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Characterization of the melting transition in two dimensions at vanishing external pressure
using molecular dynamics simulations
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A molecular dynamics study of a two-dimensional system of particles interacting through a Lennard-Jones
pairwise potential is performed at a fixed temperature and vanishing external pressure. As the temperature is
increased, a solid-to-liquid transition occurs. When the melting temperature Tc is approached from below, there
is a proliferation of dislocation pairs and the elastic constant approaches the value predicted by the KTHNY
theory. In addition, as Tc is approached from above, the relaxation time increases, consistent with an approach to
criticality. However, simulations fail to produce a stable hexatic phase using systems with up to 90,000 particles.
A significant jump in enthalpy at Tc is observed, consistent with either a first order or a continuous transition.
The role of external pressure is discussed.
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I. INTRODUCTION

Melting of an infinite solid in two dimensions has been
described as a process driven by a proliferation of thermally
excited dislocation pairs in the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) theory.1–4 The theory, formulated at
vanishing external pressure, predicts the existence of a new,
“hexatic,” intermediate thermodynamic phase. While solids
are characterized by long-range translational and orientational
order, liquids present only short-range order. The predicted
hexatic phase presents long-range orientational order but lacks
long-range translational order. The KTHNY theory predicts
a second-order phase transition from the crystalline to the
hexatic phase, at which point there is a universal jump of
a normalized elastic constant from a finite value to 0. This
first transition is followed by a second transition from the
hexatic phase to the liquid phase at a higher temperature.
The KTHNY theory continues to generate interest, especially
because increased numerical capabilities and new experimen-
tal techniques currently allow for new and more accurate
testing of theoretical predictions. Indeed, there have been
numerous attempts at the verification, both experimentally
and numerically, of the KTHNY theoretical predictions, with
mixed outcomes.

On the experimental side, studies with colloidal parti-
cles have provided evidence of two-stage melting with an
intermediate hexatic phase5–8 and of elasticity behavior in
agreement with the KTHNY predictions.9 The observed
transition, however, appears to be first order.8,10 Similar results
have been obtained with diblock copolymers.11 Recently,
melting in two steps with an intermediate hexatic phase has
been observed in monolayers of polycristalline colloidal films,
but not in thin or thick multilayer films.12 Also recently, but in
a different context, dislocations have been directly observed in
graphene,13 prompting a renewed interest in the role of defects
in this two-dimensional material.14–18

On the numerical side, molecular dynamics (MD) and
Monte Carlo simulations19,20 of systems with a small number

of particles (N ) broadly detected a transition where the number
of dislocations proliferates but failed to provide clear evidence
of the nature of the observed transition. First-order melting has
been reported in the literature,19,21–23 while other calculations
support a continuous transition.24,25

The critical properties of the KTHNY transition are a
consequence of the renormalization effect that small-scale
fluctuations have on large-scale fluctuations. For this mech-
anism to be operative, well-separated length scales must exist,
suggesting a minimum size for numerical simulations in two
dimensions of 104. Indeed, Chen et al.26 performed MD
simulations of a Lennard-Jones (LJ) system with a varying
number N of particles. They found a metastable hexatic
phase for systems with N � 36 864, but not for N � 16 386.
In all cases, simulations were performed at a significant
external pressure, a fact that alters the dislocation generation
mechanism: the interaction between the components of a
dislocation pair tends to close it down, while the external
pressure, for some orientations, tends to open it up. The whole
process becomes one of thermal activation, much like nucle-
ation, and the likelihood of having isolated dislocations—and
an hexatic phase—increases. A subsequent study in terms
of inherent structure theory showed consistency with the
KTHNY theory.27 More recently, a MD study28 carried out
at a constant volume, involving 36 000 particles interacting
through an LJ potential also reported the presence of an hexatic
phase between the solid and the liquid phases. However,
phase coexistence in NVT ensembles precludes unambiguous
interpretation of these results.

In a different vein, in a three-dimensional continuum elastic
solid, dislocation loops drive a mechanical instability at a finite
temperature,29,30 at which point the shear modulus vanishes as
a function of reduced temperature, following a power law with
an exponent whose value is a function that is independent of the
microscopic details of the elastic solid. Numerical calculations
of superheated LJ crystals near the melting transition in
three dimensions show the appearance of dislocations as the
temperature is raised.31,32 However, it is unclear whether these
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dislocations play a central role during the phase transition or
are just a by-product of another transition-driving mechanism.

The present work used MD simulations in the NpT

ensemble to study the melting transition in two dimensions.
MD has been chosen on this occasion over the possible Monte
Carlo alternative in order to study the time evolution of the
system, especially its relaxation behavior near criticality. We
found a single-step solid-to-liquid transition (as determined by
the enthalpy change) when a vanishing external pressure was
applied to the system, in contrast to a multistep transition at
high pressure like the one presented in Ref. 26 using the same
number of particles. However, within a narrow temperature
interval defining the solid-to-liquid transition, the monitored
relaxation times, elastic constants, and evolution of the number
of dislocations were all consistent with the KTHNY theory. We
suggest that, because of the necessary interplay between many
length scales, a stable hexatic phase will be unambiguously
observed only in systems with at least ∼106 particles at zero
external pressure.

