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Fractional synchronization is one of the most interesting collective behaviors in coupled or driving-response
oscillators system, very important for both a deep understanding of a particular oscillator and for its applications.
We numerically investigate the fractional synchronization of a spin-torque oscillator by injected ac current.
Multiple p : q locking regions are found, which display some sophisticated overlaps. The system can be analyzed
as a perturbed heteroclinic cycle rather than a phase oscillator. Both the modulations on the output frequency
and power are mainly due to the modulation by the external signals on the distance between the dynamical orbit
and the saddle point in phase space. By using this dynamical picture, we can well understand all the numerical
results, including the variation of the locking region with the amplitude |Ja| or frequency f of the injected
signal, the influence by noise, and the difference among the output powers of coexisting locking attractors.
These understandings are significant for both potential applications in electronic communications and a deep
investigation into this novel device.
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I. INTRODUCTION

The spin-torque oscillator (STO)1 currently is receiving a
rapidly growing interest thanks to its significant advantages,
such as its extremely small footprint (without the need of
a large inductor), ultrawide-band-frequency operation, and
easy on-chip integration, which make it very promising
for broadband high-quality microwave generator.2 It is of
significance to study the interaction between a STO and an
external stimuli both for a deep understanding of the dynamical
characteristics of a STO device and for potential applications.
For example, for the purpose of utilizing that STO in most
of the existing communication technology, it is imperative
that it be readily modulated by an external stimuli since a
pure microwave resonance of the STO does not carry any
information.3 When the external frequency f is close to the
intrinsic (free-evolving) STO frequency F , it is possible to
get a 1 : 1 phase locking, where the locking ratios p : q =
f : F̃ = 1 : 1, and F̃ is the oscillation frequency of the STO
under external forces. This effect has been studied both exper-
imentally and theoretically for the purpose of understanding
and realization of mutual synchronization of two or more
STOs.4

Understanding the response of a STO to a wider range
of injected frequencies can be obtained by investigating the
fractional synchronization, which means p : q is a rational
number. Urazhdin et al.5 experimentally demonstrated that
the STO can be fractionally locked to a microwave magnetic
field and pointed out that the nontrivial observation was due
to the complex nonlinear characteristics of STO. Microwave
magnetic field and microwave current are the two external
stimuli that are usually used to interact with STOs. However,
it will be much more convenient to modulate the STO with an
external microwave current instead of a microwave magnetic
field since the incorporation of a large magnetic field source
for the generation of a microwave field will outweigh any
advantages of STO-based nanosized devices.6 In this paper,

we will study the fractional synchronization of the STO with
a wide range of injected ac currents.5

Previously, such a driven STO has usually been analyzed by
phase oscillator model, where the synchronization is usually
associated with a 1 : 1 locking when the driving frequency is
close to the free-evolving frequency.4,7 But the phase oscillator
model cannot be used to explain some important nonlinear
characteristics.8 Therefore, it is not expected to be suitable
to analyze most of the phenomena relating to p : q fractional
locking, since the appearance of p : q locking usually is as-
sociated with some highly nonlinear characteristics. The STO
is a nonlinear oscillatory system with some saddle-connection
structures, and its dynamics is more suitably analyzed as a
perturbed heteroclinic cycle.8 In this type of dynamical system,
there is a good degree of flexibility of locking in a wide
range of both subharmonics and superharmonics, which comes
from the sensitivity of its dynamical state near the heteroclinic
orbit, especially near the saddle points.9 This is the theoretical
foundation basis on which we analyze the p : q fractional
locking of STO.

