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Vector chiral spin liquid phase in quasi-one-dimensional incommensurate helimagnets
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Making use of detailed classical Monte Carlo simulations, we study the critical properties of a two-dimensional
planar spin model on a square lattice composed by weakly interacting helimagnetic chains. We find a large
temperature window where the vector chirality order parameter, 〈κ jk〉= 〈Sj × Sk〉, the key quantity in multiferroic
systems, takes nonzero value in the absence of long-range order or quasi-long-range order. The phase diagram
we obtain for different strengths of the interchain coupling clearly shows that the weakness of the interchain
interaction plays an essential role in order to observe the vector chiral spin liquid phase in a temperature range
of up to now unattained width (�7%, to be compared with �1% or less previously reported for fully frustrated
models, the only well-investigated systems unambiguously displaying spin-chirality decoupling). The relevance
of our results for three-dimensional models is also discussed.
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I. INTRODUCTION

Geometrical frustration and/or competition between inter-
actions can lead to exotic noncollinear magnetic thermody-
namic phases, which can be characterized by unusual order
parameters. Particularly relevant are two order parameters:
scalar chirality,

〈χjkl〉 = 〈Sj × Sk · Sl〉, (1)

and vector chirality, or spin current,

〈κjk〉 = 〈Sj × Sk〉, (2)

j,k,l referring to neighboring sites of the lattice. These two
chiralities present different symmetries: nonzero value of
〈χjkl〉 implies that the time-reversal symmetry is broken, while
parity symmetry breaking comes when 〈κjk〉 is different from
zero.

Both of them are relevant in strongly correlated electron
systems: Nonzero value of 〈χjkl〉 gives rise to the anomalous
Hall effect1 and leads to orbital electric currents in frustrated
geometries,2 while new phenomena emerge in Mott insulators
as a consequence of induced scalar chirality, generated
by the coupling between vector chirality and an external
magnetic field.3 On the other hand, relativistic spin-orbit
interaction leads to a coupling between 〈κjk〉 and the electric
polarization4–7 which play a fundamental role in magneto-
electric properties. This coupling also permits one to obtain
experimental information about the vector chirality (which is
difficult to measure owing to the absence of external fields that
couple directly to κjk): The chiral components in multiferroic
MnWO4 have been detected by neutron diffraction using
spherical polarization analysis as a function of temperature
and of external electric field.8

Vector chirality, which is the argument of this paper,
always accompanies helimagnetic (HM) order, and it can arise
from spontaneous Z2 symmetry breaking in systems with
competitive exchange interactions,9 or it can be stabilized
by the Dzyaloshinskii-Moriya antisymmetric interaction in
noncentrosymmetric compounds.6,10,11 However, the chiral
symmetry can anyway also be broken in a magnetically
disordered state. Such a phase, where no magnetic order is

present but with 〈κjk〉 �= 0, is named a vector chiral spin liquid
(VCSL) phase and has been intensively studied in previous
years. It has been predicted to occur in one-dimensional (1d)
frustrated quantum magnetic systems12–14 at zero temperature.

For higher dimension d it is crucial to understand if
the VCSL phase is also stable in the presence of thermal
fluctuations.14 Indeed, having found a VCSL phase in a
(1d) quantum magnetic system, does not assure that such
a phase is also present in a (2d) classical magnetic system
described by an apparently similar Hamiltonian. A given
d-dimensional quantum model can indeed be mapped in a
suitable (d + 1)-classical model, but the latter is unknown
unless an explicit mapping is available. For the system at hand
a possible mapping was proposed by Kolezhuk,15 who finally
concluded for the appearance of a VCSL phase: a somewhat
surprising conclusion, if one considers that the classical 2d

model obtained in Ref. 15 is the same already investigated by
Garel and Doniach,16 who did not find any VCSL. For d = 2,
this phase has been clearly obtained at finite temperature T by
classical Monte Carlo simulation (MCS) of a triangular lattice
of spins with bilinear and biquadratic interactions17 and for
fully frustrated spin models.18

However, for models with longer range competing inter-
actions leading to low-temperature incommensurate helimag-
netic structures and d = 2, 3, a clear evidence of this exotic
phase is yet lacking, even if Onoda and Nagaosa,19,20 inves-
tigating a Ginzburg-Landau Hamiltonian describing helical
magnets, suggest that a VCSL phase can be stabilized in d = 3.
This prediction was questioned by Okubo and Kawamura:21

Their classical MCS do not show any evidence of such a phase,
but a first-order phase transition to a HM order.

