
PHYSICAL REVIEW B 83, 174428 (2011)

Exact solution of a spin-1
2 X X chain with three-site interactions in a random transverse field:

Influence of randomness on the quantum phase transition

Volodymyr Derzhko,1 Oleg Derzhko,2,3,4 and Johannes Richter4

1Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50-204 Wrocław, Poland
2Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, L’viv-11, 79011, Ukraine

3Department for Theoretical Physics, Ivan Franko National University of L’viv, 12 Drahomanov Street, L’viv-5, 79005, Ukraine
4Institut für Theoretische Physik, Universität Magdeburg, P.O. Box 4120, 39016 Magdeburg, Germany

(Received 9 December 2010; revised manuscript received 18 March 2011; published 13 May 2011)

We present exact results for the ground-state and thermodynamic properties of the spin-1/2 XX chain with
three-site interactions in a random (Lorentzian) transverse field. We discuss the influence of randomness on the
quantum critical behavior known to be present in the nonrandom model. We find that at zero temperature the
characteristic features of the quantum phase transition, such as kinks in the magnetization versus field curve, are
smeared out by randomness. However, at low but finite temperatures signatures of the quantum critical behavior
are preserved if the randomness is not too large. Even the quantum critical region may be slightly enlarged for
very weak randomness. In addition to the exact results for Lorentzian randomness we present a more general
discussion of an arbitrarily random transverse magnetic field based on the inspection of the moments of the
density of states.
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I. INTRODUCTORY REMARKS

In recent years the theory of quantum phase transitions has
been in the focus of very active research.1–3 The quantum
phase transitions take place at zero temperature by changing
a control parameter and emerge as a result of competing
different ground-state phases. Importantly, quantum phase
transitions can influence the behavior of systems over a wide
range of the phase diagram at nonzero (sometimes quite large)
temperatures. Exactly solvable quantum models exhibiting a
quantum phase transition are notoriously rare. A well-known
example of a solvable model is the spin-1/2 Ising chain in a
transverse field, where a zero-temperature transition from the
ordered quantum Ising phase (small transverse fields) to
the disordered quantum paramagnetic phase (large transverse
fields) takes place. This model is often used for illustration
of basic concepts in the quantum phase transition theory.2,4–8

In general, spin-1/2 XY chains9 provide an excellent ground
for various statistical mechanics studies since in many cases
the calculations can be performed without any approximation.
Moreover, there are some real-life compounds that can
be viewed as realizations of one-dimensional spin-1/2 XY

models.10–13

Quite recently, two other classes of solvable models have
been found, namely a two-dimensional Kitaev model14 and
a spin-1/2 XY chain with multisite interactions15–17 (see
also Ref. 18). The model belonging to the latter class is of
interest in this paper. This model has an essentially richer
ground-state phase diagram as the standard one-dimensional
spin-1/2 XY model. In particular, it may exhibit several gapless
spin-liquid phases and quantum phase transitions between
them.16,17

On the other hand, quantum models with random Hamil-
tonian parameters present another class of models for which
an exact solution cannot be found easily. A solvable model
with diagonal Lorentzian disorder was introduced by Lloyd.19

Later on Lloyd’s idea was used to study random spin-1/2
XX chains.20 Also an extension to correlated off-diagonal

Lorentzian disorder and its application to spin-1/2 XX chains
was considered; see Refs. 21 and 22.

Naturally, the investigation of quantum phase transitions in
systems with randomness is a challenging task. The random
transverse-field Ising spin chain is known as a tractable model
to study effects of quenched randomness on critical behavior.23

Within the context of random quantum systems, exactly solv-
able models may play an important role. Merging together the
above-mentioned solvable quantum spin models with three-
site interactions and Lloyd’s model of disorder we present here
an exact analysis of a specific random quantum spin model. In
particular, the influence of randomness on the quantum phase
transition inherent in the nonrandom spin model can be studied.
In the presence of randomness the quantum phase transition
becomes a crossover. Our solution presented below is based on
the Jordan–Wigner transformation of the spin Hamiltonian to
the Hamiltonian of a tight-binding chain of spinless fermions
with nearest-neighbor and next-nearest-neighbor hoppings and
random (Lorentzian) on-site energy. Next-nearest-neighbor
hopping is a new feature emerging owing to three-site inter-
actions which makes further calculations more involved.
We introduce Green functions and find exactly the random-
averaged Green functions that yield the random-averaged
density of states. We use the obtained density of states to
discuss some ground-state and finite-temperature properties
of the spin model. Although the random-averaged density
of states can be obtained only for a specific probability
distribution, the moments of the density of states can be
obtained for an arbitrary inhomogeneous spin chain. These
quantities can illustrate some general effects on the properties
of the quantum spin chain caused by inhomogeneity and yield
thermodynamic quantities in the high-temperature limit. Our
exact results allow us to illustrate the effect of randomness
on a quantum phase transition. In particular we discuss how a
quantum critical region may be modified owing to randomness.