Three problems are of special importance in studying
locking behavior. First, how do these p : q locking regions
change with the parameters of the driving signals? They
can highly reflect the nonlinear characteristics of a particular
system.5,10 Second, how do these regions change if noise
effect is taken into consideration? It is important because
noise plays a unique role in such a dynamical system with
a saddle-connection structures9,11 and noise is inevitable in
the experiments.12 Third, what is the output power of these
locking attractors? The output power is of importance for its
applications.2

Our studies in this paper will be focused on the afore-
mentioned three problems. Multiple p : q locking regions are
found, and their rich behaviors are shown. The STO system
has a great degree of flexibility of locking to a wide range
of injected frequencies than that of a typical driven phase
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oscillator. Different p : q fractional locking regions can have
complicated overlaps, and multiple p : q locking attractors can
coexist at the same system parameters. Noise can destroy the
attracting basins of the locking attractor having the smallest
distance to its bifurcation point in parameter space or the one
having the smallest attracting basin. Noise can also make
the STO lock to a slower injected frequency. The output
power is different among the coexisting locking attractors.
These nontrivial features must be taken into consideration
when developing STOs into applications. Importantly, all the
observations can be well understood by the nonlinearity of
the perturbed heteroclinic cycle structure, i.e., the results of
the modulation on the frequency or on the output power
indeed comes from the modulation on the distance between the
dynamical orbit and the saddle point in the phase space, and
the larger the distance, the slower the frequency. Through these
detailed studies of fractional locking, the complex nonlinear
characteristics of this nontrivial STO system can therefore be
well understood.

II. MODEL

A macrospin approximation treats the magnetization of a
sample as a single macroscopic spin and has been extensively
used to capture some features of magnetic materials qualita-
tively as well as for studying the fundamental aspects of the
spin-torque-induced magnetization precession and switching,
albeit with some limitations, such as are typically used for
studying nanopillar with lateral sizes below 30 nm where the
dominant spin wave is a zero-order coherent spin wave mode;
and it becomes invalid for the cases where the large-amplitude,
higher-order spin wave modes excitations become important
such as magnetic nanocontacts, vortex oscillators, and most
of spin-torque-driven domain-wall motions. In this paper we
utilize a macrospin approximation for studying the qualitative
features of microwave-current-driven fractional locking of the
mostly commonly investigated in-plane spin-torque nanopillar
device injected with ac current [Fig. 1(a)]. The unit vector of
the free-layer magnetization m is described by the Landau–
Lifshitz–Gilbert–Slonczewski (LLGS) equation,13

dm
dt

= −|γ |m × Heff + αm × dm
dt

+ |γ |βJm × (m × M),

(1)

where γ is the gyromagnetic ratio, α is the Gilbert damping
parameter, and β contains material parameters and funda-
mental constants.14 The electrical current J is defined as
positive when electrons flow from the fixed layer to the free
layer. The effective field Heff carries the contribution of an
external applied magnetic field Ha , an anisotropy (easy axis)
field Hk along the x axis, and a demagnetization (easy plane
anisotropy) field μ0Hdz = 4πMs , where Ms is the saturation
magnetization of the free-layer material. Thus we get Heff =
Haêx + (Hkmxêx − Hdzmzêz)/|m|. In most experiments, due
to the utilization of a synthetic antiferromagnetic stucture such
as a pinned layer, the stray field acting on the free layer can
be significantly compensated. In the framework of macrospin
simulation employed in the current study, the stray field acting
on the free (sensing) layer is assumed to be zero.

FIG. 1. (Color online) (a) Schematic of the in-plane STO investi-
gated in this paper. The free-layer magnetization m is separated from
the fixed layer M by a nonmagnetic layer. In the spherical coordinate
system (b), the three possible oscillatory states in a free-evolving
STO are shown respectively in (c) a attracting heteroclinic cycle, (d)
global oscillation, and (e) local oscillation. The bold lines are the
attractors. Their trajectories in the three-dimensional configuration
space are shown respectively in (f) a homoclinic orbit, (g) out-of-plane
oscillation, and (h) in-plane oscillation. L in (d) indicates the distance
between the orbit and saddle. L̂ in (g) demonstrate this distance in
the configuration space.

