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Prediction of a gapless topological Haldane liquid phase in a one-dimensional
cold polar molecular lattice
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We show that ultracold two-component fermionic dipolar gases in an optical lattice with strong two-body
on-site loss can be used to realize a tunable effective spin-one model. Fermion number conservation provides
an unusual constraint that

∑
i(S

z
i )2 is conserved, leading to a unique topological liquid phase in one dimension,

which can be thought of as the gapless analog of the Haldane gapped phase of a spin-one Heisenberg chain. The
properties of this phase are calculated numerically via the infinite time-evolving block decimation method and
analytically via a mapping to a one-mode Lüttinger liquid with hidden spin information.
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I. INTRODUCTION

We predict theoretically (and support it by numerical calcu-
lations) the existence of a completely new quantum topological
gapless liquid phase in certain classes of interacting one
dimensional systems, which, we believe, can be realized in
ultracold fermionic polar molecular gases recently realized in
laboratories.1 Our predicted topological phase can in some
sense be construed to be the gapless analog of the well-known
Haldane gapped phase that exists in antiferromagnetic spin-
one Heisenberg chains.2

Duan et al.3 have recently shown how to realize a tunable
effective spin-half model with ultracold two-component atoms
in an optical lattice via superexchange, thus allowing, in princi-
ple, the experimental study of quantum magnetism in the con-
trollable atomic systems, but the low-temperature scale set by
the superexchange is currently a barrier to this program. Very
recent experimental achievement of ultracold gases of dipolar
molecules1 has opened up additional exciting possibilities for
realizing designer Hamiltonians due to the extended range of
the induced electric dipole-dipole interaction which decays as
1/r3. Efforts are currently underway to load these ultracold
molecules into an optical lattice. In that case one could realize
spin models with strong direct off-site interactions, without
recourse to the inherently weak superexchange mechanism.
Our proposed gapless topological phase should be realizable
in such a dipolar molecular fermionic optical lattice.

One interesting proposal is to use bosonic polar molecules
to realize an incompressible phase with a hidden order
similar to the Haldane gapped phase of a spin-one chain.4

A recent proposal for explicitly constrained bosons finds
similar results.5 To the best of our knowledge, this intriguing
prospect has not yet been experimentally observed, though,
as it is specific to bosonic molecules, while so far only
fermionic dipolar molecules have successfully been realized
near degeneracy.1 Furthermore, strong two-body loss rates
for reactive molecules as in Ref. 6 would severely limit the
stability of states with multiply occupied sites.

In this paper, we present a mapping of two-component
dipolar fermions to an effective spin-one model. Rather
than being an obstacle, the on-site loss rate is actually a
necessary prerequisite for our scheme. We perform numerical
calculations for a one-dimensional (1D) lattice and observe
a phase exhibiting hidden order and topological degeneracy.

By topological degeneracy, we mean a dependence of the
ground-state degeneracy on the topology such as occurs in
the Haldane gapped phase, where the ground state is fourfold
degenerate for open boundary conditions and unique for
periodic boundary conditions.7 In contrast to the “Haldane
insulator” of the bosonic proposal,4 the phase found here is
gapless and compressible, and we refer to it as a “Haldane
liquid.”

The layout of the paper is as follows. In Sec. II, we write
the effective spin-one Hamiltonian. In Sec. III we show how
the spin-dependent interactions can be experimentally tuned.
Ground-state properties of the Hamiltonian are presented in
Sec. IV, with numerical results given in Sec. IV A, followed
by an analytical treatment given in Sec. IV B. Experimental
detection schemes are briefly discussed in Sec. V, and we
summarize in Sec. VI. The Appendix contains details of the
analysis of Sec. IV B.

II. EFFECTIVE SPIN-ONE DESCRIPTION

The two fermionic components (i.e., the two spin compo-
nents) can be provided by two hyperfine states of 40K87Rb
molecules.8 The strong on-site loss6 will give rise to effective
hardcore repulsion via a continuous quantum Zeno effect
which stabilizes the gas in the presence of the lattice.9

Thus, after loading the molecules into the lattice, the state
will quickly decay to a stable configuration, with each site
either empty or singly occupied. For simplicity, we consider
geometries such that the interactions are isotropic. This is not
an essential requirement. The low-energy Hamiltonian is then

H = PS

[
−t

∑
i,σ

(c†i,σ ci+1,σ + H.c.) −
∑
i,σ

μσ c
†
i,σ ci,σ

+1

2

∑
i �=j,σ,σ ′

Vσσ ′

|i − j |3 c
†
i,σ ci,σ c

†
j,σ ′cj,σ ′

]
PS, (1)

where σ =↑ , ↓ denotes the pseudospin state and PS is the
projector onto the subspace with at most one particle per site,
i.e.,