The paper is organized as follows. In the next sections
we define the spin model under consideration (Sec. II) and

174428-11098-0121/2011/83(17)/174428(10) © 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.174428


VOLODYMYR DERZHKO, OLEG DERZHKO, AND JOHANNES RICHTER PHYSICAL REVIEW B 83, 174428 (2011)

calculate the random-averaged density of states that yields
thermodynamic quantities (Sec. III). Then, in Sec. IV, we
discuss some properties of the spin model at zero and
nonzero temperatures. We illustrate the effect of the introduced
disorder for the transverse magnetization, specific heat, and
static transverse susceptibility, and put our discussion in a
general context of a theory of quantum phase transitions with
randomness. In Sec. V we discuss some global properties of
the density of states for an arbitrary inhomogeneous spin-1/2
transverse XX chain with three-site interactions. Finally, in
Sec. VI, we summarize our findings.

II. THE MODEL

To be specific, we consider a linear chain of N spins
with spin quantum number s = 1/2. Each spin interacts
with spins on nearest-neighboring sites and on next-nearest-
neighboring sites. Moreover, all spins interact with an external
magnetic field that acquires a random value on each site. The
Hamiltonian of the model reads

H =
∑

n

[
J

(
sx
n sx

n+1 + sy
n s

y

n+1

)

+K
(
sx
n sz

n+1s
x
n+2 + sy

n sz
n+1s

y

n+2

)] +
∑

n

�ns
z
n, (2.1)

where periodic boundary conditions are implied for conve-
nience. Here J and K are the two-site isotropic XY (i.e.,
XX) interaction and the three-site XZX + YZY interaction,
respectively, and �n is the transverse field on the site n.
Although exact solvability is the main motivation to consider
the three-site interactions, we note that Hamiltonians similar
to Eq. (2.1) may be generated in optical lattices.24

The on-site transverse fields are assumed to be indepen-
dent random variables, each with the Lorentzian probability
distribution

p(�n) = 1

π

�

(�n − �0)2 + �2
, (2.2)

where �0 is the mean value and � controls the strength of dis-
order. We are interested in (random-averaged) thermodynamic
quantities of spin model (2.1) and (2.2).

As the first step in the calculation of thermodynamic
quantities of the spin model we perform the Jordan–Wigner
fermionization9 to transform the Hamiltonian (2.1) into a
bilinear Fermi form:

H =
∑

n

[
J

2
(c†ncn+1 + c

†
n+1cn)

−K

4
(c†ncn+2 + c

†
n+2cn) + �n

(
c†ncn − 1

2

)]

=
N∑

n=1

N∑
m=1

c†nAnmcm − 1

2

N∑
n=1

�n. (2.3)

As typical for the fermionic representation of the spin model,
the magnetic field (here its uniform part �0) plays the role of
a chemical potential. From Ref. 9 we know that the bilinear

Ω
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FIG. 1. The ground-state phase diagram of nonrandom model
(2.1) with J = ±1 and �n = �0 discussed earlier in Refs. 16 and 25.
Dark gray region corresponds to the spin-liquid I phase (two Fermi
points), light gray regions correspond to the spin-liquid II phase (four
Fermi points), and white regions correspond to the ferromagnetic
phase.

form in Eq. (2.3) can be diagonalized. After performing the
linear canonical transformation

ην =
N∑

n=1

gνncn, η†
ν =

N∑
n=1

gνnc
†
n,

�νgνn =
N∑

i=1

gνiAin,

N∑
i=1

gνigμi = δνμ,

N∑
μ=1

gμigμj = δij , (2.4)

we find

H =
N∑

ν=1

�ν

(
η†

νην − 1

2

)
. (2.5)

Although this can be done in principle, finding gνn and �ν

is a complicated task in practice because of nonhomogeneous
values of �n.

Before we present the solution of the random model, for
convenience we illustrate briefly the basic features of the
nonrandom model, i.e., �n = �0 is independent of the site
index n; see Refs. 16 and 25 and Fig. 1. The nonrandom
model exhibits three phases. In the K–�0 plane (|J | = 1), the
spin-liquid I phase occurs in the region −1 + K/2 < �0 <

1 + K/2 (dark gray region in Fig. 1), the spin-liquid II phase
occurs in the regions K < −1/2, 1 + K/2 < �0 < −K/2 −
1/(4K), and K > 1/2, −K/2 − 1/(4K) < �0 < −1 + K/2
(light gray regions in Fig. 1), whereas the remaining regions
(white in Fig. 1) correspond to the ferromagnetic phase.
The two different spin-liquid phases correspond to gapless
spinless-fermion systems having two or four Fermi points,
whereas the ferromagnetic phase corresponds to a gapped
spinless-fermion system. Although the choice of the order
parameter that in a transparent way would be associated with
the modification of the Fermi surface topology is still under
debate,16,17,25,26 there is no doubt that the different phases and
the transitions between them may be identified by looking at
the behavior of the ground-state transverse magnetization mz
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as a function of �0 or K . Several cusps in the magnetization
curve indicate quantum phase transition points; see curves for
� = 0 in Figs. 3 and 4 in Sec. IV.