In spherical coordinate system, we can express Eq. (1) as

dθ

dt
= γ

1 + α2
{U cos θ cos φ + α(Hdz + Hk cos2 φ)

× sin θ cos θ − V sin φ − Hk sin φ cos φ sin θ}, (2)
dφ

dt
= γ

1 + α2

{
1

sin θ
[−U sin φ − (Hdz + Hk cos2 φ) sin θ

× cos θ − V cos φ cos θ − αHk sin φ cos φ sin θ ]

}
, (3)

where U = αHa − β(Jd + Ja) and V = Ha + αβ(Jd + Ja).
Jd is the dc current and Ja = |Ja| cos 2πf t represents the
injected ac current with the amplitude |Ja| and the injected
frequency f . The values of some parameters used in the
calculation are as follows: |γ | = 1.885 × 1011Hz/T, α =
10−2, Ha = 0.2 T, β = 10/3, Hdz = 1.6 T, Hk = 0.05 T,
and Jd = 10 mA, so that the free-evolving frequency F

approximates to 21.7 GHz.
We call it a free-evolving state when |Ja| = 0. In the pa-

rameter region where the STO can itself sustain an oscillation,
the equilibrium state �(1) that m is antiparallel to M must
be a saddle point in the dynamical phase space, whereas the
other equilibrium state �(2) that m is parallel to M must be an
unstable focus. There may be a homoclinic orbit (a heteroclinic
cycle in spherical coordinate system) connecting the saddle,
but it can just happen at a particular subset with zero measure
in the parameter space. The heteroclinic cycle in spherical
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coordinate [Fig. 1(b)] is shown in Fig. 1(c), and its trajectory
in the three-dimensional configuration space is shown in
Fig. 1(f). The dynamics of the system with parameters
deviating from that for the heteroclinic cycle can be dealt with
as a perturbed heteroclinic cycle. The asymptotic stable states
can be classified into two cases: (i) global oscillation [Figs. 1(d)
and 1(g)] which means the free layer m rotates around the
current J , and (ii) local oscillation (LO) [Figs. 1(e) and 1(h)]
which means m just vibrates near a particular direction.8 Such
three types of oscillation have also been numerically and/or
analytically given in others’ work.15 In this paper, we will focus
on the physically more relevant global oscillatory state except
for special notes. Such a state has a free-evolving frequency
F depending on the distance L between the orbit and the
saddle point,8 as shown in Fig. 1(d). While the free-evolving
state studied in this paper is always a global oscillatory
state, the orbit could be driven across the saddle point and
becomes a local oscillatory one when the injected current is
large.

III. FRACTIONAL SYNCHRONIZATION

In the presence of an injected current, the system is driven
to a new orbit with a different distance L̃ from the saddle,
and the frequency is modulated to F̃ mainly due to L̃. When
the injected ac current Ja is small, it influences the system as
another perturbation. The case of small Ja has been studied in
Ref. 8, showing that the 1 : 1 locking region is proportional
to the injected |Ja|. Here, we consider a wider range of
driving frequencies and stronger currents; the synchronization
regions are shown in Fig. 2. In the case of a wider range of
driving frequencies, several fractional locking regions could be
observed even when |Ja | is small. For example, in Fig. 2 (below
the dashed line), the regions of locking ratios p : q = 1 : 2,
1 : 1, 2 : 1, and 3 : 1 are obvious and well separated. In the
following, we investigate these fractional locking regions and
focus on the three aforementioned problems.

A. p : q locking regions

Before investigating how the p : q locking regions change
with system parameters, we show that it is relatively easier
to fractionally lock this system and get larger locking regions
than typical driven phase oscillators. The reason is that the
dynamical orbit in this type of system is very sensitive to
external perturbation near the saddle points and easier to

be driven to the target orbit of the synchronized frequency.9

Typically, an oscillator which could be fractionally locked to a
driving signal, when simplified to the form of phase oscillator,
would take the following form:

dφ/dt = 2πF + μ
∑
p,q

gp,q sin (2πqf t − pφ), (4)

where F and f are the free-evolving and driving frequencies,
respectively, μ is the driving strength, and gp,q is the weight
of the p : q driving component. Usually, gp,q is bigger with
smaller p and q, so that the smaller p and q locking attractor
is more stable and its locking region is usually larger.

When the other p : q components could be ignored com-
pared with 1 : 1, this phase oscillator could be simplified as

dφ/dt = 2πF + μ sin (2πf t − φ), (5)

whose locking region is

2π |F − f | � μ. (6)

If we regard the driven STO as a phase oscillator, the 1 : 1
driving strength has the same order as βγ

1+α2 |Ja|.8,16 The 1 : 1
locking region given by Eq. (6) (dashed line in Fig. 3, lower
panel) is much smaller than the 1 : 1 locking region in Fig. 2
at the same injected amplitude |Ja|.

