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We investigate the competition between spin supersolidity and phase separation in a frustrated spin-half model
of weakly coupled dimers. We start by considering systems of hard-core bosons on the square lattice, onto
which the low-energy physics of the herein investigated spin model can be mapped, and devise a criterion for
gauging the interplay between supersolid order and domain-wall formation based on strong-coupling arguments.
Effective bosonic models for the spin model are derived via the contractor renormalization (CORE) algorithm
and we propose to combine a self-consistent cluster mean-field solution with our criterion for the occurrence of
phase separation to derive the phase diagram as a function of frustration and magnetic field. In the limit of strong
frustration, the model is shown to be unstable toward phase separation, in contradiction with recently published
results. However, a region of stable supersolidity is identified for intermediate frustration, in a parameter range

of possible experimental relevance.
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I. INTRODUCTION

Dimer-based antiferromagnets (DAFs) under a magnetic
field are promising candidates for displaying new phases
of bosonic matter.! Magnetic excitations in such systems,
termed triplons, are well described by lattice models of
interacting bosons, whose density can be finely tuned by
varying the magnitude of the applied field.>* Experimentally,
field-induced Bose-Einstein condensation (BEC) of triplons
has been observed in a number of DAFs (see the review, Ref. 1)
and, remarkably, exotic quantum criticality has been detected
in the spin-dimer compound BaCuSi,Ogs.*” The presence of
magnetic frustration further adds to the rich phenomenology
of these systems by enhancing repulsive interactions between
triplons, something that may eventually stabilize incompress-
ible phases that break the lattice’s translational symmetry.>®
Such crystalline phases are, for instance, realized in the
Shastry-Sutherland material SrCu,(BO3),,>1% where they are
signaled by a series of magnetization plateaux at unconven-
tional fillings stabilized by complex triplon interactions.!!

The occurrence of both BEC and solid phases in the phase
diagram of DAFs under magnetic field suggests that the
magnetic equivalent of the phase simultaneously displaying
diagonal and off-diagonal order known as supersolid (SS)'*~'*
may be realized in these systems. Indeed, insofar as more
exotic possibilities are excluded,'’ according to the Ginzburg-
Landau-Wilson paradigm a continuous transition between
phases breaking different symmetries (as is the case with
BEC and crystalline phases) is precluded and we are therefore
left with two possibilities: (i) a first-order transition or (ii)
the appearance of an intermediate phase, where both order
parameters coexist, termed spin-supersolid (spin-SS) in the
present context. The latter possibility has been first investigated
by Momoi and Totsuka for the Shastry-Sutherland model in
the vicinity of half- and third-filling plateaux,'® based on a
mean-field analysis of an effective bosonic model derived up
to third order in the interdimer coupling. More recently,!!
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state-of-the-art techniques have been employed in deriving
effective models that improve upon the third-order effective
Hamiltonian of Ref. 16. Unfortunately, the reliability of these
methods is still limited to interdimer couplings equal to,
at most, one-half of the intradimer coupling, and in that
parameter range the different plateaux seem to be separated
by first-order transitions without any convincing evidence of
spin-SS phases.'!

The situation is much clearer for the DAF investigated in
Ref. 17 where repulsion among triplons are enhanced due to
the strong Ising-like character of the interdimer exchange [see
Eq. (1) in Ref. 18], making room for checkerboard solid (CBS)
and spin-SS phases to emerge. The absence of frustration
allows for quantum Monte Carlo (QMC) simulations to be
performed and, in this way, the occurrence of a spin-SS phase
for the model studied in Ref. 17 has been firmly established.
However, such a strongly anisotropic Hamiltonian is unreal-
istic for Mott insulating materials and further investigations
of models where the kinetic energy is instead reduced by
frustration of isotropic couplings'®?° are clearly called for
if connection to experiments is ever to be made.

In this context, the recent report of a spin-SS phase in a
spin-half frustrated DAF by Chen et al.,”® who have relied
on a novel tensor-product algorithm, is an important result.
Howeyver, in view of the first-order transitions observed in the
related case of the Shastry-Sutherland model, a systematic
investigation of the possibility of phase separation (PS) is still
required.

In this paper, we investigate the interplay between SS order
and PS in the frustrated DAF analyzed in Ref. 20. We begin by
estimating the energetic gains behind PS and supersolidity
for hard-core bosons on the square lattice by relying on
strong-coupling arguments, and introduce an indicator of the
instability toward PS. We then proceed to the analysis of
effective bosonic models obtained from the application of the
Contractor Renormalization (CORE) algorithm?' to the DAF
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investigated in Ref. 20. The so-obtained effective Hamiltonians
are studied by performing self-consistent cluster mean-field
theory (SCMFT) calculations and the tendency toward PS is
gauged through means of the aforementioned indicator.