III. THE AVERAGED DENSITY OF STATES AND
THERMODYNAMIC QUANTITIES

The free-fermion representation of the spin model, Eq.
(2.5), immediately implies simple formulas for thermody-
namic quantities, as

f = −T

∫
dωρ(ω) ln

(
2 cosh

ω

2T

)
,

(3.1)

ρ(ω) = 1

N

N∑
ν=1

δ(ω − �ν),

for the Helmholtz free energy (per site). Here we have
introduced the density of states ρ(ω). The random-averaged
Helmholtz free energy f is given by Eq. (3.1) with the
random-averaged density of states ρ(ω), where (. . .) =∏N

n=1

∫
d�np(�n) (. . .). Thus our task is to find ρ(ω).

Using (3.1), (2.5), (2.4) one can easily convince oneself that

ρ(ω) = ∓ 1

Nπ

N∑
j=1

�G∓
jj (ω ± iε), (3.2)

where

G∓
nm(t) = ∓iθ (±t)〈{cn(t),c†m}〉,

(3.3)

G∓
nm(t) = 1

2π

∫ ∞

−∞
dω exp(−iωt)G∓

nm(ω ± iε)

[θ (x) is the Heaviside step function] are the retarded and
advanced temperature double-time Green functions.27–29 On
the other hand, one easily finds the following set of equations
for G∓

nm(ω ± iε):

(ω ± iε − �n) G∓
nm(ω ± iε)

−J

2
[G∓

n−1,m(ω ± iε) + G∓
n+1,m(ω ± iε)]

+K

4
[G∓

n−2,m(ω ± iε) + G∓
n+2,m(ω ± iε)] = δnm. (3.4)

Because of nonhomogeneous values of �n it is not possible to
solve (3.4) and to find the required diagonal Green functions
G∓

nn(ω ± iε) that enter Eq. (3.2). However, it is well known19

that if �n is a Lorentzian random variable (2.2) the set of equa-
tions (3.4) can be averaged over random realizations, leading to
a set of equation for translational-invariant random-averaged
Green functions G∓

nm(ω). Supposing that �n is a complex
variable and noticing that G−

nm(ω + iε) [G+
nm(ω − iε)] cannot

have a pole in the lower [upper] half-plane of the complex
variable �n, we perform the averaging with (2.2) by means
of contour integrals closing the contours of integrations in the
half-planes where the Green function has no poles.19–22 As a
result we obtain

(ω ± i� − �0) G∓
nm(ω) − J

2

[
G∓

n−1,m(ω) + G∓
n+1,m(ω)

]

+ K

4

[
G∓

n−2,m(ω) + G∓
n+2,m(ω)

] = δnm. (3.5)

The set of equations (3.5) possesses translational symmetry
already and therefore

G∓
nm(ω) = 1

2π

∫ π

−π

dκ
exp [i(n − m)κ]

ω − �0 − J cos κ + K
2 cos(2κ) ± i�

.

(3.6)

To evaluate the integral in (3.6) we introduce a new variable
z = exp(iκ). Then Eq. (3.6) becomes

G∓
nm(ω) = 1

2π i

×
∮

dz
zn−m+1

K
4 (z4 + 1) − J

2 z(z2 + 1) + (ω − �0 ± i�)z2
,

(3.7)

where the contour of integration runs counterclockwise along
the unit circle in the complex plane z.

The calculation of (3.7) is simple if either K = 0 or J = 0,
yielding G∓

nn(ω) = 1/
√

(ω − �0 ± i�)2 − J 2 (see Ref. 20) or

G∓
nn(ω) = 1/

√
(ω − �0 ± i�)2 − K2/4. For arbitrary values

of the interaction constants, 0 < |K/J | < ∞, we have to solve
the fourth-order algebraic equation

z4 − 2J

K
z3 + 4

K
(ω − �0 ± i�) z2 − 2J

K
z + 1 = 0, (3.8)

which is a quasisymmetric one (i.e., of the form a0z
4 + a1z

3 +
a2z

2 + a1mz + a0m
2 = 0 with m = 1). Dividing Eq. (3.8) by

z2 and using the variable change y = z + 1/z, we immediately
find

y± = J

K
± g,

g =
√

J 2

K2
− 4

K
(ω − �0 ± i�) + 2. (3.9)

As a result,

z± = y ±
√

y2 − 4

2
, z+z− = 1, (3.10)

where y is either y+ or y−. Let us denote the roots of
Eq. (3.8), which are given in Eqs. (3.10) and (3.9), by z1,
z2, z3, z4, |z1| � |z2| � |z3| � |z4|; see Appendix. Only two
roots are inside the unit circle |z| < 1 resulting in

G∓
nn(ω) = 4

K

[
z1

(z1 − z2) (z1 − z3) (z1 − z4)

+ z2

(z2 − z1) (z2 − z3) (z2 − z4)

]
. (3.11)

Then the density of states ρ(ω) is calculated according to
Eq. (3.2). The described scheme for � = 0 reproduces the
density of states of the nonrandom model reported in Ref. 16.