Here, our aim is to show a simple comparison, so we
preserve three terms of p : q = 1 : 1, 2 : 1, and 3 : 1 and
assume that g1,1 = g2,1 = g3,1 = 1 (in physical case, usually
g1,1 > g2,1 > g3,1). μ is still assigned the value as βγ

1+α2 |Ja|.
In Fig. 3, we show the locking region of this simplified driven
phase oscillator:

dφ/dt = 2πF + μ[sin (2πf t − φ)

+ sin (2πf t − 2φ) + sin (2πf t − 3φ)]. (7)

Two significant differences are observed between the real
driven STO system (Fig. 2) and the driven phase oscillator
system (Fig. 3). First, this driven STO system shows a much
larger locking region of each fractional locking attractor, when
comparing Fig. 2 with the lower panel of Fig. 3, both having
the same scale of |Ja|. To get a similar size of locking region in
the driven phase oscillators, the driving current |Ja| needs to be
enlarged by 2–3 orders of magnitude, as seen in upper panel of
Fig. 3. Second, there could be many p : q locking regions
in the real STO system whereas the number of fractional
locking regions in the driven phase oscillator depends on

FIG. 2. (Color online) Probabilities of synchronization from different initial conditions in 1 : 3, 1 : 2, 1 : 1, 2 : 1, and 3 : 1 regions. Black
indicates the 100% synchronization regions. We use different color scales to help distinguish different locking regions. In each region, strips of
the lighter color indicate smaller synchronization probabilities. Some other locking regions, such as 3 : 2, 4 : 3, etc., are also observed, but not
shown in the figure for the sake of clarity). |Ja | = 2 mA is on the dashed line. The probability in this figure and also other places in this paper
represents the ratio of the phase volume of an attracting basin to the whole phase space.
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FIG. 3. (Color online) Fractional locking regions of the phase
oscillator in Eq. (7). The lower panel has the same scale of |Ja |
as that of Fig. 2, but the locking regions are much smaller. To get
a similar size of locking region to Fig. 2, the injected current |Ja |
needs to be enlarged greatly, as shown in the upper panel. The dashed
lines delimit the 1 : 1 locking region of the driven phase oscillator,
dφ/dt = 2πF + β|Ja| sin (2πf t − φ).

the form of the coupling term [in the case of Eq. (5), only
1 : 1 is found; in the case of Eq. (7), 2 : 1 and 3 : 1 locking
emerge]. This comparison shows that the degree of flexibility
of fractional synchronization of the driven STO system is quite
high, consistent with the expectation based on the perturbed
heteroclinic cycle structure. Several typical representations of
the locking dynamics of the driven STO system are shown in
Fig. 4.

In a typical oscillator which can be well described by
a phase oscillator, increasing Ja of the driving signal will
generally enlarge the locking region and make an locking
attractor more stable, which can be beneficial for many

FIG. 4. (Color online) Time evolution of cos φ (solid lines) and
the injected signal cos (2πf t) (dashed lines) of several typical locking
examples: (a) 1 : 3 (f = 7.2 GHz), (b) 1 : 2 (f = 10.8 GHz), (c) 1 : 1
(f = 21.6 GHz), (d) 2 : 1 (f = 45.0 GHz), (e) 3 : 1 (f = 66.0 GHz),
(f) 4 : 3 (f = 30.0 GHz), and (g) 2 : 1 local oscillation (f =
30.0 GHz). |Ja| = 10 mA, and other parameters are the same as
in Fig. 2. LO stands for local oscillation.

applications. However, this is not always the case in the driven
STO system.

