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Influence of dipolar energy on the magnetization reversal in magnetization-modulated thin film
systems: Model and experiment
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Laterally patterned magnetic hybrid structures display novel magnetic reversal properties, which are related to
the fundamental exchange coupling between material interfaces. We present an analytical model that depicts the
influence of dipolar fields in mesoscopic structures with modulated saturation magnetization on the magnetization
reversal and the local magnetic states, as well as the occurrence of a lateral exchange-spring effect. This is done
by confining a lateral array of stripes with alternating saturation magnetization MS in a micrometer-sized square,
introducing external boundary conditions to the system. The calculations were performed for distinct stripe and
array sizes, as well as different MS values. From the calculations a stability region of array and stripe sizes is
derived, in which the lateral exchange-spring effect occurs. The obtained modeling results were found to be in
agreement with the experimental data. The model adds a building block to the fundamental understanding of
magnetic hybrid structures.
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I. INTRODUCTION

The influence of lateral patterning on the magnetization
configuration of thin films is of fundamental interest in
the field of micromagnetism and magnonic crystals.1–3 One
major aspect of the research is the characterization of the
interplay between dipolar interactions in finite samples, the
exchange coupling, and external magnetic fields.4 Several
studies have been performed to simulate the influence of this
interplay on the magnetization reversal, numerically by finite
difference or finite element methods.5,6 These calculations
are, however, very time consuming for systems larger than
several micrometers, since a quantitatively correct evaluation
requires cell sizes on the order of the exchange length, which
is in general in the lower nanometer regime. One alternative
route is to calculate magnetization configurations analytically,
which has been performed already with good agreement to
experimental results for a lot of standardized cases like, e.g.,
ellipsoids and extended thin films.7,8 Yet very few calculations
have been performed on laterally exchange coupled structures
with periodically changing magnetic properties like saturation
magnetization MS and magnetic anisotropy.9 One interesting
effect that is observable in such structures is the lateral
exchange-spring effect between magnetically hard and soft
stripes.10 This effect is based on the formation of domain
walls between the stripes, when the magnetization in the
soft stripes is switched upon the application of an external
magnetic field. As in a regular multilayered exchange-spring
system, the soft stripes align back into the orientation of
the hard stripes after removal of the magnetic field.11 This
is, however, not the whole story for a confined stripe array
in which parallel-aligned magnetizations in the stripes point
perpendicularly to an external boundary and therefore the
dipolar energy has to be taken into account.

In this paper an analytical model is presented from which
the influence of dipolar energy on the lateral exchange-spring

effect in confined arrays of MS-modulated stripe structures is
calculated. The model results are compared to experimental
data. The samples used for the comparison were fabricated
by means of local ion implantation into ferromagnetic thin
films.9 By this, the saturation magnetization of Ni81Fe19 can
be tailored very accurately by implanting different doses
of chromium.12 Therefore it is possible to experimentally
compare the model with different sample parameters and thus
to prove the model’s reliability.

II. SAMPLE PREPARATION

Ni81Fe19 (20 nm) films were deposited by means of dc-
magnetron sputtering onto an oxidized silicon wafer with
a 5-nm Ta seed layer to promote a 〈111〉 crystallographic
texture and thereby optimal soft-magnetic properties. The
deposition parameters can be found elsewhere.10 After the
deposition the Ni81Fe19 film was patterned into a stripe array
of modulated saturation magnetization via photolithography
and subsequent irradiation with Cr ions at an ion energy of
E = 30 keV. The width of the stripes was set between 1 and
4 μm. The simulated radial distribution of the chromium is
7 nm.13 According to this, the lateral size of the interface
between the stripes can be considered as very small compared
to the stripe width. The fluence was chosen to set ratios of
MSL/MSH = 0.8, 0.5, and 0.2, which correspond to irradiation
fluences of 2.0 × 1015, 7.7 × 1015, and 1.5 × 1016 cm−2. Here
MSL and MSH represent low and high values, respectively,
of the saturation magnetization. The ratio MSL/MSH = 0, the
case of isolated, regularly structured stripes, was prepared
by e-beam lithography and subsequent Ar etching of the
unmasked stripes.

