx Bxxy 0

Bxxy Bxyy 0
0 0 Bxzz

⎞
⎠ ,

⎛
⎝Byxx Byxy 0

Byxy Byyy 0
0 0 Byzz

⎞
⎠ ,

⎛
⎝ 0 0 Bzxz

0 0 Bzyz

Bzxz Bzyz 0

⎞
⎠ . (18)

(iv) Twofold rotation ⊥ AB. Taking the rotation axis as the
z axis gives

�′
νν = −�νν, �

′
xy = −�xy, �

′
xz = �xz, �

′
yz = �yz,

which yields the identical form for the Bγνμ matrices as (18).
(v) n-fold axis along AB, n � 2. We again find that the form

forced by rotation invariance depends on n. We discuss two
examples, n = 2 and 4. In general, �′

xx = �xx of course.
Beginning with n = 2, we have

�′
νν = �νν, �′

xy = −�xy, �′
xz = −�xz, �′

yz = �yz.

(19)

The form of the resulting Bγνμ matrices is identical to (17).
For n = 4, one readily finds that

�′
yy = �zz, �

′
zz = �yy, �′

xy = −�xz,

�′
xz = �xy, �

′
yz = −�yz, (20)

which lead to⎛
⎝Bxxx 0 0

0 Bxyy 0
0 0 Bxyy

⎞
⎠ ,

⎛
⎝ 0 Byxy Byxz

Byxy 0 0
Byxz 0 0

⎞
⎠ ,

⎛
⎝ 0 −Byxz Byxy

−Byxz 0 0
Byxy 0 0

⎞
⎠ . (21)

Comparison of the x matrix with that in (17), which holds for
n = 2, shows that going from n = 2 to the higher symmetry
n = 4 gives the reduction Bxyy − Bxzz → 0 and Bxyz → 0.
For the y and z matrices, the higher symmetry introduces no
new zeros but brings in a relation between these matrices.

Finally, to compare with (3), we consider the case in which
all five symmetries hold, taking the case of fourfold rotation
in symmetry 5. We find the form of the B tensor is⎛
⎜⎝

B 0 0

0 C 0

0 0 C

⎞
⎟⎠ ,

⎛
⎜⎝

0 D 0

D 0 0

0 0 0

⎞
⎟⎠ ,

⎛
⎜⎝

0 0 D

0 0 0

D 0 0

⎞
⎟⎠ . (22)

(Here B = Bxxx , C = Bxyy , and D = Byxy .) This gives

p = x̂(B − C)(S2
ax − S2

bx)

+2D[ŷ(SaxSay − SbxSby) + ẑ(SaxSaz − SbxSbz)]. (23)

The corresponding term in Ref. 13 [(3) in the present paper] is

p ∝ = x̂(S2
ax − S2

bx)

+ ŷ(SaxSay − SbxSby)ẑ(SaxSaz − SbxSbz). (24)

Thus it is seen that (3) is the special case of our result (23)
where B − C = 2D.

A particular case studied in Ref. 13 applies to Mn3+ as in
the manganites, e.g., TbMnO3, where the t2g states are filled
and the eg states are orbitally ordered (the spins on each ion
are parallel). Jia et al. find no contribution of the form (3)
whenever the t2g states with parallel spins are filled.13 This
fact motivates the application of our theory to this example.
The eg orbitals on the two sites are as described in example
(c) under Case 1. The corresponding symmetry is twofold axis
along AB and two mirror planes, xy and xz. Applying our
results to these cases, we find

p = x̂
∑

ν=x,y,z

aν

(
S2

aν − S2
bν

)

+
∑
ν=y,z

2ν̂dν(SaxSaν − SbxSbν), (25)

where the aν and dν comprise five arbitrary coefficients.
Thus the symmetry does not require the vanishing of this

type of contribution to p. This lack of generality within the
symmetry of the model13 indicates that other terms should
enter. We suggest that one candidate for such terms is the
modification of the spin-orbit coupling used in Ref. 13 due to
the presence of the O2− charge near each Mn and the Mn3+
charges near the oxygen ion. Such effects would not modify
the symmetry of the superexchange model of Ref. 13. (See
also the related discussion in Sec. IV.)