∑
σ c

†
i,σ ci,σ � 1. Note that in 1D the hardcore constraint

in conjunction with number conservation breaks the Hilbert
space up into disconnected sectors since a given sequence of ↑
and ↓ fermions cannot evolve to a different sequence, although
the locations of the empty sites may change.
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Since the on-site Hilbert space is spanned by three states
(↑, ↓, empty), we pursue a mapping to a spin-one description,
as in Refs. 10 and 11. To construct spin-one operators which
commute properly from the physical fermion operators, we
introduce a slave fermion representing the empty state, ci,0.
Then one can verify that

Sz
i = c

†
i,↑ci,↑ − c

†
i,↓ci,↓, S+

i = c
†
i,↑ci,0 + c

†
i,0ci,↓,

S−
i = (S+

i )† (2)

are effective spin-one operators.
In terms of the slave fermion, the hardcore con-

straint becomes
∑

η c
†
i,ηci,η = 1, where η =↑ , ↓ ,0, and

the hopping term in Eq. (1) changes as −tc
†
i,σ ci+1,σ −→

−tc
†
i,σ c

†
i+1,0ci+1,σ ci,0. The constraint can be automatically

satisfied by rewriting the Hamiltonian in the form of a spin
lattice:

H = −t
∑

i

(
Sx

i Sx
i+1 + S

y

i S
y

i+1

)(
Sz

i + Sz
i+1

)2

− μ↑ − μ↓
2

∑
i

Sz
i − μ↑ + μ↓

2

∑
i

(
Sz

i

)2

+ V↑↑ + V↓↓ − 2V↑↓
8

∑
i �=j

Sz
i S

z
j

|i − j |3

+ V↑↑ + V↓↓ + 2V↑↓
8

∑
i �=j

(
Sz

i S
z
j

)2

|i − j |3

+ V↑↑ − V↓↓
8

∑
i �=j

(
Sz

i

)2
Sz

j + Sz
i

(
Sz

j

)2

|i − j |3 , (3)

where the Sz dependence of the hopping ensures conser-
vation of

∑
i(S

z
i )2 (i.e., prevents fermion pair creation and

annihilation).

III. ENGINEERING SPIN-DEPENDENT INTERACTIONS

We now show how the interactions can be tuned. In the
following we keep only nearest-neighbor interactions and
take the lattice to be 1D, but this can be easily generalized
to further interactions and two dimensions. The Hamiltonian
(3) becomes especially simple for V↑↑ = V↓↓ = −V↑↓ = V ,
when it reduces to the constrained t − Jz model of Ref. 12
for a stripe segment in a high-temperature superconductor.
For 40K87Rb molecules in a typical uniform external magnetic
field the resonant microwave transition frequencies between
the ground and first excited rotational manifolds are different
for different hyperfine species.13 (We will consider the Zeeman
shift of the noninteracting energy levels to be absorbed into
the chemical potentials.) Thus one could apply an ac field
at the average excitation frequency as shown in Fig. 1(a), so
that the detuning is equal and opposite for the two hyperfine
species. If we begin with all molecules in the rotational ground
state and the field is turned on adiabatically, in the limit of
large intermolecular separation, a molecule will reside in the
dressed state adiabatically connected to its ground state. The

FIG. 1. Sketch of applied ac fields yielding different interspecies
and intraspecies interactions for two hyperfine states in a magnetic
field. (a) Scheme yielding V↑↑ = V↓↓ = −V↑↓. (b) Scheme allowing
more general control.

difference in the sign of the detuning for the two hyperfine
species connects their ground states to different dressed states,

|σ̃ 〉 = eiωt/2 cos θ |0,σ 〉 − sσ e−iωt/2 sin θ |1,σ 〉, (4)

where tan 2θ = �/δ, � is the Rabi frequency, δ is the detuning,
ω is the field frequency, |J,σ 〉 is the bare state in the rotational
manifold J and the hyperfine state σ , and sσ = +1(−1) for
σ =↑ (↓). We suppress the mJ label since the field will
dominantly couple the J = 0 state to a single J = 1 state,
whose value of mJ is fixed by the polarization.

The resulting effective dipole moments are

dσ = 〈σ̃ |d|σ̃ 〉 = −sσ Êdeff cos ωt, (5)

where Ê is the polarization unit vector, deff = d sin θ cos θ ,
and d is the transition dipole moment of the molecule
between the ground and first excited state. The time-averaged
intermolecular interaction induced by a field linearly polarized
at an angle θE to the z axis is then given by

V eff
σσ ′ = 1

λ3
〈dσ · dσ ′ − 3(dσ · ẑ)(dσ ′ · ẑ)〉t

= d2
eff

2λ3
(1 − 3 cos2 θE)sσ sσ ′ . (6)