III. MODELING OF THE M(H) BEHAVIOR

The considered model system consists of a stripe array
with lateral dimensions of L × L, as sketched in Fig. 1. The

174423-11098-0121/2011/83(17)/174423(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.174423


NORBERT MARTIN et al. PHYSICAL REVIEW B 83, 174423 (2011)

FIG. 1. Schematic view of the model system of a stripe array with
alternating MS , where MSH � MSL. α and β represent the angles of
magnetization in the two types of stripe.

lateral dimensions are set to 40 × 40 μm2. The width of the
stripes varies between w = 1 and 20 μm, while the stripe
width within one array remains constant. The difference in
the magnetic properties of the stripes is the value of the
saturation magnetization MS , being high MSH or low MSH,
meaning MSH � MSL. The value of MSH for the calculations is
MSH = 800 kA m−1. We treat the system as a serial connection
of magnetic volumes with different MS values along the x

axis and a parallel connection along the y axis. The ratio
of MSL/MSH is varied between zero (isolated stripes) and 1
(homogenous magnetic properties). α and β are the directions
of magnetization within the high- and low-moment stripes,
respectively.

For the model we describe the energy density of the
ferromagnetic thin film system etot,

etot = eex + ed + eZee, (1)

as a sum of three energy densities, namely, the exchange eex,
the dipolar ed , and the magnetic-field energy density eZee.14

The low magnetic anisotropy energy of the soft magnetic film
is neglected. The magnetization is assumed to be homogeneous
within each of the stripes. Therefore possible exchange-energy
terms only originate at the interfaces between the individual
stripes, i.e. inside the magnetic domain walls. The energy of a
domain wall depends on the thickness of the film t , the wall
length L, and the angle between the magnetization components
on both sides of a wall. For Néel walls15 the specific energy
can be estimated using the following equation:16,17

γwall = γ0

[
1 − cos

(
α − β

2

)]2

. (2)

In the equation γ0 is the specific energy of a 180◦ wall that
scales with the saturation magnetization and the exchange
constant of the ferromagnet.18 Accordingly, the walls are
preferably located in the stripes with lower saturation mag-
netization MSL in order to reduce the domain-wall energy.

The Zeeman or field energy depends on MS and the
direction of magnetization in the individual stripes and the
angle between the external field Hext. It is calculated by

eZee = −μ0
L

2w
( �Hext · �MSH + �Hext · �MSL). (3)

The ratio L/2w determines the number of both the MSH and
the MSL stripes, assuming an equal width of both stripe types.

The dipolar energy density ed originates from a dis-
continuous magnetic flux transport via �M due to different

magnetization components along the interfaces. The relation
between the magnetization of a ferromagnet and the magnetic
flux � is generally described by the fundamental equation
� = ∫

A
�B · d �A, where �B = μ0( �Hext + �MS) is the flux density

and �A is the normal vector to the interface area. One obvious
outcome of this relation is the reduced capability of the MSL

stripes to transport flux via the magnetization �M as compared
to the MSH stripes. Therefore a discontinuous flux transport via
M can occur at all of the interfaces present in the model system,
which will contribute to ed . In the system of interest these
interfaces are the internal interfaces MSH-MSL and the external
boundaries given by the lateral dimensions of the stripe array.
In order to evaluate ed for any magnetization configuration
in the xy plane, the overall magnetization configuration of
the system is split into partial configurations, for which the
dipolar energies are calculated. This is sketched in Fig. 2.
For parallel-aligned magnetization components [Fig. 2(a)],
the system is split into (a1) a square with the length L and
�M = �MSL and (a2) isolated stripes with � �M = �MSH − �MSL.

The dipolar energy ed,a1 of the square shown in Fig. 2(a1) can
be calculated by

ed,a1 = 1
2μ0NSQ �M2 = 1

2μ0NSQM2
SL. (4)

The demagnetizing factor NSQ for a square with a size of
the stripe array and all other further demagnetizing factors are
calculated by the ansatz of Aharoni for effective demagnetizing
factors of prisms.19 The partial configuration displayed in
Fig. 2(a2) has to be considered due to the additional component
to the dipolar energy that originates from the higher MS of the
MSH stripes:

ed,a2 = 1

2
μ0NSTx

L

2w
(MSH sin α − MSL sin β)2

+ 1

2
μ0NSTy

L

2w
(MSH cos α − MSL cos β)2 (5)

with NSTx and NSTy being the demagnetizing factors along x

and y for a prism with the same size as an individual stripe.