III. SOME APPLICATIONS TO CRYSTALS
(PROPAGATION OF SINGLE-BOND RESULTS)

Application of these local or bond results requires their
propagation to all other equivalent bonds. In this sense,
this approach becomes “global,” as is the powerful Landau
theory of continuous phase transitions, also based in an
essential way on symmetry considerations. The approaches
are, nevertheless, different. One aspect of the difference is that
the present theory applies to any phase of the crystal, whether
or not it was reached through a continuous phase transition
from a known phase, unlike the Landau theory. Another
symmetry approach, exemplified by the analyses in Refs. 12
and, 29 considers the symmetry of the magnetically ordered
crystal, and sees if that symmetry is consistent with having a
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macroscopic electric polarization. In common with the present
approach, its validity is independent of how the phase was
reached; it differs, e.g., in that it only considers the ferroelectric
response, whereas the present local symmetry approach allows
prediction of various complex antiferroelectric structures.

Case (i): i �= j. The simplest application is a linear chain,
which spins in a line with no other objects around, as a
check on previously known results, given that the spins form a
simple spiral. Here the C matrix is the same for every nearest-
neighbor (NN) bond. In the usual case, the plane of the spins
includes the chain direction, which is of course the direction
of the spiral wave vector. This sort of spiral, often called,
appropriately, a cycloid, is actually used to understand many
real materials.3,4,7,12,14,25–27,37,38 But we can leave the direction
of the spin plane (normal to W) arbitrary for the present
discussion. In this case of high bond symmetry, every one of
Moriya’s symmetries applies. Equations (13) and (14) imply

C =
⎛
⎝ 0 0 0

0 0 Cyz

0 −Cyz 0

⎞
⎠ . (26)

Hence C is antisymmetric, d = d||, so that p = d|| × W. When
W is in the z direction (spins lie in the x-y plane), this gives the
expected result, p in the y direction. This is easily generalized
to one-dimensional structures of lower symmetry by imagining
the chain decorated with other charges; in general, each bond
p can, a priori, be in any direction. If each decorated bond is
just translated, then the total p will have other components. For
example, if symmetries 3. and 4. are violated and 5. remains,
then C is given by (14) for n > 2; in particular, if in addition W
is in the x direction, then it follows that total p is in the direction
of W. The same conclusion holds for n = 2. This case is
that of Arima,12 a “proper screw” structure with p in the direc-
tion of the spiral wave vector. It is also related to the following.

The second example we discuss is RbFe(MoO4)2 (RFMO),
the ferroelectricity of which was studied extensively by
Kenzelmann et al.16 While the observed ferroelectricity is
well-understood by the Landau-theory analysis of Ref. 16,
it is instructive to consider it from the point of view of the
present, quite different, symmetry theory. We consider the
low-temperature behavior.

The magnetism resides in triangular layers of Fe3+ ions
whose spins lie in the planes, and form the well-known
120◦ spin order, which maintains the same handedness (the
same W for each NN bond) in translation from layer to
layer. (One must remember that the arbitrary order taken in
writing W = Sa × Sb makes sense only in conjunction with

the associated
⇒
C . One can make an assumption as to the order

of the spins in W, and thus the sign of p, for one bond.
Then all other bonds follow uniquely from crystal symmetry
operations.) For the crystal structure, see Ref. 21, particularly
Figs. 1(a) and 1(b), and Refs. 39 and 40, particularly Fig. 1
of Ref. 39; the low-temperature (nonmagnetic) space group is
P 3̄. Other nonmagnetic ions between these layers cause the
symmetries 3. and 4. to be violated. Whether or not any of
the remaining symmetries exist, it is seen that a local electric
dipole moment ∝ W, which lies ⊥ these planes, is allowed.
Each plane ν possesses a total dipole moment Pν , as follows
from the threefold axis of P 3̄, which implies that C for every

bond within a plane is rotated by this operation. Also, the
120◦ spin structure has the same property. Further, we need
to know if all planes produce the same moment, or might the
sign alternate. Now P 3̄ implies a center of inversion between
the magnetic planes that connect bonds in different planes,
carrying all the complex nonmagnetic structure along via the
inversion. Essential is the relation between the C matrices
describing the surroundings of each of the inversion-related

bonds. We determine this as follows. We have p = ⇒
C ·W, so

that Ip = I
⇒
C I · IW. But IW = −W, as noted above. Since

Ip = −p, it follows quite generally that

I
⇒
C I = ⇒

C ; (27)

i.e., C is invariant under inversion. W being the same for every
plane, it follows that the planar Pν’s all have the same sign,
resulting in a net nonzero polarization, as observed.