More generally, one could control Vσσ ′ by carefully tuning a
weak dc electric field and the external magnetic field such that
the 	mJ = 0 transition for one hyperfine species is nearly
resonant with the 	mJ = 1 transition for the other species,
and there are no other transitions near resonance, as shown in
Fig. 1(b). Then, applying two microwave ac fields with
the same frequency tuned near resonance with the chosen
transition, one circularly polarized and one linearly polarized,
each species is affected by only one of the fields and the
interactions can be tuned individually. We take the circularly
polarized field to propagate at an angle θ↑ relative to the
z axis (which is fixed by the direction of the lattice), the
linearly polarized field to have its polarization vector at a
polar angle θ↓ relative to the z axis, the azimuthal angle
φ relative to the plane formed by the z axis, and the
propagation vector of the circularly polarized field. As before,
in the limit of large separation, the molecules will reside in
the dressed states, but now with � replaced by �σ , δ by
δσ ≡ EJ=1,σ − EJ=0,σ − ω, and sσ by sgn(δσ ). The effective
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dipole moments, dσ = 〈σ̃ |d|σ̃ 〉, are

d↓ = deff,↓(x̂ sin θ↓ cos φ + ŷ sin θ↓ sin φ + ẑ cos θ↓) cos ωt,

(7)

d↑ = deff,↑(x̂ cos θ↑ cos ωt + ŷ sin ωt − ẑ sin θ↑ cos ωt),

(8)

where deff,σ ≡ −sgn(δσ )d
√

1 − δ2
σ

�2
σ +δ2

σ
. The time-averaged in-

teraction of molecules on the z axis is then

V eff
↑↓ = deff,↑deff,↓

2λ3
(2 sin θ↑ cos θ↓ + cos θ↑ sin θ↓ cos φ), (9)

V eff
σσ = sσ

d2
eff,σ

2λ3
(3 cos2 θσ − 1). (10)

For intermolecular distances less than or on the order of
rδ ≡ (d2/h̄|δ|)1/3, a full coupled-channel Born-Oppenheimer
calculation becomes necessary, as in Ref. 14. However,
typically the optical lattice wavelength λ ∼ 1 μm, which is
greater than rδ for detunings as small as a few kHz, so we do
not need to consider the short-range structure of the potential.

IV. GROUND-STATE PROPERTIES

In the remainder of this paper we will consider the ground
state of the system, taking the experimental parameters such
that μ↑ = μ↓ = μ, V↑↑ = V↓↓ = V , and V↑↓ = −V cos χ .
(We do not discuss the special case cos χ = −1, corresponding
to the trivial situation of spin-independent interactions.)

A. Numerical results

We have calculated the ground-state properties of the
original Hamiltonian (1) numerically using the infinite time-
evolving block decimation (iTEBD) method.15 The phases
shown in Fig. 2 are defined by the structure of the entanglement
spectrum, as we discuss below, and characterized by the
correlation functions shown in Fig. 3.

For V > 0 the ground state clearly must lie in the sector
of the Hilbert space containing states such as ↑0↓↑00↓ · · ·,
i.e., where the hyperfine state of each molecule is different
from that of the previous molecule, regardless of how many
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FIG. 2. Phase diagrams of Hamiltonian (3) in 1D with μ↑ =
μ↓ = μ, V↑↑ = V↓↓ = V , and V↑↓ = −V cos χ , and keeping only
a nearest-neighbor interaction. V/t istrictly equal to zero is not
included. The range of chemical potential shown corresponds to
filling factors between 0 and 1.
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FIG. 3. (Color online) Correlation functions calculated
numerically with cos χ = 1 for V/t = 0.1,μ/t = −1.6 (HL), and
V/t = 1.5,μ/t = −0.8 (AFM).

empty sites lie in between. This is long-range order in the
string correlator,16

Oα
str(|i − j |) ≡

〈
−Sα

i exp

(
iπ

j−1∑
l=i+1

Sα
l

)
Sα

j

〉
, (11)

with α = z. (We do not consider the special case of V = 0,
which is separated from the V > 0 phase by the closing of the
energy gap between the low-lying z-string ordered states and
states which break this order.) When V cos χ > t − μ/2,17

the entanglement spectrum is nondegenerate and every lattice
site is occupied, so the ground state is an antiferromagnetic
insulator (AFM), and must be doubly degenerate. In a system
with a fixed number of molecules less than the number of
lattice sites, this will be a phase-separated region.