FIG. 2. (Color online) Splitting of possible magnetization states
into configurations that are calculated. For parallel-aligned magneti-
zations (a) the contributions to the energy are the dipolar energy of
a saturated square with MSL (a1) and the dipolar energy of stripes
with �M = MSH − MSL (a2). In the antiparallel configuration (b),
the dipolar energy is split into contributions from a uniaxial domain
pattern with alternating saturation magnetization MSL and (b1) the
dipolar energy of stripes with �M = MSH − MSL (b2).
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The other magnetization configuration of interest is the case
of antiparallel magnetized stripes (|α − β| > π

2 ) as depicted
by the red arrows in Fig. 2(b). In order to calculate the
dipolar energy of this configuration, ed is divided into an
array with antiparallel aligned domains and the magnetization
M = MSL cos β as in Fig. 2(b1). Analytical expressions,
which can be applied to the presented partial magnetization
configurations in Fig. 2(b1), can be found in the literature,20,21

which lead to the description of the dipolar energy ed,b1:

ed,b1 = 1

2
μ0NSQ(MSL cos β)2 8w

π3L

∞∑
n=1

n−3 sin2

(
π

2
n

)

×
[

1 + exp

(
− πn

L

w

)]
. (6)

This equation calculates the dipolar energy for an extended
stripe pattern. The deviation from the proposed model, which
consists of 10–40 stripes, is, however, rather low since the
dipolar interactions between the stripes reduce with distance
cubed. According to this, the existence of the side edges
parallel to the stripes influences mostly the stripes directly
located at the edge and the influence on the overall behavior can
be neglected. The additional component to the dipolar energy,
originating from MSH > MSL, is calculated using Eq. (5).

In order to determine the stability of the lateral exchange-
spring behavior dependent on μ0 �Hext, L, and w, the total
energy etot is minimized with respect to �MSL and �MSH.
Exemplary calculated magnetic reversal loops for stripe widths
of w = 1 and 2 μm and a ratio MSL/MSH = 0.5 are plotted
in Fig. 3(a). One result of this calculation is the equilibrium
magnetization configuration at zero external field [see Fig. 3
sketch (1)], in which the magnetization, in all stripes, points
parallel to the stripe axis along the same direction. This
is the stable configuration as the domain-wall energy of
the antiparallel alignment of magnetization is larger than
the dipolar energy contribution for the parallel alignment.
When increasing the field, which is oriented perpendicular
to the stripe axis, in the magnetization loop two regions of
high and low permeability become visible. The difference in
permeability can be explained by analyzing the magnetization
components of the individual stripes, as plotted in Figs. 3(b)
and 3(c): The magnetization in the MSL stripes saturates along
the x axis at small applied fields and MSH sin α = MSL sin β.
For magnetic fields above the saturation field of the MSL

stripes the magnetization MSH starts to rotate in the direction
of the external field until it is finally saturated at μ0HS = ±16
mT. Both the equal components of magnetization MSH sin α =
MSL sin β below μ0H = 1 mT and the high saturation fields
μ0H = 16 mT for the MSH stripes originate from the addi-
tional dipolar energy that results from the discontinuity of
M across the interfaces, as defined before in Eq. (5). For
magnetic fields above 1 mT the additional dipolar energy
acts as an effective uniaxial shape anisotropy Ku in the MSH

stripes. The overall magnetization process is reversible. The
strength of Ku and therefore the saturation field μ0HS depend
on the ratio MSL/MSH and the width of the MSH stripes. The
calculated dependency is plotted in Fig. 4. With increasing
ratio of 0 � MSL/MSH � 1 the dependence of the saturation
field on the stripe width decreases. This is attributed to a lower

FIG. 3. (Color online) (a) Analytically calculated hysteresis
curves for stripe widths of 1 and 2 μm and MSL/MSH = 0.5. In
(1) and (2) the possible magnetization configurations within each
stripe are sketched. The straight arrows represent the alignment of
the magnetization at zero field and the dashed arrows represent a
state of equal energy. (b),(c) Magnetization loops calculated for the
individual stripes.

discontinuity of flux transport along the internal interface and
thus a lower effective anisotropy Ku.