It is important to note that in the quasi-1d XY organic
magnet Gd(hfac)3NITEt22 (a compound with high value of
spin, S = 7/2) a 3d VCSL phase has been experimentally
observed. This is due to the fact that d = 1 is the lower critical
dimension for an Ising order parameter, like 〈κjk〉, so that
the chiral correlation length, which diverges exponentially at
low T, is much larger than the spin correlation length, which
diverges with a power law. Taking into account the interchain
interaction within mean field approximation a 3d VCSL phase
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results at intermediate temperature.23 However, theoretical
results obtained considering also the interchain fluctuations
are still lacking, and a direct numerical evidence of such a
VCSL phase in quasi-1d system will be relevant.

In this paper we present the results obtained by employing
accurate classical MCS to investigate a 2d spin system com-
posed by weakly interacting helimagnetic chains. Despite the
absence of apparent geometrical frustration (the model being
defined on a square lattice), a clear separation in temperature
between the chiral transition at Tκ and the Kosterlitz-Thouless
(KT) one to quasi-long-range order (QLRO) at TKT can be
observed, with Tκ > TKT. We will show that the weakness of
the interchain interaction plays an essential role in order to get
Tκ > TKT (i.e., to have the appearance of the VCSL phase).

The paper is organized as follows. In Sec. II we shall
introduce the model Hamiltonian and subsequently both MCS
techniques and the thermodynamic observable will be also
discussed. In Sec. III the results will be presented. Finally,
in Sec. IV, we shall discuss such results, also drawing some
conclusions.

II. MODEL HAMILTONIAN, MCS TECHNIQUES, AND
THERMODYNAMIC OBSERVABLES

We consider a square lattice on the (x,y) plane composed
of N = L×L planar spins �Si,j (| �S|=1), with Hamiltonian:

H = −
L∑

i=1

L∑
j=1

{J1 �Si,j · �Si,j+1 + J2 �Si,j · �Si,j+2

+ J ′ �Si,j · �Si+1,j }; (3)

j label spins along each chain, while i is the chain label.
Intrachain exchange interactions are ruled by a nearest
neighbor (NN), ferromagnetic (FM) coupling constant J1

and a next-nearest neighbor (NNN), antiferromagnetic (AFM)
coupling J2; interchain NN spin interactions are ruled by the
FM coupling constant J ′. If the condition δ≡|J2|/J1>1/4 is
fulfilled, the ground state corresponds to a HM order along
the chains, with a pitch vector q‖ = ± cos−1(1/4δ). In the
following we take δ = 0.3, i.e., J1 = 1, and |J2| = 0.3), while
T will be given in units J1.

In order to build the phase diagram, the weakly interacting
chain system has been investigated for J ′ ranging from 0.05J1

to J1; detailed results will be shown mainly for J ′ = 0.1J1, i.e.,
a representative value of the interchain coupling small enough
to get the VCSL phase in a relevant temperature range, but
not so small to require unusual care during the Monte Carlo
simulation due to the presence of very different energy scales.

Periodic boundary conditions have been applied along the
direction perpendicular to the chains, while free boundary con-
ditions were taken along the chain direction, in order to avoid
any undue bias interfering with possible incommensurate helix
modulation.

Configuration sampling has been carried on making use of
the usual Metropolis technique, while correlations between
sampled configurations were mitigated by microcanonical
over-relaxed moves.24 For each simulated temperature at least
three different runs have been performed, each run being
composed of 24 × 106 MC sweeps, with the first 4 × 106

thermalization steps being discarded. Near the critical regions
the multiple-histogram (MH) methods24 were employed.
Results for L = 24 − 128 are reported.