Our results for ρ(ω) for typical sets of parameters are shown
in Fig. 2. We put �0 = 0, since a nonzero �0 leads only to
a trivial shift along the ω axis; see, e.g., Eq. (3.6). At the
van Hove singularities present for the nonrandom model in
Fig. 2 the density of states exhibits the typical one-dimensional
inverse square-root singularity. For parameters �0 or K , where
a quantum phase transition occurs, a van Hove singularity is
located at ω = �0 [as in Fig. 2(b), where it is at ω = �0 = 0].

174428-3



VOLODYMYR DERZHKO, OLEG DERZHKO, AND JOHANNES RICHTER PHYSICAL REVIEW B 83, 174428 (2011)

 0

 1

 2

 3

 4

 5

-2 -1  0  1  2

ρ(
ω

)

ω

K=0.75

(a)

Γ=0.00
Γ=0.05
Γ=0.10

 0

 1

 2

 3

 4

 5

-2 -1  0  1  2

ρ(
ω

)

ω

K=2

(b)

Γ=0.00
Γ=0.05
Γ=0.10

FIG. 2. The random-averaged density of states ρ(ω) for the spin
model (2.1), (2.2) with J = 1, (a) K = 0.75, (b) K = 2, �0 = 0, and
(solid) � = 0, (dashed) � = 0.05, (dotted) � = 0.1.

The middle peak in the density of states shown in
Fig. 2 (it appears if |K| > 1/2; see Fig. 1) indicates a quantum
phase transition between the spin-liquid I and spin-liquid II
phases. Small randomness leads mainly to rounding of the
van Hove singularities and to the appearance of tails in the
density of states above and below the band edges of the
nonrandom model. With increasing �, the density of states
becomes more and more smeared out, i.e., the fingerprints of
the van Hove singularities disappear and the tails increase.
These changes of the density of states due to randomness
influence the ground-state and finite-temperature properties to
be discussed in the next section.

Finally, it is important to note the following. A ground state
of the nonrandom spin model (2.1) is generally speaking a
product of one-particle (more precisely, one-fermion) states,
which are plane waves. While for � = 0 the one-particle states
within the band(s) are extended states with infinite localization
length, for any small (diagonal) Lorentzian disorder, i.e., for
� > 0, all one-particle states of the Hamiltonian (2.5) become
localized; see e.g., Ref. 30. As a result, the nature of the
quantum phases of the nonrandom model changes and the
quantum phase transition inherent in the nonrandom model
becomes a crossover.31

IV. GROUND-STATE AND THERMODYNAMIC
PROPERTIES

The obtained (random-averaged) density of states permits
examining various quantities characterizing behavior of the
spin model at zero and nonzero temperatures; see Eq. (3.1).

For the ground-state energy, the entropy, and the specific heat
we have

e0 =
∫

dωρ(ω)
|ω|
2

, (4.1)

s =
∫

dωρ(ω)

[
ln

(
2 cosh

ω

2T

)
− ω

2T
tanh

ω

2T

]
, (4.2)

c =
∫

dωρ(ω)

( ω
2T

cosh ω
2T

)2

, (4.3)

respectively. Next, for the transverse magnetization and the
static transverse susceptibility we have

mz = ∂f

∂�0
= −1

2

∫
dωρ(ω) tanh

ω

2T
, (4.4)

χzz = ∂mz

∂�0
= − 1

4T

∫
dωρ(ω)

1

cosh2 ω
2T

, (4.5)

respectively.
In Figs. 3 and 4 we report some results for the ground-state

transverse magnetization. In the ground state of the nonrandom
spin system the model can be in three different phases
(spin-liquid I, II, and ferromagnetic); see Refs. 16 and 25 and
the discussion in Sec. II. The transitions between them can
clearly be detected by the cusps in the magnetization curves in
Figs. 3 and 4.