The values of MSL/MSH and w also influence reversal
curves with μ0H parallel to the stripe axis. Exemplary
hysteresis curves, calculated for w = 1 and 2 μm at a
ratio MSL/MSH = 0.5, show two switching processes [see
Fig. 5(a)]. The first process corresponds mostly to the
switching of the MSL stripes at external fields close to
zero. This becomes visible from the individual magnetization
components, which are plotted in Figs. 5(b) and 5(c). There is
also a small step visible in the MSH curve in Fig. 5(c), which is
attributed to the formation of low-angle domain walls due to
the interaction of the neighboring stripes. For higher external

FIG. 4. (Color online) The external field μ0HS necessary to
saturate the stripe array vs the stripe width at three different ratios of
MSL/MSH.
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FIG. 5. (Color online) (a) Analytically calculated hysteresis
curves for stripe widths of 1 and 2 μm and MSL/MSH = 0.5. The
external field is aligned parallel to the y direction. The sketches (1),
(2), and (3) show the magnetization configuration within each stripe.
In (b) and (c) the magnetization reversal loops of the individual stripes
are displayed.

fields the Zeeman energy becomes dominant and finally �MSH

switches in the direction of the external field. The switching
process at μ0H1μm = 12 mT corresponds to the magnetization
reversal of the MSH stripes by Stoner-Wohlfarth switching,
which represents the upper limit of the magnetic switching
field.22,23 The switching field of the array with w = 2 μm is
lowered due to the smaller aspect ratio L/w and therefore
lower effective Ku. The general dependence of L/w and
MSL/MSH on the stability of the described reversal process
is plotted in Fig. 6. It shows that the two-step reversal with
the homogeneous zero-field magnetization configuration is
stable over a wide range of MSL/MSH values, if the aspect
ratio L/w is large. High values of L/w � 1 occur at large
array sizes and/or small stripe widths. In this case the shape
anisotropy dominates the effective anisotropy. Therefore Ku is
large over a wide range of MSL/MSH values, thus stabilizing
a parallel magnetization, which is a necessary precondition
for the formation of the exchange-spring behavior. Smaller
aspect ratios L/w > 1 result in a reduced shape anisotropy
contribution and the parallel alignment of magnetization
is only stable for MSL/MSH → 0, by which the effective
anisotropy increases.

The analytical model, and with this the phase diagram
in Fig. 6, is valid only for values of the stripe length
and width larger than the characteristic length scales of a
Néel-wall core Lcore ≈ 70 nm, which is fulfilled for the
shown dimensions.24,25 Otherwise the magnetic properties
are dominated by exchange coupling and no domain walls
form.26 The experimental evaluation of the fundamental effects

FIG. 6. Phase diagram showing the transition between magneti-
zation reversal governed by the internal interfaces or by the external
boundaries. The stability of each phase depends on the ratio of
the stripe length L to the stripe width w and the ratio MSL/MSH.
The dots mark experimental data regarding the occurrence of the
exchange-spring behavior. The measurement data for L/w = 1000
are taken from Ref. 10.

calculated by the presented model is shown in the next
section.

IV. COMPARISON OF MODEL AND EXPERIMENT

The magnetic hysteresis loops and the magnetization
configuration of the samples were analyzed by means of
high-resolution magneto-optical Kerr effect microscopy in
the longitudinal mode.27 The magnetization loops and the
corresponding magnetic domain images were measured par-
allel and perpendicular to the stripes for all experimentally
fabricated stripe widths and ratios MSL/MSH. The analysis
of the reversal behavior shows good agreement with the
calculations. The measured and calculated magnetization
reversal curves for μ0Hext perpendicular to the stripes for an
array with L = 40 μm, w = 1 μm, and MSL/MSH = 0.5 are
shown in Fig. 7. The proposed model accurately predicts the
magnetization reversal process for the analyzed sample. The
main difference is the saturation field, which is slightly smaller
in the experiment. One reason for this is a lower effective
demagnetizing field in the center of the stripes as compared to
the edge regions, resulting in an inhomogeneous magnetization
distribution.28 The magnetization reversal for μ0H parallel
to the stripes and the corresponding magnetization images
are plotted in Fig. 8. A lateral exchange-spring effect is
found in both simulation and experiment (see inset in Fig. 8).

FIG. 7. (Color online) Magneto-optically measured magneti-
zation reversal curve of a sample with MSL/MSH = 0.5 and w =
1 μm. The corresponding calculated loop from Fig. 3 is added for
comparison.
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FIG. 8. (Color online) Magneto-optically measured hysteresis
curve of a sample with MSL/MSH = 0.5 and w = 1 μm with
corresponding magnetization images. The inset is the corresponding
minor loop. The modeled magnetization reversal behavior is added
for comparison in both loops. The corresponding magnetic domain
images are shown underneath.