When V cos χ < t − μ/2, there are vacancies and the
entire entanglement spectrum is exactly doubly degenerate,
which is an indication of a nontrivial topological state.18

However, in contrast to the “Haldane insulator” of Ref. 4, here
the suppression of pair creation and annihilation processes
has removed the gap to the longitudinal magnon mode, as
can be surmised from the power-law decay of the spin-spin
correlations along z shown in Fig. 3, while the transverse
modes remain gapped.19 Furthermore, the string correlator
along x no longer displays true long-range order, but decays
with a power law. Algebraic decay of the string correlation
has previously been found in the Hubbard model with
infinite on-site repulsion (i.e., Lüttinger liquid with Heisenberg
exchange).20 In the present case, though, both long-range
and quasi-long-range string order exist simultaneously. Most
importantly, we shall show below that the doubly degenerate
entanglement spectrum is the direct result of topological
degeneracy. We refer to this phase as a “Haldane liquid” (HL).
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B. Analytical results

The mapping from hard-core spin-half fermions to a spin-
one model provides a suggestive and intuitive language to
describe the system, but it is difficult to explain the behavior
of the HL phase in this language. However, given an underlying
string-type spin order, one can alternatively make a mapping
from the original hardcore spin-half fermions to a spinless
Lüttinger liquid with a prescription on how to access the
spin information from the density, similar to the approach in
Refs. 12 and 20. This provides analytical solutions for the
low-energy physics. We heuristically present the mapping
below. A more detailed presentation is given in the Appendix.

1. Effective spinless Lüttinger liquid description

Consider a lattice with sites 0,1, . . . ,N − 1 and periodic
boundary conditions loaded with n � N fermions at sites
r = {r1 < r2 < · · · < rn} bearing spins σ = {σ1,σ2, . . . ,σn}.
Restricting ourselves to the physically relevant string-ordered
subspace, eliminating the spin information leaves a spin-
less attractive fermion system. Any eigenstate of the spin-
ful Hamiltonian, H = T + V , in this subspace can be
written as a superposition �(r, σ ) = ∑

γ=↑,↓ αγ ψγ (r, σ )
= ∑

γ αγ ξγ (σ )φ(r), where the two terms correspond to the
two possible realizations of string order, i.e., choice of the first
fermion’s spin. This choice uniquely determines all the spins,
so the state separates into spin and density parts, and φ(r) is
an eigenstate of the spinless attractive fermion Hamiltonian,
H̃ = T̃ + V . (Note that the interaction in the string-ordered
subspace is independent of the two spin states.)

If the lattice is packed, the two string-ordered sectors
are disconnected and all eigenstates are doubly degenerate.
For n < N , though, the hopping term T connects states
ψ↑(r, σ ) and ψ↓(r, σ ) by taking a particle from site N − 1
to site 0 (or vice versa) via the periodic (or more generally,
phase-twisted) boundary conditions. In this case the symmetry
of the Hamiltonian requires the eigenstates to have definite
parity, p = ±1, under “time reversal” (TR), i.e., ↑⇔↓, so the
eigenstates are unique.

Consistency of the spinful and spinless Schrödinger equa-
tions requires T �(r, σ ) = ∑

γ αγ ξγ (σ )T̃ φ(r). This is clearly
satisfied for hops that do not move a particle between sites
N − 1 and 0. Consistency for hops between sites N − 1 and 0
requires ei� = pei�̃, where � (�̃) is the boundary phase twist
of the spinful (effective spinless) system. So for TR even (odd)
states, we may describe the spinful state in terms of an effective
spinless state under boundary conditions with the same (an
additional π ) phase twist. The meaning of this is readily seen
in that N hops are sufficient to cycle the density around the
ring back into its original configuration, but the resulting spin
part of the wave function is time reversed. Thus, TR odd states
acquire a π phase after one circuit. One interesting ramification
is that, if an effective flux is introduced, the ground-state
energy as a function of flux has half the period of a spinless
system, as illustrated in Fig. 4 by exact diagonalization in the
string-ordered Hilbert space.

Given the above prescription to obtain the string-ordered
spinful wave function from a spinless one, one obtains (see the
Appendix for details) algebraic decay of the x string, z spin-

π
2 π 3 π

2
2 π

2

1

1

2

E
t

FIG. 4. Energy vs flux for a five-site ring with four string-ordered
fermions. Solid (dashed) lines are TR even (odd) states.

spin, and density-density (deviation from mean) correlation
functions in the HL phase from Lüttinger liquid theory:

Ox
str(r) ∼ (−1)r

4

(
λ

r

)1/2K

, (12)

〈
Sz

0S
z
r

〉 ∼
[

k2
F

π2
+ kF

2π2λ
+ 1

(2πλ)2

]
cos kF r

(
λ

r

)K/2

, (13)

〈ρ(0)ρ(r)〉 − 〈ρ(0)〉2 ∼ − K

2πr2
, (14)

where K > 1 is the Lüttinger constant. We have checked
that the numerical calculations give consistent results for
K when comparing the various correlation functions. Also,
the exponential decay of 〈Sx

0 Sx
r 〉 = ∑

γ 〈c†0,γ cr,γ 〉 is readily
understood since one cannot propagate one particle past
another without destroying the string order, so the correlation
function must exponentially decay with a characteristic length
set by the average interparticle spacing.