The authors note16 that the existence of a threefold axis ⊥
to the planes (the c axis) implies there cannot be a component
of P parallel to the planes. We can see this from our general
expression, p = x̂Cxz + ŷCyz + ẑCzz, for our case, W ∝ ẑ: For
each triangular plaquette, the x and y components will add to
zero because of the threefold axis. On the other hand, these
components ⊥ ẑ will order antiferroelectrically in a 120◦ state
because of the ordered spins and the threefold axis. If the
high-T structure, space group P 3̄m1, held, then only the d||
term would survive, and that would imply that the projection
of the bond dipole moments would each lie ⊥ to the bond.
Figure 5 in an early effort (Ref. 35) shows this for a triangular
plaquette. However, the true structure has the lower symmetry
space group P 3̄; one can see (particularly with the help of
Fig. 1 in Ref. 39) that none of Moriya’s symmetry operations
holds, so that any direction of p for given spins in a bond is
allowed by symmetry. We indicate this situation schematically
for a single triangular plaquette in Fig. 2. The location of the
electric moments at the midpoints of the triangle edges (the
Kagomé structure, dual to the triangular lattice) is symbolic
of the actual bond charge density found in the microscopic
theories of Refs. 4, 13, and 11 [although, with the exception
of Ref. 11, the high symmetry assumed in these calculations
requires no component of p||W]. Such a charge distribution

FIG. 2. Triangular plaquette of spins (darker arrows) and electric
dipoles (lighter arrows) predicted for RFMO (schematic). The arrows
represent the projections on the spin planes of the full dipoles.
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would be ordered in the crystal (it is tied strongly to the
magnetism), and would induce corresponding changes in ionic
positions, which should help in its detection by diffraction
methods.

Also the response of the multiferroic state to a uniform
magnetic field H might possibly give insight into this complex
orientation structure of the local dipoles. The idea is, of course,
that applying H will distort the magnetic order, modifying W
and therefore the local dipoles pν . This idea was discussed
in Ref. 41. In particular, applying H in the plane of the spins
in Fig. 2 would give a net dipole moment for the plaquette,
considering the system of three spins as isolated. We have
shown that for small H || to one of the spins, the component
of total polarization in an isolated triangular lattice with the
120◦ spin structure is of order H 2. In RFMO there have
appeared some limited experimental studies of the magnetic
and electric (i.e., charge) properties in applied fields.16 These
put H parallel to the plane of the spins along a particular
crystallographic direction, and presented information about
the c-axis component of polarization, only as to whether it was
zero or nonzero. The theory presented was for the zero-field
case. In fact, the theory for H �= 0 is nonexistent as far as
we are aware, and that is essentially because the particular
magnetic structure in a field is complex and its origin has not
been elucidated, particularly concerning the incommensurate
component of the spiral wave vector along the c axis.42 See
also Ref. 43. While such studies would be interesting, we will
not consider them here.

Our last example concerns the materials CuFeO2 and
ACrO2 (A = Cu,Ag), in which canted-spin-caused ferroelec-
tricity was found.6,19,20,22,28 These materials have the magnetic
ions (Fe3+, Cr3+) situated on triangular lattices (basal planes),
and are of delafossite form. The canted spin states are spirals
with wave vector Q = (q,q) in the plane and the spins lie in a
plane such that Sa × Sb lies in the basal plane. The special case
Sa × Sb||Q is known to occur in CuFeO2 and CuCrO2.20,28

Importantly, in the latter cases the polarization lies parallel to
Q, i.e., in the direction Sa × Sb, where the two spins are NN’s
along the Q direction. As discussed above, there is a close
relation between this structure and that of RFMO: the essential
difference is that the magnetic anisotropy is easy plane for
RFMO or easy axis for the former, as emphasized in Refs. 22
and 29. But in all these cases, the polarization is in the direction
of Sa × Sb. We just saw how our symmetry analysis gives
results consistent with these facts for RFMO. Let us consider
now the delafossites. Referring to Fig. 1 of Arima’s paper,12

one sees that the only one of the five symmetry operations
that is satisfied for a NN Fe-Fe bond is a twofold rotation axis
coinciding with AB (operation 5.), for which the C matrix
is given by (14) appropriately modified for n = 2, where the
bond is along the x direction. But Sa × Sb = W is also in the
x direction, giving p = CxxW (in the x direction), i.e., p is in
the direction of Q as observed.