Moving to the thermodynamic observables and their esti-
mators, we start by introducing the order parameter related to
the VCSL, the chirality, as

κ = 1

L(L − 1) sin q‖

∑
ij

[�Sij × �Sij+1]z. (4)

A suitable order parameter to test the helimagnetic order can
be defined as

mHM = K

∫
dq‖S(�q), (5)

where S(�q) is the structure factor, with �q = (0,q‖), and
the normalization factor K is the reciprocal of the structure
factor integral at zero temperature.25 Both quantities defined
in Eqs. (4) and (5) were calculated exclusively down the chain
directions, where they are really relevant. In the investigation
of the isotropic model considered by Garel and Doniach in
Ref. 16, the following additional order parameter turns out to
be especially useful:

M = 1

L

L∑
i=1

mi , (6)

where

mi =

√√√√√
(

1

L

L∑
j=1

Sx
i,j

)2

+
(

1

L

L∑
j=1

S
y

i,j

)2

(7)

is the columnar magnetization perpendicular to the helical
displacement. Indeed, as we will show in Sec. III, the quantity
M defined in Eq. (6) turns out to be sensitive both for the
VCSL and KT transitions.

In order to get more detailed, quantitative information about
the critical regions under scrutiny (e.g., critical exponents
and/or phase transition temperatures), we will also make use
of quantities like the specific heat,

cv = Nβ2(〈e2〉 − 〈e〉2), (8)

where 〈· · ·〉 denotes the thermodynamic average and e the
energy per spin; the susceptibilities of the order parameters
previously defined,

χO = Nβ(〈O2〉 − 〈O〉2), (9)

where O = κ,mHM, and M; and finally their Binder’s fourth
cumulants,24

u4(O) = 1 − 〈O4〉
3〈O2〉2

. (10)

Moreover, in order to investigate the pure KT transition, it is
inevitable that the helicity modulus be introduced, too.26 As
it is well known, such an observable measures the response
of the system to the application of a twist k0 on the boundary
conditions,

ϒ(T ) = ∂2F (T )

∂k2
0

∣∣∣∣
k0=0

, (11)
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where F (T ) is the free energy. In this paper, for obvious
reasons, we choose k0 perpendicular to the chain directions,
and we will look for the universal jump 2/π of the quantity
ϒ(T )/T , expected from scaling arguments as T → TKT in the
thermodynamic limit L → ∞.

III. RESULTS

In Fig. 1 the specific heat versus the temperature is reported
for three different cases: 1d chain with δ = 0.0 (dashed line),
1d chain with δ = 0.3 (continuum line), and the system
described by the Hamiltonian (3) (symbols), respectively. The
first two curves were obtained through the usual numerical
transfer matrix technique:27,28 For the nonfrustrated chain, we
can easily recognize the usual broad maximum at T ∼ 0.4. On
the other hand, for δ = 0.3 a sharp maximum at T ∼ 0.03 is
observed. Qualitatively, this sharp maximum can be attributed
to the presence of chiral domain walls (solitons) in the helical
short-range order phase, as extensively discussed by many
authors in the last 20 years.29–31

The landscape becomes more challenging when the inter-
chain interactions are turned on: For J ′ = 0.1J1, in Fig. 1 we
observe at T � 0.12 a well-defined narrow and sharp peak,
having the typical shape we expect at a proper phase transition,
so that we are led to relate it with the onset of the VCSL
phase. The scaling behavior of cv with L is reported in the
inset of Fig. 1: We immediately observe as increasing L the
peak more and more acquires the typical features associated
with a second-order phase transition. Further increasing the
temperature, a second broad and size-independent peak is
observed at T � 0.2, which is consistent with a KT scenario.

In order to estimate the critical temperatures, we employ
the Binder’s cumulant previously introduced in Eq. (10). The
Binder cumulant for different L is reported in Figs. 2(a) and
2(b) for the chirality and the helical order parameters, respec-
tively. For the chirality we can evaluate Tκ = 0.1176 (6), while
for the helical order parameter, we obtain TKT = 0.1095 (5).
The data in Fig. 2 allow one to assert that the two critical
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FIG. 1. (Color online) Specific heat versus temperature for the
model (3) with J ′ = 0.1J1 for different L (see legend), and for
1d model with δ = 0.0 and δ = 0.3. (Inset) MH result (solid lines)
around Tκ for different L.
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FIG. 2. (Color online) Binder cumulants versus temperature for
different lattice sizes for the system with interchain interactions J ′ =
0.1J1 (solid lines, MH interpolation). (a) u4 for the order parameter κ .
(b) u4 for the HM order parameter. (Inset) MH interpolation around
TKT.

temperatures are well distinguishable with (Tκ − TKT)/TKT �
7.4%.