2. Entanglement spectrum degeneracy

From the above arguments it is clear that under open
boundary conditions, the ground state must always be doubly
degenerate, as also shown in Ref. 12. However, for periodic
boundary conditions it may be unique. To link the double
degeneracy of the entanglement spectrum to this topological
degeneracy, consider the reduced density matrix for a block of
sites A obtained by tracing over the remaining subsystem B,

ρA(rA,σA; r′
A,σ ′

A) =
∑
rB,σB

�(rA,rB; σA,σB)�∗(r′
A,rB; σ ′

A,σB).

(15)

Since a given number of particles and realization of string
order in B specifies the number and realization of string order
in A, the above decomposes as

ρA(rA,σA; r′
A,σ ′

A) = ⊕
nA,γ

ρ
(nA,γ )
A (rA,r′

A). (16)

In the nondegenerate case, the states have definite TR parity,
so ρ

(nA,↑)
A = ρ

(nA,↓)
A and the entanglement spectrum is exactly

doubly degenerate.

V. EXPERIMENTAL DETECTION

To probe the HL phase experimentally, one should ini-
tialize the system in the z string-ordered sector (e.g., by
starting with a 3D lattice and adiabatically turning on a
strong cylindrical trap). Local correlators are directly ob-
servable. For instance, 〈Sx

0 Sx
r 〉 can be probed by measuring
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the physical pseudospin-dependent single-fermion correlators∑
σ 〈c†i,σ cj,σ 〉 via pseudospin-dependent time-of-flight mea-

surement. Likewise, 〈Sz
0S

z
r 〉 can be probed by measuring the

density-density correlator 〈[ρ↑(0) − ρ↓(0)][ρ↑(r) − ρ↓(r)]〉
via pseudospin-dependent time-of-flight noise correlations or
repeated in situ imaging with single-site resolution. Although
finite temperature introduces an exponentially decaying en-
velope to the gapless correlation functions, at sufficiently
low temperature the algebraic decay is dominant up to some
thermal length.

The entanglement spectrum and string correlators are
not as directly accessible. However, one can observe other
consequences of the topological degeneracy. For example, in
principle, when realizing the simplest case of χ = 0 with the
arrangement of Fig. 1(a), one could use a rotating ring-shaped
optical lattice.21 The half periodicity of the ground-state energy
as a function of rotation frequency (see Fig. 4) compared to the
corresponding system of spinless fermions could then serve as
a signature of the phase.

VI. SUMMARY

We have shown that an optical lattice loaded with two-
component dipolar fermions can realize an effective spin-
one model. Our proposal allows for—in fact, requires—
experimentally realistic conditions of strong two-body loss.
In 1D, we have provided numerical and analytical calculations
to show that this model contains a unique gapless topological
phase.
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APPENDIX: MAPPING TO A SPINLESS LÜTTINGER
LIQUID

1. Hamiltonian and Hilbert space decomposition

Consider a set of spin-1/2 Ising hard core fermions on
a 1D lattice with AFM nearest-neighbor interactions. (This
model has previously appeared in a different context.12) Let us
suppose the 1D lattice is a finite size ring with some number
of sites N . The Hamiltonian may be written as

H =
∑

r,σ=±1

[c†r+1,σ (1 − nr+1)cr,σ + H.c. − μc†r,σ cr,σ ]

−U
∑

α,β,γ=±1

σz,αασz,ββc
†
r+γ,αc

†
r,βcr,βcr+γ,α, (A1)

where n(r) = ∑
σ c

†
r,σ cr,σ . Furthermore, let us suppose that

the chemical potential μ is tuned such that the system has an
even number (n) fermions in the ground state.

Each particle in this system can be labeled by a composite
variable y = (r,σ ) where 0 � r � N is the position of the
particle and σ = ±1 is the spin state. For our purposes we
will need to define an order between two values y1 = (r1,σ1)
and y2 = (r2,σ2) based on the order of r1 and r2, i.e., y1 < y2

≡ r1 < r2. The Hilbert spaceH of the system above is spanned
by the ket states H = [|0 � y1 < y2 < · · · < yn � (N − 1)〉].
The hard-core constraint together with the Ising constraint on

the spins leads to an important conserved quantity in the Hamil-
tonian given by the sequence � = ({σj }j=1,...,n)(mod R), i.e.,
the spin sequence is conserved modulo cyclic permutations R.
Thus the Hilbert space may be decomposed into a direct sum

H = ⊕�H�, (A2)

where � represents various equivalence classes of sequences
of spins of the n atoms. Each Hilbert space H� for a given
spin configuration has a simple structure H� = [|0 � r1 < r2

< · · · < rn−1 < rn � N〉] such that the spin degree of freedom
is now implicit. The spin degree of freedom can be restored
given the value of �.

2. Low-energy wave functions

After removing the spin degree of freedom, each Hilbert
space and corresponding Hamiltonian have the form of
spinless hard-core particles moving on a 1D lattice. The
interactions between these particles is attractive if the spin
configuration is in the equivalence class � = (+, −, +,

− , . . .), i.e., the state is AFM. The ground state is there-
fore purely AFM. There are two AFM spin sequences in
the equivalence class, namely, �+ = (+, −, +, −, · · ·) and
�− = (−, +, −, +, · · ·).