As predicted by the model, the experimentally observed
exchange-spring behavior occurs only for samples in which the
internal interfaces govern the magnetization reversal process
(see marks in Fig. 6). Differences between calculation and
experiment for Hext parallel to the stripes are visible for the
second reversal process and the saturation field.

In the calculated hysteresis loop, the magnetization sat-
urates at a certain threshold field, while a wide switching
field distribution is visible in the experimental data. Magneto-
optical domain analysis explains this deviation. In the exper-
iment the magnetization in the stripes reverses individually,
distributed over a field range of around 3 mT, while in the
model a collective switching of all stripes is assumed. The
partially switched magnetization configurations in Figs. 8(3)
and 8(4) also introduce domain walls as depicted by the sketch
below (3). The domain wall is located in the middle of the
stripe and M varies over the whole stripe width. Such a case
occurs for partial switching only and is not considered in the
model. The model calculates the switching field, when M in all
stripes reverses by coherent rotation. The reversal mechanism
in the experiment is via nucleation and propagation of a domain
wall, which can be simulated numerically.5 However, one has
to check carefully which reversal mechanism takes place,
since it is well known that coherent rotation is independent

FIG. 9. (Color online) Minor loop behavior of a stripe array
with stripe width w = 1 μm and the ratio MSL/MSH = 0.5. The
magnetization configurations of the states of magnetization 1–4 are
sketched below the graph. The inset shows the difference between
the absolute switching fields μ0H1−2 and μ0H3−4.

of any nucleation phenomena and always represents the upper
limit of the switching field. For different partially antiparallel
magnetic configurations, however, different switching fields
are expected. Minor hysteresis loops, as shown in Fig. 9, are
measured to clarify the origin of the switching distribution. The
corresponding magnetization configurations for the measured
loop are roughly sketched in Fig. 9. It demonstrates that
the difference between μ0H1−2 and μ0H3−4 is caused by a
stronger increase in dipolar energy for the transition “3-4”
than for transition “1-2” due to the change in magnetostatics
by the individual switching events. The increase in dipolar
energy is proportional to an effective field that stabilizes the
magnetization configuration of state 3. This stabilization field
decreases with lower MSL/MSH ratios as demonstrated by the
dependence of �μ0H = |μ0H1−2 − μ0H3−4| on MSL/MSH

as shown in the inset of Fig. 9. The system approximates
an array of magnetically isolated stripes when reducing
MSL/MSH. Nevertheless, there still exists a value �μ0H > 0
for MSL/MSH = 0 that is due to dipolar interactions between
the stripes.29,30

V. CONCLUSIONS

The influences of dipolar fields on the magnetization
reversal of stripe arrays with alternating saturation magne-
tization values were modeled analytically and compared to
experimental results. The model accurately predicts most of
the magnetization reversal along and perpendicular to the
stripe axis, its dependence on parameters like array and
stripe size, and the effects of varying the ratio MSL/MSH

between the saturation magnetization values of the individual
stripes. It is shown that a lateral exchange-spring effect exists
only in a certain range of size parameters and values of
MSL/MSH. For MSL/MSH close to 1 in micrometer-sized
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stripe arrays, the external boundary of the array is dom-
inant and the magnetic properties are comparable to the
properties of an unstructured element without exchange-
spring behavior. The effect of the external boundary can
be reduced by either increasing the size of the array or a
reduction of MSL/MSH. A smaller MSL/MSH value lowers the
influence of the outer interface and the magnetization reversal
is governed by the internal interface between the stripes,
which is a necessary condition to form an exchange-spring
system. The exchange-spring effect, however, vanishes for
MSL/MSH approaching zero, since the exchange coupling also
reduces. The model can be used to predict the occurrence
of an exchange-spring effect for different sample parameters.
This can be calculated very effectively using the analytical
model based on fundamental micromagnetic principles, as

proposed in this paper. The understanding of the interactions
between the dipolar energy and the lateral exchange-spring
effect given by this paper opens the way to create systems
for fascinating studies on exchange coupled systems, both
lateral systems and multilayers in the out-of-plane direc-
tion.
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