Comparing Fig. 2 and Fig. 3, we can see that when
different p : q locking regions meet, they may have some
complicated overlaps. It is totally different from the p : q

locking in the driven phase oscillator, where the fractional
locking regions are separated by obvious boundaries. This
difference has significant implications in applications, because
the overlapping of locking regions means that the attractor
may not become more stable but rather could shift to another
under some particular initial conditions when |Ja| is increased.
Here, multiple p : q locking attractors can coexist for the
same set of system parameters, for example the coexistence
of 4 : 3 locking attractor and 2 : 1 locking attractor with
[2 : 1(LO)], shown in Figs. 4(f) and 4(g). The problem happens
when an expected 100% synchronization region is pierced by
the locking regions of other attractors. For example, in the
envelope of the 100% synchronization region of 1 : 1 locking
in Fig. 2, synchronization may be expected to be achieved from
any initial conditions, and then this synchronization region
could be robustly employed in applications. However, this
region is in fact pierced by other regions, e.g., 2 : 1, 3 : 1
locking, so the 1 : 1 synchronization is not always achievable.
An example is shown in Fig. 5. When f = 24.2 GHz and
|Ja| = 3 mA, 1 : 1 locking will be always achieved from any
initial condition because it is the only attractor. But when
increasing to |Ja| = 5 mA, the synchronization is invaded by
2 : 1 locking. From some particular initial conditions, 2 : 1
locking is achieved. When |Ja| becomes larger, the overlaps of
the coexisting multiple locking attractors and even some newly
emergent ones will make the asymptotical dynamics depend
strongly on initial conditions.

The sophisticated overlapping of different locking regions
is a result of the saddle-node bifurcation of synchronization
in the perturbed heteroclinic cycle system.16 When a new
locking attractor emerges, an unstable orbit emerges at the
same parameter point, becoming the boundary of the attracting
basin. So there is no need for the other attractors to lose

FIG. 5. (Color online) Time series of cos φ of different locking
attractors with the identical injected frequency f = 24.2 GHz.
(a) 1 : 1 locking when |Ja| = 3 mA (unfilled squares), (b) 1 : 1
locking when |Ja| = 5 mA (filled squares), and (c) 2 : 1 locking
when |Ja| = 5 mA (diamonds) compared with the driving signal
cos 2πf t (solid line). (d) The dynamical orbits of these three attractors
in phase space {θ,φ}. The filled circles and stars are respectively
the saddle point �(1) and unstable focus �(2). The slower locking
attractor (diamonds) shows an obviously shorter distance from the
saddle point.
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stability at the same time and multiple attractors can coexist
as the overlap of the locking regions. On the other hand, a
driven phase oscillator model in Eq. (4) is not relevant to
explain this phenomenon, because the synchronization and
desynchronization in phase oscillators are usually associated
with supercritical Hopf bifurcation. When the synchronization
attractor becomes stable, the other attractors must disappear,
so that there are clear boundaries between locking regions.

According to our calculations within the framework of the
perturbed heteroclinic cycle structure, the STO can demon-
strate fractional locking to an ac current, which is similar
to its fractional locking to an ac magnetic field, observed in
experiments.5 However, compared with the fractional locking
by an ac field,5 our studies show that the STO will exhibit
different locking characteristics by an ac current, e.g., the
overlapping of the locking regions, which has not been
reported in the experiments by the ac magnetic field. Another
difference refers to the size of the synchronization regions.
As shown in Fig. 2, 1 : 1, 2 : 1, and 3 : 1 have similar
synchronization regimes, different from the case of the ac field
p : 1 phase locking, where the sizes of the synchronization
regions are significantly different for even and odd p.

It should also be noticed that we simulate the probability in
Fig. 2 and elsewhere by using uniform distribution of the initial
conditions, so that the exact meaning of probability in fact
reflects the ratio of the phase volume of an attracting basin to
the whole phase space. The probabilities of these attractors in
experiments is equivalent to the probabilities in this work with
a weighting factor, which originates from the initial conditions’
distribution affected by a variety of stochastic factors in reality,
including, but not limited to, the temperature.

B. Noise effect

What the effect of noise is on these p : q locking phe-
nomena of the STO is another important problem. The great
degree of flexibility of STO locking to a wide range is due
to its sensitivity to the perturbation near saddle points.9 Noise
thus usually plays an important role in such a system.11 And
noise is inevitable in experiments. In the driven STO system,
the influence of noise is more complex and interesting. It can
influence both the locking frequency and the attracting basins
of the coexisting locking attractors.