Let us briefly discuss a prominent feature of the magnetiza-
tion curve, namely the steep part in the curve near saturation
(�0 ≈ −0.708) seen in Fig. 3(b) for � = 0. This jumplike
behavior resembles the magnetization jumps observed in
frustrated quantum antiferromagnets.32 The corresponding
density of states [see Fig. 2(a)] shows a narrow upper band,
present for K > 1/2. The two singularities defining the band
edges approach each other if K → 1/2, i.e., the upper band
becomes flat. However, by contrast to flat bands discussed in
Ref. 32 the number of states in the narrow upper band of our
model decreases with decreasing of bandwidth. As a result
the middle cusp in the magnetization curve [see Fig. 3(b)]
related to the middle singularity in the density of states [see
Fig. 2(a)] moves to the left cusp this way yielding the steep
part before saturation seen in Fig. 3(b). The slope of that part
of the magnetization curve increases if K → 1/2; however,
at the same time its height decreases and vanishes finally at
K = 1/2, where the magnetization approaches the saturation
continuously with an infinite slope; see Fig. 3(a). Moreover,
1/2 − mz ∝ (�0 + 0.75)ε if �0 + 0.75 → +0 with ε = 1/4
instead of the usual value ε = 1/2; see Ref. 2.

The effect of randomness on the magnetization mz is
similar to that of a finite temperature. For small randomness
the cusps in the mz curves, which indicate boundaries of
different ground-state phases, become rounded, indicating that
a quantum phase transition present at � = 0 transforms into
a crossover at � > 0. Although even small randomness is
sufficient to erode the boundaries between different ground-
state phases by a noticeable rounding of the cusps of mz, it
may have almost no influence on mz for parameter values
corresponding to the spin-liquid phases; see Figs. 3 and 4.
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FIG. 3. Ground-state transverse magnetization −mz (4.4) versus
�0 for the spin model (2.1), (2.2) with J = 1, (a) K = 0.5, (b) K =
0.75, (c) K = 2 for � = 0, . . . ,0.2. The quantum phase transitions
occurring in the nonrandom model (a) at �0 = −0.75, �0 = 1.25,
(b) at �0 ≈ −0.708, �0 = −0.625, �0 = 1.375, and (c) at �0 =
−1.125, �0 = 0, �0 = 2 are signaled by kinks in the magnetization.

Other peculiarities of the nonrandom model, namely nonzero
magnetization at �0 = 0, zero magnetization at nonzero �0,
as well as saturated magnetization for |�0| < |J | [see Fig. 4]
become less pronounced as the strength of disorder increases.

In Figs. 5 and 6 we report some of our findings for nonzero
temperatures (for the sake of brevity we consider the case
�0 = 0, only). The specific heat c for various parameter sets
is presented in Fig. 5, where we show c/T as a function of
temperature T . For the nonrandom case � = 0 it is known16

that c(T ) ∝ T in the limit T → 0 for all K except K = Kcrit =
±2|J |. For the critical value of K , K = Kcrit, we have c(T ) ∝√

T .
Let us start with the discussion of the behavior of c/T

for K = 1, i.e., the system is quite far away from the
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FIG. 4. Ground-state transverse magnetization −mz (4.4) versus
K for the spin model (2.1), (2.2) with J = 1, (a) �0 = 0, (b) �0 =
0.5, (c) �0 = 0.75 for � = 0, . . . ,0.2. The quantum phase transitions
occurring in the nonrandom model (a) at K = −2, K = 2, (b) at K =
−1, K = 3, and (c) at K = −1, K = −0.5, K = 3.5 are signaled by
kinks in the magnetization.

quantum critical point Kcrit = 2. Then we have the typical
high-temperature maximum in c(T ) related to the relevant
energy scale (depending on J and K) and a constant value
of c/T at low T corresponding to c ∝ T . The position of the
high-temperature maximum moves to higher temperatures as
K increases. The overall modification of the c/T versus T

curve by randomness is small. There is only a small change
of the slope in the dependence c on T as T → 0 and a slight
shift of the height and the position of the high-temperature
maximum. At the quantum critical point K = Kcrit = 2 we
have a completely different behavior of c/T . The high-
temperature maximum is still present (and again there is only a
weak effect of randomness on that maximum). However, below
the maximum there is an increase of c/T with decreasing
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FIG. 5. c/T versus T , c is the specific heat given in Eq. (4.3), for
the spin model (2.1), (2.2) with J = 1, K = 1, 1.9, 2, 2.1 (from top
to bottom), �0 = 0, and � = 0, . . . ,0.2.
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to bottom), �0 = 0, and � = 0, . . . ,0.2.
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T , indicating the c ∝ √
T dependence. While this increase

is monotonous till T → 0 for the nonrandom case, in the
random system there is only a finite region of T where
this increase of c/T can be observed. At lower T again
the c ∝ T regime sets in, i.e., the randomness destroys the√

T dependence in favor of the T dependence as T → 0. A
similar behavior can be found for K values near Kcrit = 2,
e.g., at K = 1.9 or 2.1, i.e., we observe the