Thus a wave function in H� can be decomposed into
two parts � = �+ + �− such that �α ∈ H�α

. To understand
the condition under which � is an eigenstate, we apply the
Hamiltonian in Eq. (A1) to �. For convenience we consider
all position variables lumped together as r = (r1, · · · ,rn). All
terms in the Hamiltonians under consideration are diagonal
(and therefore similar to a potential energy term) other than
the hopping term. The composite vector r is taken to be in
a bounded region such that ri < ri+1. The hopping terms
T for most of the points allow only hopping inside this
bounded region. Because of periodic boundary conditions, the
hopping T also connects the boundary points with r such that
r = (0 < r1 < · · · < rn = N − 1) and r = (0 = r1 < · · · <

rn < N − 1). We refer to these hyperplanes as S− and S+,
respectively, in parameter space. The Schrödinger equation
takes the abstract form

T �(y) = [E − U (y)]�(y), (A3)

where y ≡ 0 � y1 < y2 < · · · < yn � (N − 1), T are the
allowed nearest-neighbor hopping operators in the multidi-
mensional space and E is the energy eigenvalue.

Since the spin ordering of each state is alternating,
the potential energy is independent of the spin part, i.e.,
U (y) = U (r). Although the kinetic energy can mix the two
spin sequences, it is also symmetric, so for n < N the
eigenstates are nondegenerate and have definite parity under
TR. Therefore, for n < N , given a state � ∈ H� with TR
parity p = ±1, we can define a spinless wave function ψ(r)
defined by

ψ(r) = �(0 � (r1,+) < (r2,−) < · · · < (rn,−) < N )

+p�(0 � (r1,−) < (r2,+) < · · · < (rn,+) < N),

(A4)

which satisfies the Schrödinger equation

T̃ ψ(r) = [E − U (r)]ψ(r), (A5)
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where T̃ is the spinless hopping operator on the lattice. The
above Schrödinger equation arises from the spinless version
of the original Hamiltonian in Eq. (A1),

Hf =
∑

r

[c†r+1cr + H.c. − μc†r cr ] − U
∑

γ=±1

c
†
r+γ c†r crcr+γ ,

(A6)

which is the Hamiltonian for spinless fermions on a lattice.
Here we also choose μ such that the ground state has n

fermions. Note that the hard-core constraint is automatically
enforced. Similar to our original model, the Hilbert space can
be described by wave functions ψ(0 � r1 < r2 < · · · < rn �
N − 1).

Conversely, the spinful wave function can be obtained given
the spinless one ψ by

�(y) =
∑
α=±1

ζαχα(σ )ψ(r), (A7)

where ζ+ = p ζ− and χα is the spin part of the wave function
and is given by

χα(σ ) =
∏

j=1,...,n

δ(σj + α(−1)j ). (A8)

The separable form of the wave function is also obtained
for the large-U limit of the Hubbard model by Refs. 22
and 23 and used by Ref. 20 in a similar program. Inserting
Eq. (A7) into the right-hand side of Eq. (A3), we obtain

T �(y) =
∑
α=±1

ζαχα(σ )T̃ ψ(r). (A9)

The validity of Eq. (A9) is easy to see in the interior of the
space r, since the hopping term does not transfer any particles
across the boundary at r = 0. For points y containing particles
at the boundaries r = 0 or r = N − 1, the equation becomes∑

α=±1

ζ−αχα(σ )eiθψ ′(r) =
∑
α=±1

ζαχα(σ )eiθ̃ψ ′(r), (A10)

where θ (θ̃) is the phase twist at the boundary of the spinful
(spinless) lattice and ψ ′(r) denotes the density configuration
after the hopping operator is applied. So we see that for �

TR even, we may describe the system in terms of a spinless
wave function by using Eqs. (A7) and (A5), where the phase
twist on the boundary of the spinless Hilbert space is the same
as that of the spinful Hilbert space. But for � TR odd, the
boundary conditions used in Eq. (A5) to obtain the spinless
wave function must have an additional π phase twist.

The above arguments are specifically for n < N . For the
filled lattice n = N , the hopping term does not act on the wave
function, and the eigenstates are twofold degenerate.

3. String order

The Hilbert space HA of the low-energy AFM states can
be compactly characterized by defining a spin-1 operator Sr

at each site r of the lattice such that Srj ,z = σj for filled sites
rj and Sr,z = 0 for all other sites. With this definition, the

Hilbert space HA is characterized by the expectation value of
the string order of Sz operators defined as

Oz
str(r < r ′) = Sr,z

∏
r<p<r ′

eiπSp,zSr ′,z. (A11)

The operator Oz
str(r < r ′) is nonzero only if both r and r ′

are occupied. The string term in the middle
∏

r<p<r ′ eiπSp,z

computes the parity of the number of occupied sites in between
r and r ′. Thus Oz

str(r < r ′) = n(r)n(r ′), where n(r) is the
occupation operator at site r . The asymptotic expectation value〈

Oz
str(r < r ′)

〉 = 〈n(r)n(r ′)〉 ∼ 〈n(r)〉2 (A12)

for large r ′ − r .