II. PHASE SEPARATION VERSUS SUPERSOLIDITY
FOR LATTICE BOSONS

In this section, we analyze the interplay between PS and
supersolidity in models of hard-core bosons on the square
lattice, onto which the low-energy physics of the spin model
considered in the remainder of this paper can be mapped.

A. Instability to domain-wall formation

We start by considering the simplest model of hard-core
bosons on the square lattice, the so-called -V model:

HI,V = —I Z(b:rbj + HC) + V1 Zl’l,‘nj — /’LGi-
(L)) (i,)) i

ey

n; = b!b; is the occupation number operator for holes? at site i
(ahard-core constraint is imposed), whose density is controlled
by the chemical potential . Here, only nearest-neighbor (NN)
hopping (#;) and interaction (V) terms are considered but, as
will be discussed later, the effective model derived for the
spin model Eq. (3) further comprises longer-ranged and/or
multibody couplings.

The model Eq. (1) had been for many years conjectured to
support SS phases (see Refs. 23 and 24 and references therein),
but a more systematic numerical analysis>* later disproved
earlier evidences in favor of this scenario and showed that,
instead, PS prevents the occurrence of supersolidity. An
intuitive explanation for such behavior was put forward in
Ref. 25 by relying on strong-coupling arguments. Following
this analysis,? holes [or also particles in the case of Eq. (1);??
however, the effective models to be analyzed later lack
particle-hole symmetry] doped into the CBS ground state of
Eq. (1) for Vi/#; > 1 at half filling would delocalize with
an effective hopping amplitude proportional to #7/V; and
eventually condense, giving origin to SS order. However, this
last conclusion is flawed in that it ignores the possibility of
PS. Indeed, in the strongly interacting regime domain-wall
[DW, depicted as the shaded region in Fig. 1(a)] formation is
energetically favored for the model Eq. (1): the energetic gain
per doped hole (we denote the number of doped holes by ny,) is
linear in t; under these circumstances, Epw/ny ~ —ct; with
cell,21.»

Since one of our primary goals in the present work is
to investigate the interplay between PS and supersolidity,
so to be able to decide which among the two possibilities
takes place for the spin model herein analyzed [Eq. (3)], we
would like to obtain a more accurate estimate for Epw/nnti;
in other words, we would like to pinpoint the actual values
assumed by ¢ € [1,2]. In achieving this goal we completely
ignore fluctuations in CBS-ordered regions away from DWs, a
supposedly good approximation for V;/¢; > 1, and consider
a simplified ¢-V-like model at half filling (quarter filling for
doped holes) defined on the “comb” geometry depicted in
Fig. 1(b). In such a simplified model hopping processes with
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FIG. 1. (Color online) (a) A DW between mismatching domains
in a CBS doped with holes is highlighted: open circles represent
hard-core bosons (triplets) and holes/singlets in the upper (lower)
domain are indicated by upward (downward) triangles; doped holes
are shown as light-filled upward or downward triangles. (b) A
simplified model for the DW, valid for V; /1, >> 1, is defined on a
“comb” geometry: holes hop (with amplitude #,) through the links
indicated by dashed lines and repel, with strength V), one another
along the vertical nearest-neighbor links indicated by solid lines.

O 0 0 o0 o

amplitude #; only take place in between NN sites linked by
the comb’s “teeth” and interaction V; is only active for holes
sitting on NN sites along the “backbone” [see Fig. 1(b)].

In Fig. 2 we plot results for c = — Epw/nut;, as a function
of 1/ V1, obtained from exact diagonalizations (EDs) of the just
discussed simplified model on the comb geometry depicted in
Fig. 1(b), for clusters comprising up to N = 24 sites (thus up
to ny, = 6 doped holes). We first notice that ¢ &~ 1.2 in the limit
of large V;/t;. On the other hand, since fluctuations away from
the DW are ignored in our analysis, we expect our ED results
to underestimate c¢ for small values of V;/t;. Nonetheless, we
keep this limitation in mind and throughout the remainder of
this paper rely on ED results in estimating the DW energy even
in the weakly interacting regime V;/t; ~ 2. In doing so, we
take advantage of the very small finite-size effects in the data
shown in Fig. 2 and obtain ¢ from EDs on finite clusters.
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FIG. 2. (Coloronline) ¢ = — Epw/nyt; obtained from EDs on the
geometry depicted in Fig. 1(b), for clusters comprising from N = 8
(ny, = 2)to N = 24 (n, = 6) sites.
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FIG. 3. (Color online) (a), (b) Correlated hoppings behind the
“leapfrog mechanism” for supersolidity [holes hop in between red
and light-blue sites only if the dark circles are occupied by holes—in
(a), atleast one of the sites must be occupied; if both are, the amplitude
is 2s1], which allows extra holes to delocalize in a CBS background
by leapfrogging on the other sublattice (c). Adapted from Ref. 18.