√
T dependence

for the low-temperature specific heat in a finite temperature
range below the high-temperature maximum. That is the
typical quantum critical behavior appearing in the vicinity
of a quantum critical point.1–3 Interestingly, in the specific
model under consideration for small randomness there is a
second maximum for c/T (but not for c) at a lower temperature
T � (which is a reminiscence of the singularity for K = Kcrit

at T = 0) before the c ∝ T regime sets in at very low
temperatures. According to the above discussion for Figs. 5(b),
5(c), and 5(d), we conclude that for the system at K = Kcrit

at low but finite temperatures the randomness has a similar
effect as shifting the nonrandom system slightly away from
the quantum critical point. Note that further increasing of �

removes the low-temperature maximum in c/T and also the
critical-like

√
T behavior of c disappears, see the curves for

� = 0.1 in panels for K = 1.9, 2.1 of Fig. 5.
The temperature dependence of the static transverse suscep-

tibility χzz shown in Fig. 6 exhibits many similarities to that
of c/T discussed above. In the nonrandom case it is known16

that for K = Kcrit one has χzz ∝ 1/
√

T (critical behavior) as
T → 0, whereas χzz remains finite at T = 0 for noncritical
values of K . For K around Kcrit a reminiscent of the critical
behavior emerges in the low-temperature region starting from
certain finite temperatures. For small nonzero �, χzz may
exhibit the critical behavior in a certain temperature range
starting from finite temperatures if K is equal to or is close to
Kcrit, see the curves for � = 0.01 in panels K = 1.9, 2, 2.1 of
Fig. 6.

We can use the above-discussed observations of the temper-
ature profiles of c/T and χzz to construct a phase diagram of
the random quantum spin chain (2.1), (2.2), i.e., to determine
the quantum critical region in the K–T half-plane; see Fig.
7. As an indicator of the critical (i.e.,

√
T -like) behavior we

choose the value of the derivative −∂(c/T )/∂T . To be more
specific, we use the circumstance that, for K in the vicinity
of Kcrit, and small � � 0, c/T exhibits a maximum at T �

(for K = Kcrit, � = 0 it is a divergency at T = 0) and a
1/

√
T -like decrease (due to c ∝ √

T ) in a certain temperature
region above T �. As discussed above this behavior is a trace
of the quantum critical point. The plots shown in Fig. 7 are
based on a quantitative analysis of −∂(c/T )/∂T and show
the value of −∂(c/T )/∂T as gray-scale plots. All white areas
in this figure belong to negative values of −∂(c/T )/∂T . The
lower boundary of the quantum critical region is related to
T � (the temperature where the low-temperature maximum of
c/T is located), since for T < T � one has −∂(c/T )/∂T <

0, whereas already for T slightly above T � the derivative
−∂(c/T )/∂T > 0 becomes quite large. As a result, the lower
boundary of the quantum critical region is quite sharp in
Fig. 7. Note that for � = 0 our plot reproduces the typical
picture for a quantum critical region.1–3 For small � � 0
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FIG. 7. Critical region as indicated by the value of
−∂(c/T )/∂T > 0 in the half-plane K–T for the spin model (2.1),
(2.2) with J = 1, �0 = 0 and � = 0, 0.01, 0.05, 0.1 (from top to
bottom). See further explanations in the main text.

the lower boundaries in the K–T half-plane remain nearly
straight lines with different slopes ≈ −0.225 and ≈ 0.096
below and above K = 2, respectively. We compare these
lower boundaries for various strengths of disorder � in Fig.
8, where the numerically determined values of T � as a
function of K are shown. It is obvious that a noticeable
change in the slope is observed only in a small vicinity
of the K = 2. On the other hand, the upper boundary of
the quantum critical region is not sharp, since −∂(c/T )/∂T
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model (2.1), (2.2) with J = 1, �0 = 0, and � = 0, 0.01, 0.05.

varies smoothly, if the temperature is further growing. From
Fig. 7 it is obvious that for small randomness (see the panel
for � = 0.01 in Fig. 7 and the corresponding curves in Fig.
8) at low temperatures the area, where signatures of quantum
critical behavior can be observed, is enlarged, whereas a further
increase of randomness then leads to a shrinking of that area.
For � � 0.1 the signatures of quantum criticality completely
disappear.

We have to say in the end, that the adopted criterion to
indicate the effect of randomness on quantum critical behavior
represents only one possibility. In fact, with this criterion we
only indicate a region where the specific heat c behaves like T α

with α < 1 and claim that such a behavior is a remnant of the
quantum critical one in the nonrandom model when α = 1/2.

V. GENERALIZATION OF THE MODEL

Our consideration until now was restricted to the XX two-
site interaction and the XZX + YZY three-site interaction
[see Eq. (2.1)] with a Lorentzian probability distribution of the
random transverse field, which allows the exact calculation of
averaged density of states. In this section we want to generalize
the model by (i) extending the Hamiltonian and (ii) considering
general probability distributions.