4. Entanglement spectrum degeneracy

The entanglement spectrum of a block A of length l starting
from r = 0 to r = l − 1 of the ring. The rest of the ring we
refer to as B. In the spin-1 operator notation, the Hilbert space
is specified by the states |{Sr,z}r=0,...,N−1〉 where Sr,z are the
spin-1 operators at position r . The ground-state wave function
can be correspondingly written as �0({Sr,z}r=0,...,N−1). The
reduced density matrix is defined as

ρA({Sr,z}r=0,...,l ; {S ′
r,z}r=0,...,l)

=
∑

{Sr,z}r=l+1,...,N−1

�({Sr,z}r=0,...,N−1)

×�∗({S ′
r,z}r=0,...,l{Sr,z}r=l+1,...,N−1). (A13)

The spin variable Sr,z = 0 for empty sites. Therefore the spin
configurations of nonzero weight must satisfy∑

r

S2
r,z =

∑
0�r�l

S
′2
r,z +

∑
l<r�N−1

S2
r,z = N − n. (A14)

Thus
∑

0�r�l S
2
r,z = ∑

0�r�l S
′2
r,z = nA and the reduced density

matrix is diagonal in the number of fermion nA in the block
A. Therefore, the reduced density matrix can be written in the
fermion notation as

ρA
(
0 � y1 < · · · < ynA

� l; 0 � y ′
1 < · · · < y ′

nA
� l

)
=

∑
l<ynA+1<···<yn<N

�(0 � y1 < · · · < yn < N )

×�∗(0 � y ′
1 < · · · < y ′

nA
� l < ynA+1 < · · · < yn<N

)
.

(A15)

From the above it follows that ρA(0 � y1 < · · · < ynA

� l; 0 � y ′
1 < · · · < y ′

nA
� l) ∝ δσ0,σ

′
0
. Furthermore, for the

case with fermion vacancies, � has definite parity with respect
to TR and thus

ρA
(
0 � y1 < · · · < ynA

� l; 0 � y ′
1 < · · · < y ′

nA
� l

)
= ρA

(
0 � r1 < · · · < rnA

� l; 0 � r ′
1 < · · · < r ′

nA
� l

)
δσ0,σ

′
0
.

(A16)

It follows that the reduced density matrix in the sector with
nA particles is a direct sum of two identical spin sectors.
This proves that the entanglement spectrum must be doubly
degenerate.
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5. Lüttinger correlation functions

Given that the wave function of our system can be related
to the wave function of spinless fermions on a lattice with
attractive interactions [Eq. (A7)], we expect to be able to
relate correlation functions to the spinless fermion correlation
functions which are known from bosonization of the Lüttinger
model. The correlation functions of operators that preserve the
AFM spin structure (i.e., do not introduce spin defects) can
be mapped to correlation functions of the spinless Lüttinger
model and therefore turn out to be gapless.

a. Density-density correlation function

The density correlation function is the simplest to connect to
the spinless model. The density operator is defined by ρ(r) =∑

j δ(r − rj ). The density-density correlator can be written in
terms of wave functions as

〈ρ(r)ρ(r ′)〉 =
∑

y

|�0(y)|
∑
a,b

δ(r − ra)δ(r ′ − rb)

=
∑

r

|ψ0(r)|
∑
a,b

δ(r − ra)δ(r ′ − rb). (A17)

The above expression is precisely the density-density corre-
lation function of spinless fermions on a lattice and is given
by

〈ρ(r)ρ(0)〉 = ρ2
0 − K

2πr2

1 − λ2

r2(
1 + λ2

r2

)2 + 2

2πλ2
cos (2kF r)

(
λ

r

)2K

,

(A18)

where ρ0 = 〈ρ(0)〉 and K > 1 is the Lüttinger constant for
spinless fermions with attractive interactions.24 Here λ is taken
to be the lattice scale.

b. Sz correlation functions

The model discussed can also be thought of as a spin-1
Hamiltonian. In this language, the natural correlation functions
are the Sr,zSr ′,z correlation functions. The operator Sr,z is
defined as

Sr,z =
∑

j

σj δ(r − rj ). (A19)

The correlator is calculated by evaluating

〈Sr,zSr ′,z〉 =
∑

y

|�(y)|
∑
a,b

σaσbδ(r − ra)δ(r ′ − rb)

=
∑

r

|ψ(r)|
∑
a�b

eiπ(a−b)δ(r − ra)δ(r ′ − rb)