B. Leapfrog mechanism for supersolidity

In a previous work,'® we have shown that the instability
toward PS is suppressed in models of hard-core bosons on the
square lattice that include, in addition to the terms comprised in
the -V model [Eq. (1)], the correlated hopping processes with
amplitudes s; and s, depicted in Fig. 3. Indeed, such correlated
hopping terms have been shown'®2¢ to favor supersolidity
by allowing doped holes to delocalize on top of a CBS by
“leapfrogging” on the other sublattice. We wish now to devise
a criterion for determining how large the amplitudes s; and s,
should be to inhibit DW formation and thus stabilize a SS. In
doing so, we once more rely on strong-coupling arguments,
and estimate the energetic gain associated with the leapfrog
processes represented in Fig. 3 as

Egs/ny = —4 2[s1] + Is20) - @

That is, Ess/ny is simply the ground-state energy of a single
hole doped into a “frozen” CBS, an approximation expected to
hold for Vi /#; > 1, hopping via the processes with amplitude
s1 and s, [Figs. 3(a)-3(b)]. As it happens for our estimate
Epw/ny = —ct; obtained in Sec. [T A, we expect Egs/ny as
given by Eq. (2) to underestimate the actual energetic gain
associated with the leapfrog processes.

We combine the just presented analysis and the one
discussed in Sec. II A concerning DW formation and in-
troduce an indicator for analyzing the interplay between
supersolidity and PS: the difference between Ess/ny [Eq. (2)]
and Epw/ny = —ct; (obtained from EDs by using V;/#; as
input; see Secs. II A), our estimates for the energetic gains
respectively associated to each of these possibilities. Since
both estimates are obtained from strong-coupling analysis, the
indicator (Ess — Epw)/nn can only be expected to be accurate
in the limit of V| /#; > 1. However, we keep this limitation in
mind and in the analysis to be performed in Sec. III, we rely on
(Ess — Epw)/ny as an indicator even for couplings V;/#; ~ 2.

III. FRUSTRATED SPIN MODEL

A. Model and effective Hamiltonian

In most of the lattice models that have, so far, been shown
to display SS properties, the effective repulsion (necessary
to destabilize the uniform superfluid and induce a SS state)
stems from the presence of nearest-neighbor repulsive terms
in XX Z Hamiltonians.!”'%27 While these anisotropic models
are interesting from a theoretical perspective, their strong
anisotropic character renders them unrealistic for antiferro-
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FIG. 4. (Color online) (a) Antiferromagnetic bilayer investigated
in this paper [Eq. (3)], with couplings: J, (thick vertical lines), J,
(thiner in-layer lines), and J, (dashed lines). A magnetic field i
promotes singlets (vertical pairs of filled circles) to triplets (pairs of
open circles); a CBS configuration at half filling is depicted. (b) N =
2 x 2 cluster for SCMFT: interactions (thick black lines) involving
only in-cluster sites (dark-filled circles) are treated exactly while
couplings to the environment (gray lines) in a MF way. Although
only NN bonds are depicted, the effective model from CORE also
includes longer-ranged terms.

magnetic Mott insulators. More promising in this sense is the
frustrated spin-half Hamiltonian analyzed in Ref. 20, defined
on a bilayer geometry [Fig. 4(a)],

H = Z |: Z JHgi,a . §j,oz + Jx(gi,l 'S'j,z + 85 §,/$1):|

(i,j) La=1,2

+ Z |:JJ_§1',1 : §i,2 —h Z S:a:| @)

a=1,2

(i, j) denotes NN sites in each square layer « of the frustrated
bilayer depicted in Fig. 4(a). J, couples spins in different
layers to build the basic dimers of the model (we set J; = 1).
The applied magnetic field & acts as a chemical potential,
promoting spin dimers from a singlet (hole) to a triplet (triplon)
state. Effective interactions appear as the result of in-layer J;
and frustrating J, antiferromagnetic couplings. We remark
that the lattice depicted in Fig. 4(a) remains invariant if every
other spin dimer is rotated by 7 and thus Eq. (3) is invariant
under the transformation J; <> J,, with the consequence that
the phase diagram is symmetric about the line J = J,.