First we illustrate the extension of the Hamiltonian. We can
add to the Hamiltonian (2.1) a Dzyaloshinskii–Moriya two-site
interaction with the strength Dn and a XZY − YZX three-site
interaction with the strength En,

H =
∑

n

[
Jn

(
sx
n sx

n+1 + sy
n s

y

n+1

)

+Dn

(
sx
n s

y

n+1 − sy
n sx

n+1

)
+Kn

(
sx
n sz

n+1s
x
n+2 + sy

n sz
n+1s

y

n+2

)
+En

(
sx
n sz

n+1s
y

n+2 − sy
n sz

n+1s
x
n+2

)] +
∑

n

�ns
z
n. (5.1)

In fermionic representation Eq. (5.1) reads

H =
∑

n

[
An

(
c†ncn − 1

2

)
+ (Bnc

†
ncn+1 + H.c.)

+ (Cnc
†
ncn+2 + H.c.)

]
, (5.2)

where An = �n, Bn = (Jn + iDn)/2, and Cn = −(Kn +
iEn)/4. Comparing Eq. (5.2) with Eq. (2.3) we conclude that
for a Lorentzian probability of �n and uniform parameters
Jn = J , Dn = D, Kn = K , and En = E the formula (3.6)
for the averaged Green function is valid also for the gener-
alized model (5.1) if we change J cos κ − (K/2) cos(2κ) →
J cos κ + D sin κ − (K/2) cos(2κ) − (E/2) sin(2κ). Further
analysis can be performed as in the previous sections. Although
the results obtained from the exact averaged density of states
are more general now, they do not give basically new features
in comparison to those discussed above.

So far our discussion has been referred to a special kind of
randomness, i.e., to a Lorentzian transverse field. Only in this
case we can provide an exact analysis of the thermodynamics
of the spin model. However, it is possible to analyze some
global properties of the averaged density of states (which
imply corresponding properties of the spin chain) for an
arbitrary inhomogeneous spin-1/2 XX chain with three-site
interactions in a transverse field (5.1). For that we consider the
moments of the density of states (3.1),33

M (0) =
∫

dωρ(ω) = 1

N

N∑
n=1

〈{cn,c
†
n}〉 = 1,

M (1) =
∫

dωωρ(ω) = 1

N

N∑
n=1

〈{[cn,H ] ,c†n}〉,

M (2) =
∫

dωω2ρ(ω) = 1

N

N∑
n=1

〈{[[cn,H ] ,H ] ,c†n}〉,

M (3) =
∫

dωω3ρ(ω) = 1

N

N∑
n=1

〈{[[[cn,H ] ,H ] ,H ] ,c†n}〉,

(5.3)

etc. Calculating the right-hand sides in Eq. (5.3) with the
Hamiltonian (5.2) we find

M (1) = 1

N

∑
n

An,

M (2) = 1

N

∑
n

(
A2

n + |Cn−2|2 + |Bn−1|2 + |Bn|2 + |Cn|2
)
,

M (3) = 1

N

∑
n

[|Cn−2|2An−2 + |Bn−1|2An−1

+A3
n + 2(|Cn−2|2 + |Bn−1|2 + |Bn|2 + |Cn|2)An

+|Bn|2An+1 + |Cn|2An+2

+2�(C∗
n−2Bn−2Bn−1 + C∗

n−1Bn−1Bn + C∗
nBnBn+1)

]
.

(5.4)

The moments of the random-averaged density of states ρ(ω)
follow from Eq. (5.4) after a corresponding averaging.

We may use the derived moments of the density of states
(5.4) to examine some general properties of the (homogeneous
or inhomogeneous) spin chain (5.1). For example, the ground-
state transverse magnetization is given by the formula

mz = −
∫

dωρ(ω)

[
θ (ω) − 1

2

]
; (5.5)
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see Eq. (4.4). It has been shown that the uniform spin model
(5.1) may exhibit a nonzero transverse magnetization mz in
zero transverse field �n = �0 = 0.15–17,34 From Eq. (5.5) it
is clear that mz 
= 0 at zero field if the density of states is
asymmetric, i.e., if the third moment of the density of states at
zero field is nonzero.

In the uniform (nonrandom) case we have M (3) = A3 +
6(|B|2 + |C|2)A + 6�(C∗B2), or in the zero-field case M (3) =
6�(C∗B2) = −(3/8)[(J 2 − D2)K + 2JDE]. From the latter
formula it is obvious that only three-site interactions may lead
to nonzero magnetization. More precisely, the XZX + YZY

interaction if J 2 
= D2 or the XZY − YZX interaction if
JD 
= 0 leads to mz 
= 0 at zero field. Formulas for the
moments of the density of states (5.4) permit us to examine
the effect of randomness on this property. An example of such
analysis is given in Ref. 15 where some consequences of the
correlated off-diagonal and diagonal disorder were discussed.