= 〈ρ(r)eiπ
∑

r<p<r′ ρ(p)ρ(r ′)〉, (A20)

where the last correlator is for the spinless fermions. Here for
the second to last statement we have used the fact that the
spin configuration is AFM and therefore the spins are opposite
if there are an even number of particles between a and b.
Following Ref. 24 we use

ρ(x) = ρ0 − 1

π
∂xφ(x) + 1

2πλ
[e−2i(kF x−φ(x)) + e2i(kF x−φ(x))]

(A21)

in the string to get

〈Sr,zSr ′,z〉 = 〈ρ(r)e−i(φ(r ′)−φ(r)−kF (r ′−r))ρ(r ′)〉, (A22)

where for the small lattice constant limit kF a � 1 we have
ignored the backscattering term. Here we also have to be
careful to take only the real part of this expression. Substituting
Eq. (A21) into the above to express everything in terms of φ

leads to the expression

〈Sr,zS0,z〉 = ρ2
0e−ikF r〈ei(φ(r)−φ(0))〉

+
(

ρ0 + 1

2πλ

)
eikF r

2πλ
〈e−i(φ(r)−φ(0))〉

+
(

ρ0 + 1

2πλ

)
e−i3kF r

2πλ
〈ei3(φ(r)−φ(0))〉

+e−ikF r

π2
〈∂rφ(r)ei(φ(r)−φ(0))∂rφ(0)〉

−ρ0e
−ikF r

π
〈[∂rφ(r) + ∂rφ(0)]ei(φ(r)−φ(0))〉

(A23)

= ρ2
0e−ikF r〈ei(φ(r)−φ(0))〉

+
(

ρ0 + 1

2πλ

)
eikF r

2πλ
〈e−i(φ(r)−φ(0))〉

+
(

ρ0 + 1

2πλ

)
e−i3kF r

2πλ
〈ei3(φ(r)−φ(0))〉

+e−ikF r

π2
∂2
r 〈ei(φ(r)−φ(0))〉

−2ρ0e
−ikF r

π
∂r〈ei(φ(r)−φ(0))〉. (A24)

The slowest decay occurs from the first two terms and we get

〈Sr,zS0,z〉 ∼
[
ρ2

0 + ρ0

2πλ
+ 1

(2πλ)2

]
cos (kF r)

(
λ

r

)K/2

.

(A25)

c. Sx string correlator

In a previous section, we found that the ground state was
string ordered in the Sz string correlations. A natural question
to ask is whether this system is also string ordered along Sx

similar to the Haldane model. To assess this we study the
correlation function of the string operator along x,

Ox
str(r < r ′) = Sr,x

∏
r<p<r ′

eiπSp,x Sr ′,x . (A26)

The spin-1 matrix Sx is not diagonal in spin space. Instead it
converts filled sites to empty sites in the fermion representation
and empty sites are converted into the superposition |+〉 + |−〉.
Since Sx changes the number of particles, the action of Ox

str
on �0 is nonzero only if exactly one of the sites r and r ′ is
filled. The factor eiπSx , apart from an overall − sign, flips all
spins and leaves empty sites unchanged. Therefore, the action
of Ox

str on an AFM ground state |�〉 adds a particle at r or r ′
and removes a particle from the other site, while flipping the
spins in the middle to retain the AFM order. Therefore, in the
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spinless fermion language the string correlator can be written
as 〈

Ox
str(r < r ′)

〉 = (−1)(r−r ′)〈c†(r)eiπ
∑

r<p<r′ ρ(p)c(r ′)
〉
.

(A27)

Here one must keep the real part only. As before ignoring
backscattering terms in the exponent〈

Ox
str(r < r ′)

〉 = 〈c†(r)e−i(φ(r ′)−φ(r)−kF (r ′−r))c(r ′)〉. (A28)

From Ref. 24 c(r) = e−iθ(r) cos (φ(r) − kF r). Using this ex-
pression,〈
Ox

str(0 < r)
〉 = (−1)r

4

∑
s=±1

〈e−i(sφ(0)−φ(0)+θ(r)−θ(0))〉 + (−1)r

4

× ei2kF r
∑
s=±1

〈e−i(2φ(r)+sφ(0)−φ(0)+θ(r)−θ(0))〉.

(A29)

Evaluating the expectation values, the leading power-law
behavior comes from the first term with s = +1:

〈Ox
str(0 < r)〉 = (−1)r

4

(
λ

r

)1/2K

. (A30)

6. Gapped correlation functions

From our discussion of Ox
str, the product Sr,xSr ′,x clearly

is nonzero only when it acts on configurations where exactly
one of r and r ′ is empty. Furthermore, applying Sr,xSr ′,x to
the antiferromagnetically aligned state � introduces a defect
at the filled site (since it empties the site) unless all sites
between r and r ′ are empty. The probability of this decays
exponentially with an exponent proportional to ρ0|r − r ′|. The
fermion correlation function in the spinful fermion model is
similarly localized.
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