In studying the model of Eq. (3), we adopt an approach
similar to the one employed in our previous work, Ref. 18,
where a related unfrustrated model was investigated and to
which the reader is referred for details,”> and derive an
effective bosonic model by relying on the CORE algorithm.?!
We consider spin dimers connected by J, as elementary

blocks and select the singlet |s) = LZ[|T¢) — |41 )] and the

S§% = +1 triplet [t1) = |$1) as the block states in the CORE
expansion: for all parameters in Eq. (3) considered in the
present work, Jy,Jx € [0,0.5], this choice is justified by the
large reduced density-matrix weights associated to such block
states and by the rapid convergence of effective couplings for
increasing range in the expansion.?® Effective couplings are
derived by diagonalizing clusters of coupled dimers and by
projecting a matching number of low-lying cluster eigenstates
onto the basis formed by tensor products of the retained block
states, |s) and |t7).%? The effective bosonic Hamiltonian thus
obtained is essentially identical to the one derived for the
anisotropic model studied in Ref. 18, only the magnitudes
for each coupling being different. Similarly, the effective
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model obtained here is not invariant under particle-hole
transformation and, in particular, amplitudes for “leapfrog
processes” are nonzero only when holes are involved. From
this last observation we expect that only hole-doped SS phases
can be stabilized in the spin-dimer model Eq. (3) and conclude
that the effective Hamiltonian is more conveniently expressed
in terms of hole operators (n; = b;-rb,- is the occupation number
for holes at the dimer-lattice site r;). We therefore adopt
the same notation as in our previous work,'®?? to which the
reader is referred for a complete list of single- and multi-hole
interactions and hopping processes [see Egs. (8) and (B1)—(BS)
in Ref. 18]. We also remark that the effective Hamiltonian
preserves the symmetry of the original model Eq. (3) and
remains invariant under J; < J.

B. Mean-field approach

Effective Hamiltonians resulting from CORE are often
complex and different strategies may be pursued in trying
to extract physically sound results from them. One possibility
is the mean-field (MF) theory of Ref. 18, which reproduces
semiquantitatively the results of quantum Monte Carlo (QMC)
simulations'” for the anisotropic spin-dimer model considered
therein. However, MF calculations are known to overestimate
the extent of SS phases and it would be desirable to include, at
least partially, effects due to quantum fluctuations. From this
perspective, the SCMFT,*® which partially takes local quantum
fluctuations into account and has been recently applied to the
t-V model for hard-core bosons on the triangular lattice,?!
seems particularly well suited for our purposes. Indeed, the
extent of the SS phase in the ground-state phase diagram
obtained by applying SCMFT to the #-V model on the
triangular lattice®’ compares considerably better with results
from QMC simulations®’ than what is found from a more
conventional MF approach.?

SCMFT is applied by diagonalizing the effective CORE
Hamiltonian on the N = 2 x 2 cluster depicted in Fig. 4(b).
In setting the cluster’s Hamiltonian, in-cluster interactions are
treated exactly while couplings to the environment are treated
in a self-consistent way: for instance, a given interaction
connecting sites r; and r; contributes a term proportional to
n;n; for each in-cluster bond [thick black lines in Fig. 4(b)]
and with mean-field terms of the form [n;(n;) + (n;)n;] for
“bonds” connecting the cluster to its environment [gray lines
in Fig. 4(b)]. At each step, the ground state for the cluster
Hamiltonian is calculated and expectation values (n;), (b;) at
every site r; computed; these are then used in setting the mean
fields for the next iteration, until convergence is achieved (see
Ref. 31 for details). In this way, we compute the condensate
density at the point kg = (7r,7)

2
1 ikor;

po = NZ,@“ b )

J

the CBS structure factor (normalized per site)
S = <15 3 e 5)
TL,T) = N2 e ninp),
jil
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FIG. 5. (Color online) SCMFT results for the condensate density
po [squares, Eq. (4)], CBS structure factor S(m,7) [circles, Eq. (5)],
and magnetization density [triangles, Eq. (6)] for the effective
CORE Hamiltonian for Eq. (3) with couplings (J,Jx) considered
in Ref. 20: (a) (0.38,0.15) and (b) (0.38,0.21). Successive phases for
increasing magnetic field & are labeled as spin-gapped (M), con-
densate (BEC), supersolid (SS), checkerboard solid (CBS), and fully
polarized (M;).

and the magnetization along the field direction

1

m° = N : (I = ny)). (6)