IV. CONCLUDING REMARKS

The robustness of pA,1 = R × (Sa × Sb) under
symmetry requirements may be why it has been found
experimentally in many different materials, whereas only one
of the many other possibilities given by the present theory has

been found, as far as we are aware, namely p in the direction
of Sa × Sb, and only in three materials, namely CuFeO2,20

CuCrO2,28 and RbFe(MoO4)2 (RFMO).16

pA,2 shows new possibilities for the dipole moment pro-
duced by a pair of atoms with canted spins. For example, in
the case that is familiar in many multiferroics, where Sa,Sb,

and R are coplanar, say in the x-y plane, then the already
discovered possibility that p has a y component (from pA,1) is
now accompanied by the possibility of having a z component
originating from pA,2. There can also be an x component
(||Sa × Sb) originating from pS .

The results obtained here apply directly to model cal-
culations based on clusters that contain a pair of magnetic
atoms, as in Refs. 4, 13, and 9. The process of checking
our symmetry results against the simple, idealized quantum-
mechanical model11 described in Appendix B goes further
in that it suggests a microscopic mechanism for the case in
which the dipole moment p is in the direction of Sa × Sb,
which includes both the proper screw structure12 and the spiral
in RFMO.21 The mechanism, which should be valid in the
approach of Refs. 4, 13, and 9, is the effect of the environment
on the nature, or symmetry, of the spin-orbit interaction. The
SO interaction in an isolated atom or ion is of the commonly
used form ∝ l · s, and this is the form used in the theories
of Refs. 4 and 13. However, this is just the special case of
the more general form ∝ ∇V (r) × p̃ · s (p̃ is the momentum
operator) that results when V (r) is spherically symmetric, as
assumed for the nucleus plus the other electrons on the atom.
When the atom is in an environment of other charges outside
the atom, V (r) will have a nonspherically symmetric part.44

This will reflect the symmetry of that environment and will
lead to the other forms of the magnetically induced electric
dipole. (This effect is implicit in the analysis of Ref. 9 via
the microscopic theory behind the DM vector D.36) This
mechanism differs substantially from Arima’s:12 this is linear
in the SO coupling strength, whereas Arima’s is second order.
Of course, this contribution will generally be smaller than the
intra-atomic (spherical) contribution, because the environmen-
tal charges are farther from the atom than the atomic charge, an
effect ameliorated by the fact that the active electron states
vanish at the nucleus, both for the magnetic ions and the
oxygen. A crude estimate suggests that this mechanism is not
negligible compared to the spherical term, originating in the
d shell.

Our results of course suggest strongly that there will be
materials that exhibit the new forms for p. We have given three
examples of the single form p ∝ Sa × Sb, namely CuFeO2,
CuCrO2, and RFMO. The observation of others would be
of great interest in verifying the theory and deepening our
understanding of these fascinating multiferroics.

We note that the present local or bond-symmetry approach
can also be applied to the symmetric magnetostriction (the
tensor Bs

γ νμ defined in Appendix A), which would include
electric dipoles produced by collinear magnetic ordering.
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APPENDIX A: PROOF THAT EQ. (8) IS THE MOST
GENERAL VECTOR FUNCTION OF SPINS Sa,Sb,
BILINEAR IN THE SPINS, AND REPRESENTING
“CANTED-SPIN-CAUSED” ELECTRIN DIPOLES

The most general vector function of spins bilinear in the
spins Sa,Sb is

p =
∑
γ,ν,μ

γ̂ BγνμSaνSbμ, (A1)

where γ,ν,μ run over Cartesian components x,y,z. The spins
are assumed to be of fixed length, so they can be taken as unit
vectors (or, really, unit pseudovectors, but this is irrelevant
here). The idea that p be “caused” by spin canting is defined
by the requirement p = 0 if Sa = ±Sb for arbitrary Sa . That
is, p vanishes whenever the spins are collinear (noncanted).