Finally we note that the high-temperature properties of the
spin model are determined by the lower moments of the density
of states [see Eq. (3.1)], and therefore the thermodynamic
quantities in the high-temperature limit can be examined
accurately for any type of disorder on the basis of Eq. (5.4).

VI. CONCLUSIONS

We have considered a random spin-1/2 XX chain with
three-site interactions. For a random on-site transverse field
with Lorentzian probability distribution we have calculated
exactly the random-averaged density of states and the corre-
sponding random-averaged thermodynamic quantities of the
model. For arbitrary inhomogeneous Hamiltonian parameters
we have calculated the three first moments of the density of
states that determine some general properties of the spin model
and yield its thermodynamic quantities in the high-temperature
limit. The effect of a random transverse field on the ground-
state magnetization process and on the temperature behavior
of the specific heat and static transverse susceptibility has been
analyzed. As a main result we have discussed how the quantum
critical behavior of the spin-1/2 XX chain with three-site
interactions is modified by randomness. While for large
enough randomness all signatures of quantum critical behavior
disappear, we find even a slightly enlarged temperature area
for very small randomness, where such signatures can be
observed.

Finally, we have to underline that our analytical findings
are restricted to the random-averaged density of states and
thermodynamic quantities. To our best knowledge, almost all
applications of Lloyd’s model are restricted to one-particle
quantities that can be obtained rigorously. The calculation
of the two-particle quantities meets notorious difficulties and
requires approximations; see e.g., Ref. 35. On the other hand,
other quantities of interest that are not related to the one-
particle Green functions (3.3) but are important for following
final outcomes of introduced randomness (e.g., two-spin
correlation functions) may be examined only numerically for
finite chains;36 see also Ref. 37. However, numerical studies
are beyond the scope of the present paper and will be reported
separately.

ACKNOWLEDGMENTS
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APPENDIX: THE ROOTS OF Eq. (3.8)

In this Appendix we give explicit expressions for the roots
of Eq. (3.8). They read:

{z1,z2,z3,z4} =
{ J

K
− g −

√(
J
K

− g
)2 − 4

2
,

J
K

+ g −
√(

J
K

+ g
)2 − 4

2
,

J
K

− g +
√(

J
K

− g
)2 − 4

2
,

J
K

+ g +
√(

J
K

+ g
)2 − 4

2

}
, (A1)

with g =
√

(J/K)2 − (4/K)(ω − �0 + i�) + 2 in the
case of the retarded Green functions (3.3) or g =√

(J/K)2 − (4/K)(ω − �0 − i�) + 2 in the case of the
advanced Green functions (3.3).
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15D. Gottlieb and J. Rössler, Phys. Rev. B 60, 9232 (1999);
O. Derzhko, J. Richter, and V. Derzhko, Ann. Phys. (Leipzig) 8,
SI-49 (1999), e-print arXiv:cond-mat/9908425.

16I. Titvinidze and G. I. Japaridze, Eur. Phys. J. B 32, 383 (2003).
17P. Lou, W.-C. Wu, and M.-C. Chang, Phys. Rev. B 70, 064405

(2004); P. Lou, Phys. Status Solidi B 241, 1343 (2004).
18M. Suzuki, Phys. Lett. A 34, 338 (1971); Prog. Theor. Phys. 46,

1337 (1971).
19P. Lloyd, J. Phys. C 2, 1717 (1969).
20H. Nishimori, Phys. Lett. A 100, 239 (1984); K. Okamoto, J. Phys.

Soc. Jpn. 59, 4286 (1990); O. Derzhko and T. Verkholyak, Phys.
Status Solidi B 200, 255 (1997); Fiz. Nizk. Temp. (Kharkiv) 23,
977 (1997); Low Temp. Phys. 23, 733 (1997).

21W. John and J. Schreiber, Phys. Status Solidi B 66, 193 (1974);
J. Richter, K. Handrich, and J. Schreiber, ibid. 68, K61 (1975); J.

Richter, J. Schreiber, and K. Handrich, ibid. 74, K125 (1976); J.
Richter, ibid. 87, K89 (1978); 99, K13 (1980).

22O. Derzhko and J. Richter, Phys. Lett. A 222, 338 (1996); Phys.
Rev. B 55, 14298 (1997); 59, 100 (1999).

23D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992); Phys. Rev. B 51,
6411 (1995).

24J. K. Pachos and M. B. Plenio, Phys. Rev. Lett. 93, 056402 (2004);
J. K. Pachos and E. Rico, Phys. Rev. A 70, 053620 (2004).

25T. Krokhmalskii, O. Derzhko, J. Stolze, and T. Verkholyak, Phys.
Rev. B 77, 174404 (2008).

26W. W. Cheng and J.-M. Liu, Phys. Rev. A 82, 012308 (2010);
F. G. Ribeiro, J. P. de Lima, and L. L. Gonçalves, J. Magn. Magn.
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