In Fig. 5 we plot these quantities as a function of the
magnetic field i for couplings considered in Ref. 20, (J}, Jx) =
(0.38,0.15) and (0.38,0.21). We first notice that the overall
agreement between our results and the data presented in Ref. 20
is remarkably good.** For the least frustrated case of (J, J,) =
(0.38,0.15) [Fig. 5(a)], the system first undergoes a quantum
transition from a spin-gapped (equivalent to a trivial bosonic
Mott insulator with zero filling for triplons, M, in Fig. 5) to
a BEC phase at the lower critical field 4., and then from the
BEC to a fully polarized phase (trivial Mott insulator with
unitary triplon filling, M) at the upper critical field /,. More
interestingly, additional CBS and SS phases are stabilized for
the more frustrated case of (J, /) = (0.38,0.21) [Fig. 5(b)].
The existence of a SS phase at the low-field boundary of the
CBS plateau, with finite values for both py and S(w,7), is
at least partially due to the presence of correlated hoppings
for holes in the effective CORE Hamiltonian. Indeed, no
SS phase is observed for an “effective model” obtained by
setting s; = s, = 0 [Figs. 3(a) and 3(b)] while keeping all the
other effective couplings unchanged. This situation is to be
contrasted with the first-order transition from CBS to BEC
at higher fields, explained by the vanishing amplitudes for
correlated hoppings for triplons for all values Jy,J € [0,0.5].
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FIG. 6. (Color online) J; = 0.38. (a) Extent of CBS (Ahcgs)
and SS (Ahss) phases [maximum minus minimum value of the field
h leading to the corresponding phase for given parameters (J,J,)].
(b) Value of the structure factor [Eq. (5)] at the CBS plateau. In (a)
and (b), symbols indicate results by Chen et al. (Ref. 20) and lines
indicate the here-obtained results.

We proceed by varying the frustrating coupling J, while
fixing J; = 0.38. In Fig. 6(a) we plot the extent of the SS, CBS
phase, respectively, Ahsscps = hgs'cps — hss'cps [Ass cBs
(h's”si"CBS) denotes the upper (lower) boundary of the SS, CBS
phaée] as a function of J,/J;. In order to further gauge the
accuracy of the here-employed CORE-SCMFT approach in
Fig. 6(a) our results for Ahgs and Ahcps are compared against
those from Ref. 20, and in Fig. 6(b) we plot both our results and
those from Ref. 20 for the structure factor S(sr,77) at the CBS
plateau. Excellent agreement is found in both cases and we
further remark that our results for S(;r,7) in the CBS phase in
Fig. 6(b) confirm that quantum fluctuations are indeed partially
taken into account by SCMFT: in contrast to what happens with
the semiclassical MF approach employed in Ref. 18, here the
value of S(;r,m) at the plateau is somewhat reduced from its
classical value Sciassical(77,71) = 1/4.

At this point, and despite of its aforementioned attractive
features, it is important to have in mind an important limitation
of the here-employed SCMFT procedure: since calculations
rely on diagonalizations of a 2 x 2 cluster [Fig. 4(b)], only
homogeneous solutions, displaying order consistent with at
most quadrupling of the unit cell, are obtainable. This excludes
inhomogeneous solutions such as those associated with the
presence of DWs [Fig. 1(a)] and has the consequence that
our combined CORE-SCMFT approach is insensitive to the
occurrence of PS. In what follows, we rely on the strong-
coupling analysis presented in Sec. Il and analyze the interplay
between PS and spin-SS order in the phase diagram of the
model Eq. (3).

C. Phase diagram and phase separation

We now turn our attention to the obtention of a global J
- Jx phase diagram that may guide the experimental search
for realizations of spin supersolidity and therefore extend
our analysis by varying J; in Eq. (3). In Fig. 7(a) we plot
Ahgs as a function of Jy,Jx € [0,0.5], obtained from the
combined CORE-SCMFT procedure. These results suggest
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FIG. 7. (Color online) (a) SCMFT results for the extent of the
SS phase Ahgg (see main text) for the frustrated DAF Eq. (3). The
symmetry J; <> J has been explored in obtaining the data. Regions
where supersolidity [PS] is expected, where (Ess — Epw)/nnt; < 0
[(Ess — Epw)/nnt; > 0] are marked by the label SS [PS]. Dashed
lines indicate threshold values for a CBS/SS to appear at the mean-
fieldlevel. (b) (Ess — Epw)/nnt;,as obtained fromEDsonan N = 16
(n, = 4 doped holes) site cluster with the comb geometry depicted
in Fig. 1(b), for the model Eq. (3). Contour levels for V, /#, (obtained
from the CORE expansion) are indicated by thin lines and the values
Vi/ti = 2,4, 6 and 8 are highlighted. In both panels, circles indicate
couplings investigated by Chen et al.?° and the thick line couplings
yielding the threshold value (Ess — Epw)/nnt; = 0.

that, far from being a rare occurrence, spin-supersolidity is
widespread throughout the parameter space and can extend
over fairly wider ranges of 4 than it is observed for the value
Jy = 0.38 [couplings considered in Ref. 20 are highlighted
in Fig. 7(a)]. However, under the light of our discussion in
Sec. II concerning PS in systems of hard-core bosons on a
lattice, some caution is required in drawing conclusions from
the results shown in Fig. 7(a).