We can write

Bγνμ = Bs
γ νμ + Ba

γνμ, (A2)

where Bs
γ νμ = Bs

γμν,B
a
γ νμ = −Ba

γμν , defining in the obvious
correspondence ps and pa , with p = ps + pa . It can be verified
straightforwardly that

pa =
∑
γβ

γ̂ Cγβ(Sa × Sb)β, (A3)

where

Cγx = Ba
γyz,

Cγy = Ba
γ zx, (A4)

Cγz = Ba
γxy.

Clearly pa = 0 for collinear spins, and (A3) for pa is the same
form as (8) for p.

Now consider the symmetric component. Setting
Sa = ±Sb, we have

ps = ±
∑

γ̂ Bs
γ νμSaνSaμ. (A5)

Choosing Sa , in turn, along the x,y,z directions, and in the
xy,yz,zx planes, one sees that

ps = 0 for all Sa implies Bs
γ νμ = 0 for all γ,μ,ν. (A6)

This then proves that (8) uniquely embodies the idea of
canted-spin-caused electric dipoles (within the assumption of
a bilinear form). It also implies that for any moment resulting
from the symmetric component, any canting is incidental, i.e.,
nonessential.

APPENDIX B: SIMPLE MICROSCOPIC MODEL FOR
CANTED-SPIN-CAUSED ELECTRIC DIPOLE

The basic model for the calculations in Ref. 11, generalized
to arbitrary symmetry of the bond plus its surroundings (“the
crystal”), is presented here. Illustration of its use for checking
the abstract symmetry and propagation operations is given.

We consider two essentially one-electron atoms, e.g., two
hydrogens or two lithiums. The generalization to two different
alkali atoms is not difficult, but for simplicity is not given here.

There are eight spatial wave functions in the basis, an s and
three p states for each atom. The average spins on each site
(A and B as in Fig. 1) are fixed so that the one-electron basis
has just eight states. We write these as

saχa,sbχb,paνχa,pbνχb,ν = x,y,z,

where χa and χb are the spin states. The spatial parts are
assumed to be Wannier functions, i.e., they are hybridized
to make them mutually orthogonal (the overlaps of atomic
orbitals are assumed small). We denote the two s states as
φi, i = 1,2, and the remaining states as φi, i = 3, . . . ,8. So
each unperturbed atom has two energies, the s state and the p

state, separated by �0 > 0. The model Hamiltonian is

H = �0

8∑
i=3

ni+
⎛
⎝ ∑̃

i�2,j>2

vij c
†
i cj+H.c.

⎞
⎠ +U

∑
on-site

ninj .

(B1)

Here ni = c
†
i ci and

∑̃
means to sum only over terms where i

and j refer to different sites. Sample terms are 〈saχa|v|pbνχb〉.
v is the spin-orbit coupling operator

v = a0∇V × p̃ · s, (B2)

where V (which appears in Ref. 36) is an effective potential
energy that reflects the crystal symmetry excluding magnetic
ordering and spin-orbit coupling, a0 involves only fundamental
constants, and (p̃,s) = (momentum/h̄,spin/h̄).

In fact, the one-electron operator (B2) is an approximation
to the actual spin-orbit coupling, which is a rather complicated
two-electron operator.45 There is a considerable literature
attempting to calculate SO effects in various approximation
schemes, e.g., the Hartree-Fock approximation46–48 consid-
ering single atoms, a different mean-field approximation49

applicable to many-center systems. The latter found that a
local potential gave excellent results for g tensors in certain
molecules (although in the best approximation V is nonlocal).
The simplest approximation that we found in the literature
used the Coulomb or Hartree term for V (r).44 We explicitly
make use of locality, and the only property important for the
present considerations is that it be true to the symmetry of the
system studied.

Because the spin-orbit term includes only transitions, sa →
pbν and sb → paν between the two sites, we call this intersite
spin-orbit coupling.