Let us first study the impact of noise on the locking
frequency. Usually noise tends to drive the orbit far away
from the saddle points in a pure heteroclinic cycle system, so
as to speed up the oscillations.11 Therefore it is often expected
that the system tends to lock with a higher driving frequency
when noise strength is increased. But in this system, there
is already a perturbation induced by the system parameters,
which makes the system have a higher opportunity of being
driven close to the saddle in the presence of noise. As a result,
the STO can be locked to a smaller driving frequency with
some noise. But this phenomenon of noise-induced slowing
down is not easily observed in a 1 : 1 locking region, because
this locking region is usually too wide where the variation
induced by noise is easily ignored. Thanks to the fractional
synchronization states, we can demonstrate this nontrivial
phenomenon obviously in a thinner locking region. As shown
in the 1 : 2 region in Fig. 6(a), increasing Gaussian white
noise can make the STO obviously lock to a smaller driving

FIG. 6. (Color online) Probabilities of synchronization of (a)
1 : 2, (b) 1 : 1, and (c) 2 : 1 regions while noise added as 〈Ha(t)〉 =
0.2T, 〈Ha(t)Ha(s)〉 = 2Dδ(t − s). |Ja | = 2mA and the other param-
eters are the same as in Fig. 2.

frequency. The variation of locking frequency induced by
noise is a typical phenomenon of synchronization in such a
dynamical system with a saddle-connected structure, but the
slowing-down phenomenon induced by noise is nontrivial. In
these systems, the modulation by noise on the distance between
the dynamical orbit and the saddle point results in a modulation
on the frequency, one of the mechanisms underlying another
well-known phenomenon named stochastic resonance.17 In
this way, noise can sometimes contribute to the locking of a
STO to a different frequency. This effect is especially obvious
when the locking region is small [comparing Fig. 6(a) with
Figs. 6(b) and 6(c)]. It is therefore very important to consider
the effect of noise in potential applications of STOs, especially
in the case where the locked or modulated frequency is used
to encode information.

The effect of noise on attracting basins is easier to compre-
hend. In the region of coexistence of multiple attractors, noise
tends to destroy the basin of the locking attractor that has the
smallest distance to its bifurcation point in parameter space,
or the one with the smallest attracting basin. We demonstrate
the meanings of the smallest distance to its bifurcation point
and smallest attracting basin schematically in Fig. 7, where
initial conditions refer to all the state variables, and ω could
be any system parameter, e.g., the injected frequency f in our
STO system. Along with the increasing ω, one can see the
emergence of D and A and the disappearance of B, A, and C
in order. At ω1 and ω2, A and B have the smallest distance
to their bifurcation points S1 and S2, respectively. D has the
smallest attracting basin at most region of the parameter ω.

In the driven STO system, by increasing the driving
frequency f , different p : q locking attractors can emerge
and disappear in a way similar to that of Fig. 7. We show one
of such examples in Fig. 8. Figures 8(a) and 8(b) respectively
show the probabilities of getting each locking attractor with
the uniform distribution of initial conditions in the absence
and in the presence of noise, when the amplitude of the driving
signal is fixed as |Ja| = 10 mA; Figs. 8(c), 8(e), 8(g), and 8(h)
show the distributions of those attracting basins at f = 29.1
GHz, f = 30.0 GHz, f = 30.3 GHz, and f = 15.9 GHz;
and Figs. 8(d) and 8(f) show two realizations of simulation
in the presence of noise at f = 29.1 GHz and f = 30.0 GHz
to demonstrate the change of the distributions of attracting
basins and the smearing of the basins’ boundaries.

Noise is absent at first. When f falls within the region
between about 29.1 GHz and 30.0 GHz (1.38–1.43 times
of F ), the coexistent locking attractors are 1 : 1, 4 : 3, 3 : 2,
and 2 : 1(LO) [Fig. 8(a)]. Similar to other fractional locking
problems, the locking attractors with small p and q usually
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FIG. 7. (Color online) Schematic drawing of the bifurcation
process versus ω in a dynamical system with the coexistence of
multiple attractors, where ω could be any system parameter, e.g. the
injected frequency f in our STO system. A, B, C, and D indicate
the attracting basins of four p : q locking attractors. S1 indicates the
bifurcation point of the emergence of A; S2 indicates the bifurcation
point of the disappearance of B. At ω1 and ω2, A and B have the
smallest distance to their bifurcation point, respectively. D has the
smallest attracting basin in most regions of the parameter ω.