Following the discussion in Sec. II, we evaluate (Ess —
Epw)/npty, our indicator for analyzing the interplay between
PS and supersolidity for hard-core bosons on the square lattice,
as a function of Jy,Jx €[0,0.5] for Eq. (3). Ess/nn, our
strong-coupling estimate for the energetic gain associated with
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occurrence of SS order, is readily obtained by plugging the
amplitudes for the leapfrog processes s; and s, [Figs. 3(a)
and 3(b)] obtained from CORE into Eq. (2). On the other
hand, the estimate Epw/ny for the energy associated with PS
is obtained from numerical EDs for the simplified model for
DWs defined on the “comb geometry” discussed in Sec. Il A
by using the effective ratio V) /1;, as obtained from the CORE
expansion for each set Jj,J« in Eq. (3), as an input. EDs are
performed on a small cluster comprising N = 16 sites (n, = 4
doped holes): as mentioned in Sec. IT A, this is justified by the
absence of sizable finite-size effects for the data displayed in
Fig. 2.

We plot (Ess — Epw)/nnt; as a function of Jj,Jx €
[0,0.5] in Fig. 7(b) and assume that two conditions must be
simultaneously fulfilled for SS phases to exist for the model
Eq. (3): (i) a SS must be observed within CORE-SCMFT
and (ii) (Ess — Epw)/nnt; < 0. Values of J,J, leading to
(Ess — Epw)/nnt; = 0, the threshold value for a SS phase
to appear, are indicated by the thick continuous curve in
Fig. 7. We notice that not all values of J,J. yielding a
spin-SS phase within our CORE-SCMFT approach fulfill
(Ess — Epw)/nnt; <0 and expect PS to take place under
these circumstances instead. Despite the fact that the condition
(Ess — Epw)/nnt; < 0 considerably shrinks the size of the
region expected to support SS phases from a pure CORE-
SCMFT analysis, supersolidity is still observed for a wide
range of couplings in Eq. (3) [Fig. 7(a)], possibly realizable in
real magnets.

Intriguingly, we notice that the parameters (circles in
Fig. 7) for which a spin-SS phase has been detected by Chen
et al.,’° and also by the pure CORE-SCMFT analysis devised
here (Figs. 5 and 6), fail to satisfy (Ess — Epw)/nnt; <0
[Fig. 7(b)]. Although we cannot exclude the possibility that our
criterion, which rigorously applies only in the limit V; /#; > 1,
is too stringent for the frustrated model Eq. (3), we remark that
a SS phase is obtained within our CORE-SCMFT approach®*
and in Ref. 20 even for couplings J; ~ J,, where our strong-
coupling arguments become accurate [the ratio V), /#; diverges
toward the line J; = J; see Fig. 7(b), where contour levels for
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Vi /1 are plotted as thin continuous lines]. This inconsistency
suggests that both CORE-SCMFT and the novel algorithm
employed in Ref. 20 are insensitive to the instability toward
PS in systems of hard-core bosons on the square lattice and
that the obtention of SS phase for (Ess — Epw)/nnt; > 0 is
spurious.>* It would therefore be important to further test
the ability of the algorithm employed in Ref. 20 to detect
PS in bosonic lattice models by, for instance, checking how
it compares to QMC for the unfrustrated model studied in
Refs. 17 and 18 regarding this issue.

IV. SUMMARY

Summarizing, we have studied a spin-half frustrated bilayer
model by combining CORE and SCMFT. Our results reveal
the presence of a spin-SS phase under applied magnetic field,
which appears at the edge of a half saturated magnetization
plateau and is stabilized by a leapfrog mechanism.'® We
address the interplay between supersolidity and instability
toward PS, which precludes the emergence of spin-SS phases,
by devising a quantitative criterion based on strong-coupling
arguments. This criterion is generically applicable to systems
of hard-core bosons on the square lattice, and it would be
interesting to further assess its validity by investigating models
where the interplay between PS and SS can be independently
analyzed. By relying on this criterion, we obtain a global
phase diagram for the frustrated spin-dimer antiferromagnet
considered herein, and show that a spin-SS phase is stable
against PS for couplings realizable in real magnets. We expect
that our results may guide the experimental search for systems
exhibiting spin supersolidity.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with C. D. Batista and
M. Troyer, as well as funding from the French ANR program
ANR-08-JCJC-0056-01, from ARC (Australia), and from the
SNF and from MaNEP (Switzerland). N.L. acknowledges LPT
Toulouse for hospitality.