The unperturbed ground state for the system is

�0 = c
†
1c

†
2|0〉. (B3)

To first order, the perturbed ground state is

� = �0 − �−1
∑̃

i�2,j>2

vjic
†
j ci�0, (B4)

where � = �0 + U . Measuring r from the midpoint of the
bond, it is easily shown that 〈�0|r1 + r2|�0〉 = 0, so that the
electric dipole moment

p = e〈�|
∑
ij

〈φi |r|φj 〉†i cj |�〉

= − e

�

∑̃
i�2,j>2

vji〈i|r|j 〉 + c.c. (B5)
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to leading order. In terms of the explicit one-electron states,
this is

p = − e

�

∑
ν

〈paνχa|v|sbχb〉〈sbχb|r|paνχa〉

+(a ↔ b) + c.c. (B6)

We have

〈paνχa|v|sbχb〉 = −ia0〈paν |∇V × ∇|sb〉
×〈χa|s|χb〉,

〈sbχb|r|paνχa〉 = 〈sb|r|paν〉〈χb|χa〉. (B7)

With

u ≡ 〈χa|s|χb〉,
(B8)

w ≡ 〈χa|χb〉,
and Eq. (B7), Eq. (B6) becomes

p = −2a0
e

�

∑
ν

〈paν |∇V × ∇sb〉 · Im(uw∗)〈sb|r|paν〉

+(a ↔ b). (B9)

With the help of the well-known equations for χc such that
the average in χc,〈s〉c ≡ Sc points in the direction with polar
angles θc,φc, one can show that

Im(uw∗) = −Sa × Sb. (B10)

We then obtain

p = 2a0
e

�

∑
ν

[〈sb|r|paν〉〈paν |∇V × ∇sb〉

−(a ↔ b)] · Sa × Sb. (B11)

Choose the p functions as

paν = νpa, ν = y,z,

pbν = νpb, ν = y,z,
(B12)

pax = (x + 1/2)pa,

pbx = (x − 1/2)pb,

where pa,pb are spherically symmetric about points A,B,
respectively. Define

Tν
ba ≡ 〈sb|r|paν〉 = ν̂T ν

ba. (B13)

The last equality follows from the cylindrical symmetry of
sb(r)pa(r). Further,

T ν
ba = 〈sb|ν2pa〉 = T ν

ab for ν = y,z,

T x
ba = 〈sb|x(x + 1/2)pa〉 = T x

ab.
(B14)

These results follow from paν(−x,y,z) = pbν(x,y,z) for
ν = y,z and pax(−x,y,z) = −pbx(x,y,z). Hence the quantity
〈sb|r|paν〉 factors out of the square brackets in (B11).

Comparison of (B11) with (8) shows that, to within the
constant factor 2a0e/�, the basic matrix defined in the general
theory (8) is

Cνμ = T ν
ba[〈paν |(∇V × ∇)μsb〉 − (a ↔ b)]

≡ T ν
ba

(
I

νμ

ab − I
νμ

ba

)
(B15)

for the present detailed microscopic model.
Let us first check the fundamental result (27) that Cνμ is

invariant under inversion. We calculate C ′, the inverted Cνμ,
by replacing V (r) by V ′ = V (−r). Consider, e.g.,

C ′
xx = T x

ba

[ ∫
d3r pax

×
(

∂V ′

∂y

∂sb

∂z
− ∂V ′

∂z

∂sb

∂y

)
− (a ↔ b)

]
. (B16)

On changing the integration variables, r → −r, V ′ → V , and
I xx
ab → −I xx

ba , so that C ′
xx = T x

ba(−I xx
ba + I xx

ab ), which is Cxx .
The property pax(−x,y,z) = −pbx(x,y,z) was essential to the
conclusion.

Now consider checking some of the symmetry rules
corresponding to Moriya’s five symmetry operations.

Rule 1. Cνμ does not change under inversion whether or
not the system is invariant under inversion, as was just shown.
Hence the general conclusion, namely that inversion symmetry
places no restriction on C, is verified for the model.

Rule 2. Here V (x,y,z) = V (−x,y,z). Thus, e.g., in Cxx the
integral I xx

ab = −I xx
ba , seen by changing the integration variable

x to −x, returning the initial expression. That is, this symmetry
puts no restriction on Cxx . Next,

Cxy = T x
ba

[∫
d3rpax

(
∂V

∂z

∂sb

∂x
− ∂V

∂x

∂sb

∂z

)
− (a ↔ b)

]

= T x
ba

(
I

xy

ba − I
xy

ab

) = −Cxy. (B17)

(One sees that I xy

ab = I
xy

ba .) Therefore, Cxy = 0. Thus the model
has verified two of the matrix elements in (12), deduced earlier
by a general, model-independent, symmetry argument. These
examples should suffice to illustrate the procedure, which can
be seen to check all the previous results.
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