exist in a wider region of system parameters, and they
are usually more stable (having large basins),10 e.g., C in
Fig. 7 and the 1 : 1 locking in Fig. 8. When f increases to
30.3 GHz, the desynchronization attractor appears [Fig. 8(g)].
The output frequency of the 1 : 1 locking has the largest
difference from the free-evolving frequency F . However, the
1 : 1 locking still has a longer distance to its bifurcation point
of disappearance than 4 : 3 locking. The attracting basin of the
desynchronization attractor does not invade the basin of the
1 : 1, but the basin of 4 : 3. With further increasing of f , 4 : 3
locking will disappear completely at about 30.6 GHz. The
similar invasion happens to 3 : 2 locking when f decreases
below 28.8 GHz. These observations show clearly that 1 : 1
locking appears to be more stable, whereas 4 : 3 is least stable
at f = 30.0 GHz and 3 : 2 is least stable at f = 29.1 GHz.

The next question is, when noise is taken into consideration,
which basin will be invaded first? The answer is that noise tends
to invade the basin of 4 : 3 at f = 30.0 GHz or the basin of 3 : 2
at f = 29.1 GHz. It always invades the one having the smallest
distance to its bifurcation point, because the existence of an
attractor is sensitive to external perturbation when the system
parameters are so close to the bifurcation point. Therefore
the probabilities of achieving 4 : 3 locking at f = 30.0 GHz
or 3 : 2 at f = 29.1 GHz significantly decrease, as shown in
Fig. 8(b). We show a realization of simulation at f = 29.1 GHz
with noise in Fig. 8(d), where the basin of 3 : 2 locking disap-
pears completely due to noise. A similar phenomenon happens
to the 4 : 3 locking at f = 30.0 GHz, shown in Fig. 8(f).

In other ranges of system parameters, the coexistent
attractors are different; for example, we show in Fig. 8(h)
that, at f = 15.9 GHz, the coexistent attractors turn out to
be 1 : 1, 1 : 1(LO) and desynchronization state (DS), but the
change of probabilities under noise effect is always similar.

Noise also tends to destroy the smallest attracting basin.
In Fig. 7, D has the smallest basin and so does the 2 : 1
locking attractor of local oscillation in Fig. 8(a). Comparing
Fig. 8(f) with Fig. 8(e), one can easily see that 2 : 1(LO) is no

FIG. 8. (Color online) Attracting basins for the coexisting multi-
ple attractors when |Ja | = 10 mA. (a) In the absence of noise, when
f is between about 29.1 GHz and 30.0 GHz (the vertical dashed
lines), locking attractors of 1 : 1, 4 : 3, 3 : 2 obviously coexist. [2 : 1
(LO) also exists, but its probability is too small.] (b) In the presence
of noise of 〈Ha(t)〉 = 0.2 T, 〈Ha(t)Ha(s)〉 = 0.01δ(t − s)T2, the
probabilities of these attractors significantly change: the 3 : 2’s
turn out to be negligible at about f = 29.1 GHz, the 4 : 3’s turn
out to be negligible at about f = 30.0 GHz, and the 2 : 1(LO)s
completely disappear for the whole region. (c) The distribution of
attracting basins at f = 29.1 GHz, and (d) one of its realizations
of simulation in the presence of noise demonstrates the change of
the distribution and the smearing of the basins’ boundaries. (e) The
attracting basins at f = 30.0 GHz and (f) one of their realizations
in the presence of noise. (g) The attracting basins at f = 30.3 GHz.
(h) An example of the distribution of attracting basins far from the
aforementioned parameter region, while f = 15.9 GHz. DS stands
for the desynchronization state.