I'T. Giamarchi, C. Riiegg, and O. Tchernyshyov, Nat. Phys. 4, 198
(2008).

2F. Mila, Eur. Phys. J. B 6, 201 (1998).

3K. Totsuka, Phys. Rev. B 57, 3454 (1998); T. Giamarchi and A. M.
Tsvelik, ibid. 59, 11398 (1999).

4S. E. Sebastian, N. Harrison, C. D. Batista, L. Balicas, M. Jaime,
P. A. Sharma, N. Kawashima, and 1. R. Fisher, Nature (London)
441, 617 (2006).

3C. Riiegg, D. F. McMorrow, B. Normand, H. M. Rgnnow,
S. E. Sebastian, I. R. Fisher, C. D. Batista, S. N. Gvasaliya,
C. Niedermayer, and J. Stahn, Phys. Rev. Lett. 98, 017202
(2007).

6S. Kriamer, R. Stern, M. Horvati¢, C. Berthier, T. Kimura, and L. R.
Fisher, Phys. Rev. B 76, 100406 (2007).

'N. Laflorencie and F. Mila, Phys. Rev. Lett. 102, 060602
(2009).

SM. Takigawa and F. Mila, in Introduction to Frustrated Magnetism,
edited by C. Lacroix, P. Mendels, and F. Mila (Springer, Berlin,
2011).

°H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov,
K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y.
Ueda, Phys. Rev. Lett. 82, 3168 (1999).

10K, Kodama, M. Takigawa, M. Horvati¢, C. Berthier, H. Kageyama,
Y. Ueda, S. Miyahara, F. Becca, and F. Mila, Science 298, 395
(2002).

"], Dorier, K. P. Schmidt, and F. Mila, Phys. Rev. Lett. 101,
250402 (2008); A. Abendschein and S. Capponi, ibid. 101, 227201
(2008).

12A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969).

BE. Kim and M. H. W. Chan, Nature (London) 427, 225 (2004);
Science 305, 1941 (2004).

14S. Balibar, Nature (London) 464, 176 (2010).

174421-6


http://dx.doi.org/10.1038/nphys893
http://dx.doi.org/10.1038/nphys893
http://dx.doi.org/10.1007/s100510050542
http://dx.doi.org/10.1103/PhysRevB.57.3454
http://dx.doi.org/10.1103/PhysRevB.59.11398
http://dx.doi.org/10.1038/nature04732
http://dx.doi.org/10.1038/nature04732
http://dx.doi.org/10.1103/PhysRevLett.98.017202
http://dx.doi.org/10.1103/PhysRevLett.98.017202
http://dx.doi.org/10.1103/PhysRevB.76.100406
http://dx.doi.org/10.1103/PhysRevLett.102.060602
http://dx.doi.org/10.1103/PhysRevLett.102.060602
http://dx.doi.org/10.1103/PhysRevLett.82.3168
http://dx.doi.org/10.1126/science.1075045
http://dx.doi.org/10.1126/science.1075045
http://dx.doi.org/10.1103/PhysRevLett.101.250402
http://dx.doi.org/10.1103/PhysRevLett.101.250402
http://dx.doi.org/10.1103/PhysRevLett.101.227201
http://dx.doi.org/10.1103/PhysRevLett.101.227201
http://dx.doi.org/10.1038/nature02220
http://dx.doi.org/10.1038/nature02220
http://dx.doi.org/10.1126/science.1101501
http://dx.doi.org/10.1038/nature08913

PHASE SEPARATION VERSUS SUPERSOLID BEHAVIOR . ..

I5T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A.
Fisher, Science 303, 1490 (2004).

16T, Momoi and K. Totsuka, Phys. Rev. B 62, 15067 (2000).

TK -K. Ng and T. K. Lee, Phys. Rev. Lett. 97, 127204 (2006);
N. Laflorencie and F. Mila, ibid. 99, 027202 (2007).

13].-D. Picon, A. F. Albuquerque, K. P. Schmidt, N. Laflorencie,
M. Troyer, and F. Mila, Phys. Rev. B 78, 184418 (2008).

P, Sengupta and C. D. Batista, Phys. Rev. Lett. 98, 227201
(2007).

2P, Chen, C.-Y. Lai, and M.-F. Yang, Phys. Rev. B 81, 020409
(2010).

2IC. J. Morningstar and M. Weinstein, Phys. Rev. Lett. 73, 1873
(1994); Phys. Rev. D 54, 4131 (1996).