The identification of the crossing temperature in Fig. 2(b)
as the KT transition temperature can be further validated by
making use of the finite-size scaling (FSS) relation χm(L) ∝
Lγ/ν ; a best-fit procedure gives γ /ν = 1.77 (3) (Fig. 3), fully
consistent with the KT behavior of a 2d planar system.

Another evidence of the presence of two distinct critical
points comes from the scrutiny of the vortex density,32 ρ.
In the dilute-gas approximation, we have ρ ∼ exp(−2μ/T ),
where 2μ is the energy required to create a pair of vortices,33

and it can be obtained by linear fit of − ln ρ as a function of
T −1. From Fig. 4 three different regimes can be identified:
low temperature (T < TKT), intermediate temperature (TKT <

T < Tκ ), and high temperature regime (Tκ < T ). The linear
fit in the range TKT < T < Tκ (solid line) gives an activation
energy of dissociated vortex pairs greater than that obtained
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ln L

6
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9

ln
m

H
M

m
ax

FIG. 3. (Color online) Logarithm of the maximum of χmHM as a
function of ln L. The error bars lie within the symbols (interchain
interactions, J ′ = 0.1J1).
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FIG. 4. Vortex density ρ versus T −1 for L = 128 and J ′ = 0.1J1,
error bars lie within point size. (Continuum line) Linear regression in
the SL region. (Dashed line) Linear regression in the KT regime.

for lower temperature T < TKT, where all vortex pairs are
bounded, with a clear slope change at T � TKT. Finally, the
creation of other dissociated vortex pairs appears again easier
in the region T > Tκ , where μ strongly decreases signaling
the onset of a complete disorder; it is worth observing that the
change of slope is located at Tκ instead of at the maximum of
the specific heat, and it is much more marked than in isotropic
models displaying KT transitions.34

A proper characterization of the VCSL transition involves
several aspects. A first central issue concerns the order of the
transition. By analyzing the equilibrium energy distribution at
T = Tκ , no double-peaked structure is observed, even at the
largest simulated size of the lattice L = 128. So we have no
explicit indication for a first-order transition.

The universality class pertaining to the VCSL transition
has been investigated by FSS analysis. In Fig. 5(a) the chiral
susceptibility is displayed for different values of L. From the
expected dependence of its peak position temperature on L

[Fig. 5(b)], we can use the following relation,

Tκ (L) = Tκ + cL− 1
ν . (12)

Making use of the value of Tκ previously obtained [Fig. 2(a)],
we get the estimate ν = 1.02 (5) for the critical exponent ν.

From the analysis of the peak values of χκ with the FSS
relation χκ (L) ∝ Lγ/ν , we obtain the ratio γ /ν = 1.66 (7)
[Fig. 4(c)], which implies γ = 1.70 (8). These values of γ

and ν are in very fair agreement with γ = 7/4 and ν = 1, that
is, the proper values of the Ising universality class in 2d.

Concerning the critical exponent α for the specific heat,35

which for the Ising universality class in 2d is 0, the cv-peak
values, cmax

v (L), versus L are very well fitted (see Fig. 6) by
the FSS relation proper of the 2d Ising model:

cmax
v (L) = A + B ln(L) + CL−1. (13)

The present exploration allows us to conclude that α = 0,
confirming unequivocally the Ising character of the VCSL
transition.

We point out that the quasi-1d nature of the model is
fundamental in order to obtain a VCSL phase, that is, chiral
order in absence of QLRO. This has been explicitly checked in
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FIG. 5. (Color online) (a) Chiral susceptibility versus temperature
by MH interpolation (solid lines) for different sizes. In (b) the
temperature where the peak of χκ is located is reported versus L. In
(c) the maximum value of χκ is reported as a function of ln L. Error
bars fall within the symbols (interchain interactions, J ′ = 0.1J1).

the range 0.05 � J ′/J1 � 1. In Figs. 7(a)–7(d) a summary of
the obtained results is reported for J ′ = J1, that is, the model
investigated by Garel and Doniach.16