longer present under the noise effect. This change can also be
observed by comparing Fig. 8(b) with Fig. 8(a). In Fig. 8(b),
the probability of 2 : 1(LO) is zero, whereas in Fig. 8(a), it
is not zero. But this comparison is not clear enough since the
probability of 2 : 1(LO) is quite tiny in Fig. 8(a).
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Now let us get back to discussing Figs. 6(b) and 6(c).
Note that 100% synchronization state is most significante in
applications because it is independent of initial conditions.
An interesting question is whether noise can contribute
to increasing the 100% synchronization state if the basins
of other attractors are very small. The answer is yes. In
Fig. 6(b) and Fig. 6(c), it is seen that, when the probability
of synchronization is quite close to 100%, increasing noise
can enhance it to 100% and make the 100% region wider
and wider until noise strength is too large and it destroys
synchronization again. On the other hand, when probabilities
of synchronization are low, noise will always destroy the
synchronization state.

These effects of noise on the attracting basins resulted
from the particular bifurcation process as demonstrated in
Fig. 7. The saddle-node bifurcation of synchronization in this
perturbed heteroclinic cycle system is therefore crucial. All the
nontrivial effects of noise originate from the role of noise to
modulate the dynamical orbits near the saddle points in phase
space in such a system with a perturbed heteroclinic cycle
structure. Thus, a driven phase oscillator model is not relevant
to explain these effects.

C. Output power

Besides all aforementioned dynamical behaviors, the
output power is another important issue, since it is tied to
applications of the system. The emitted microwave power
spectra of the STO depends on a wide range of material
parameters. Here we study how the output power is influenced
by external driving signals. We have performed the Fourier

FIG. 9. (Color online) (a) Fourier transformation amplitudes of
the cosine function of the relative angle between m and M of
different attractors and (b) the positions of their orbits in phase
space {θ,φ}. Parameters are the same as in Fig. 8(e), except for
that in the free-evolving state |Ja| = 0 and in the desynchronization
state f = 30.3 GHz. The dashed lines in (a) demonstrate the com-
parison among the output powers of the coexisting synchronization
state.

transformations of sin θ cos φ, the cosine function of the
relative angle between m and M, which is proportional with
the STO output signal, to reflect the microwave power. The
perturbed heteroclinic cycle structure can help us easily know
the difference among the output powers of the coexisting
locking attractors. The faster attractor oscillates farther away
from the saddle point, usually with a smaller amplitude of
oscillation,8 leading to a smaller output power. Figure 9(a)
shows the simulation results. The dashed line demonstrates
the comparison we analyzed (which can be simply marked
as 3 : 2 > 4 : 3 > 1 : 1). The positions of these attractors in
phase space {θ,φ} are shown in Fig. 9(b). When q �= 1, the
distances between an orbit and the saddle point �(1) have
a little difference each time it gets close to the saddle point
�(1) since one p : q attractor gets back to its original position
after it passes over the saddle point for q times (rotates q

cycles in configuration space). However, one can still easily
notice the significant difference among the distances between
each orbit and the saddle points. The significant difference
among the distances induces different locking frequencies,
and oscillatory amplitudes, leading to different output power.

IV. DISCUSSION

To gain a deeper understanding of how the STO device
responses to a wide range of injected frequencies, we study
the fractional synchronization of STO by an injected ac current.
Multiple p : q locking regions are observed. Our studies focus
on three important problems: how do the locking regions
change with driving parameters, how does noise affect the
p : q locking phenomenon, and what is the output power of
these p : q locking attractors? First, we found that the system
has a great degree of flexibility of locking to a wide range
of driving frequencies. The locking regions can have some
sophisticated overlaps, where multiple p : q attractors can
coexist at the same system parameters. Even some 100%
synchronization regions can be merged by other locking
regions. Second, noise plays a nontrivial role. It can make
the STO lock to relatively slower frequencies, and it can also
destroy the attracting basin of the locking attractor having the
smallest distance to its bifurcation point, or the one having the
smallest attracting basin. Finally, we showed that the output
power of the coexistent locking attractors depends on the
oscillating frequencies.

All these novel dynamical behaviors were well explained
by the perturbed heteroclinic cycle structures. Our studies are
significant both for understanding the nonlinear characteristics
of the STO system and for potential applications.

Our work can also help understand better about the
dynamical behavior of the LLGS equation and thus shed
light on a broad range of magnetism problems which can be
described by this equation.18
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