22The model Eq. (1) displays particle-hole symmetry, unlike the
effective model for the spin model Eq. (3). Throughout this paper,
we follow a notation similar to the one adopted in our previous work
Ref. 18, but omit the tildes appearing therein. That is, for instance,
amplitudes for the correlated processes for holes depicted in Fig. 3
are here written as s, , while in Ref. 18 those were denoted by 5 ,.

2R. T. Scalettar, G. G. Batrouni, A. P. Kampf, and G. T. Zimanyi,
Phys. Rev. B 51, 8467 (1995).

24G. G. Batrouni and R. T. Scalettar, Phys. Rev. Lett. 84, 1599 (2000).

25P. Sengupta, L. P. Pryadko, F. Alet, M. Troyer, and G. Schmid, Phys.
Rev. Lett. 94, 207202 (2005).

PHYSICAL REVIEW B 83, 174421 (2011)

26K, P. Schmidt, J. Dorier, A. M. Liuchli, and F. Mila, Phys. Rev.
Lett. 100, 090401 (2008).

27S. Wessel and M. Troyer, Phys. Rev. Lett. 95, 127205 (2005); R. G.
Melko, A. Paramekanti, A. A. Burkov, A. Vishwanath, D. N. Sheng,
and L. Balents, ibid. 95, 127207 (2005); D. Heidarian and K. Damle,
ibid. 95, 127206 (2005); M. Boninsegni and N. Prokof’ev, ibid. 95,
237204 (2005).

2 A. Abendschein and S. Capponi, Phys. Rev. B 76, 064413 (2007).

In this way, and by imposing that each cluster’s low-energy
spectrum is exactly reproduced, effective couplings of up to range
2 (see Fig. 5 in Ref. 18) are computed.

30E. Zhao and A. Paramekanti, Phys. Rev. B 76, 195101 (2007).

31S. R. Hassan, L. de Medici, and A.-M. S. Tremblay, Phys. Rev. B
76, 144420 (2007).

G. Murthy, D. Arovas, and A. Auerbach, Phys. Rev. B 55, 3104
(1997).

33Similarly good agreement is found for the other couplings consid-
ered in Ref. 20, (J,Jx) = (0.38,0.23) and (0.38,0.27).

A SS phase is obtained from the CORE-SCMFT procedure for
arbitrarily small amplitudes for the leapfrog processes depicted in
Figs. 3(a) and 3(b). First-order transitions are only observed when
correlated processes vanish, as it is the case for the higher-field
transition out from the CBS plateau in Fig. 5(b) (correlated hoppings
for triplons vanish for all J,J, € [0,0.5]).

174421-7


http://dx.doi.org/10.1126/science.1091806
http://dx.doi.org/10.1103/PhysRevB.62.15067
http://dx.doi.org/10.1103/PhysRevLett.97.127204
http://dx.doi.org/10.1103/PhysRevLett.97.127204
http://dx.doi.org/10.1103/PhysRevLett.99.027202
http://dx.doi.org/10.1103/PhysRevB.78.184418
http://dx.doi.org/10.1103/PhysRevLett.98.227201
http://dx.doi.org/10.1103/PhysRevLett.98.227201
http://dx.doi.org/10.1103/PhysRevB.81.020409
http://dx.doi.org/10.1103/PhysRevB.81.020409
http://dx.doi.org/10.1103/PhysRevLett.73.1873
http://dx.doi.org/10.1103/PhysRevLett.73.1873
http://dx.doi.org/10.1103/PhysRevD.54.4131
http://dx.doi.org/10.1103/PhysRevB.51.8467
http://dx.doi.org/10.1103/PhysRevLett.84.1599
http://dx.doi.org/10.1103/PhysRevLett.94.207202
http://dx.doi.org/10.1103/PhysRevLett.94.207202
http://dx.doi.org/10.1103/PhysRevLett.100.090401
http://dx.doi.org/10.1103/PhysRevLett.100.090401
http://dx.doi.org/10.1103/PhysRevLett.95.127205
http://dx.doi.org/10.1103/PhysRevLett.95.127207
http://dx.doi.org/10.1103/PhysRevLett.95.127206
http://dx.doi.org/10.1103/PhysRevLett.95.237204
http://dx.doi.org/10.1103/PhysRevLett.95.237204
http://dx.doi.org/10.1103/PhysRevB.76.064413
http://dx.doi.org/10.1103/PhysRevB.76.195101
http://dx.doi.org/10.1103/PhysRevB.76.144420
http://dx.doi.org/10.1103/PhysRevB.76.144420
http://dx.doi.org/10.1103/PhysRevB.55.3104
http://dx.doi.org/10.1103/PhysRevB.55.3104