For the specific heat in Fig. 7(a) we observe a size-
independent broad peak at T � 0.75, consistent with a KT
scenario, while a size-dependent, narrow peak at T � 0.34
is found. Using the helicity modulus (11), we estimate
TKT � 0.45. On the other hand, for the largest simulated size
(L = 108), the chiral susceptibility (9) shows a narrow peak
at the same temperature Tκ of the narrow, size-dependent,
specific heat peak and, above all, Tκ is significantly lower
than TKT. These data are corroborated by looking at the
order parameter defined in Eq. (6). As the susceptibility
associated with the parameter M results sensitive to both two-
and four-point correlations, a first anomaly is observed at a
higher temperature, which stabilizes at TKT when L increases,
signaling the onset of the quasiorder; subsequently, at lower
temperature, χM has a second anomaly at a temperature

10 100

L

1

1.5

c vm
ax

 (
L

)

FIG. 6. (Color online) Maximum of the specific heat versus L

(error bars lie within point size). Continuum line, fit function; see
text.
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FIG. 7. (Color online) Observables calculated for the system with
J1 = J ′ for different size L: (a) specific heat; (b) helicity modulus;
(c) chiral susceptibility; (d) susceptibility of M (see text).

consistent with those already displayed by the specific heat
and the chiral susceptibility: We can thus definitely estimate
Tκ � 0.34. For J ′ = J1 a clear separation between the KT
behavior and chiral setup is again present, but, at variance with
the quasi-1d case, the onset of the chiral order is established
at a temperature Tκ lower than TKT; the results of our MCS
rule out completely the scenario proposed in Ref. 15 about the
behavior of the investigated 2d classical model, and confirm
the predictions of Ref. 16.

In Fig. 8(a) complete phase diagram of TKT and Tκ versus
the ratio J ′/J1 is reported: Only when the interchain coupling
is sufficiently weak, J ′/J1 � 0.1, the VCSL phase appears in
a sensible range of temperature.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have presented the outcomes of intensive
MCS for a 2d XY classical spin system, defined on a square
lattice, composed by weakly interacting frustrated chains.
We observe a clear separation between the VCSL phase and
the QLRO phase only when J ′ � 0.1J1, where Tκ > TKT. The
onset of the VCSL phase displays the typical features of a
second-order phase transition, consistent with the 2d Ising
universality class, and for this weakly coupled incommen-
surate helimagnet the chiral spin liquid phase turns out to
persist in a temperature range much wider than that reported
for fully frustrated models (see Fig. 8). This result confirms
the intriguing possibility of an emergent finite-temperature
phase showing chiral long-range order in the absence of the
helical one as investigated by many authors in the multiferroic
context.14,17,19,20

0.1 1

J / J
1

0.1

T
K

T , 
 T

0.5

VCSL

chiral  + QLRO

QLRO

PM

FIG. 8. (Color online) Phase diagram TKT and Tκ versus inter-
chain interaction strengths.

We found the quasi-1d nature of the system being crucial
for observing this exotic phase: Indeed, assuming J ′ � J1 we
find that the sequence of phase transitions can be reversed,
that is, Tκ < TKT (see again Fig. 8). When dealing with the
existence of a 3d VCSL (the KT transition should now be
replaced by a proper second-order one), we remind that for
classical antiferromagnets on a 3d stacked-triangular lattice
numerical simulations supported the occurrence of a single
HM phase transition21 even if in the 2d lattice Tκ > TKT is
observed.18 However, we believe reasonable to hypothesize
that for a 3d collection of weakly interacting HM chains
the two transitions could remain well distinct, making it still
possible to observe the VCSL phase. Such expectation follows
from two motivations: (i) the surprising large temperature
range where the VCSL phase is observed in 2d, for small values
of J ′/J1; (ii) at variance with the classical antiferromagnets
on the 3d stacked-triangular lattice, where the interplane
exchange interaction is at least comparable with the intraplane
one, making it able to wash out the richness of the phase
diagram observed in 2d, the weakness of the interchain
interaction in our model should protect the sequence of the
phase transitions observed for 2d even when moving to 3d.
Further support to the outlined scenario emerged from the
results of recent experiments on the quasi-1d organic high-spin
magnet Gd(hfac)3NITEt.22
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