II. MOLECULAR DYNAMICS SIMULATIONS

MD simulations were carried out using a parallel MD
code developed “in house” based on the libraries presented in
Ref. 35. Simulation systems comprised N identical particles
of mass m in two dimensions interacting through a pairwise
truncated and shifted LJ potential,

φLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

− C, (1)

for interparticle distances r smaller than a cutoff radius rc and
0 for r � rc. The value of C was chosen to ensure continuity of
the potential. All simulations were performed using periodic
boundary conditions with a fully flexible cell in the NpT

ensemble defined by the non-Hamiltonian equations of motion
described by Martyna, Tobias, and Klein.36 The equations of
motion were integrated using the five-value Gear predictor-
corrector algorithm.

All simulation parameters and monitored quantities are
expressed in reduced units: x = x∗σ ; t = t∗

√
mσ 2/ε; T =

T ∗ε/kB , where kB is the Boltzmann constant; E = E∗ε; and
p = p∗ε/σ 3 (in the case of argon, ε = 0.0104 eV and σ

= 3.4 Å, leading to the unit of temperature T being 120.6
K and the unit of pressure p being 42 MPa). The integration
time step was set to 0.0005

√
mσ 2/ε (34 fs for argon),26

ensuring extended-energy conservation to 0.005% per million
iterations. We also verified momentum conservation and mon-
itored pressure and temperature throughout the simulations.
Thermostat and barostat frequencies ωp and ωb

36 were set
to values between 80 and 100 and between 0.1 and 0.4,
respectively. The cutoff radius was set to 4 and a Verlet-
neighbors list was used with a radius of 5.9.

Initial conditions were set by initial positions corresponding
to a perfect triangular lattice or a perfect triangular lattice
plus a randomly oriented displacement of 0.05 LJ unit, as
well as initial velocities given by a Gaussian distribution
corresponding to each temperature (initial condition IC1).
Otherwise, initial conditions were assigned by equilibrium
values of positions and velocities obtained from a previous run

with similar values of T and p (initial condition IC2). Most
runs were carried out with N = 36 864, with up to 1.7 × 107

time iterations, and a smaller number of runs with N = 90 000.
To characterize the state of the system throughout simula-

tions we monitored the time evolution of the system’s enthalpy
and computed the pair and orientational correlation functions
g(r) and g6(r), respectively.26 The Lamé parameters were
also computed, as a function of temperature. The number of
dislocation pairs present in the crystal below the transition
was examined by counting the number of nearest neighbors
for each particle and through visualization with the aid of a
Voronoi construction.

III. RESULTS

A. Simulations at different temperatures show a melting
transition

Two sets of simulations were performed to study the melting
behavior of an LJ system. The first set of simulations, aimed at
reproducing the results presented in Ref. 26, were performed
at p = 20 with N = 36 864. Three simulations, performed
at temperatures T1 = 2.15, T2 = 2.16, and T3 = 2.17, were
carried out using a perfect crystalline lattice as the initial
condition. Despite the use of a different set of equations of
motion that are modularly invariant, we obtained results that
are consistent with those presented in Ref. 26. The enthalpy h

as a function of time remained stable during the simulation at
T1, increased rapidly in an apparent single step to achieve
a stable value during the simulation performed at T3, and
increased in two steps with a transient state in the simulation
performed at temperature T2 (data not shown). The pair
and orientational correlations functions, g(r) and g6(r), were
consistent with a solid phase for the simulation performed at
T1 and with a liquid phase at the end of simulations performed
at T2 and T3. The transient state observed at T2 exhibits
long-range orientational but not translational order, consistent
with an hexatic phase. Similar results were obtained with a
simulation performed at T2 = 2.16 that used a thermalized
(at T = 2.15) set of initial conditions. These results show the
possible existence of a metastable and transient hexatic phase
when simulations are performed at a high external pressure,
p = 20, as presented in Ref. 26.

To test the behavior of the system at a vanishing external
pressure, we performed a second set of simulations in which
a system with N = 36 864 particles starting from initial
conditions IC1 and IC2 was simulated at several different
temperatures and pressure p = 0 (more precisely, with van-
ishing normal and tangential stresses). As with the first set of
simulations, the enthalpy h of the system as a function of time
(Fig. 1) was stable at low temperatures (T � 0.407 25) but in-
creased in an apparent single-step transition to an equilibrium
value for high temperatures (T � 0.4095). The nature of the
phase was characterized using g(r) and g6(r) at the ending
configurations of each simulation, confirming a liquid phase
for T � 0.4095 and a solid phase for T � 0.407 25 (Fig. 2). As
opposed to the results obtained at p = 20, no intermediate and
transient state (possibly corresponding to an hexatic phase)
was observed. It is possible that an hexatic phase with an
algebraically decaying g6(r) and an exponentially decaying
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FIG. 1. Enthalpy as a function of time for several temperatures.
Top: Initial conditions are given by initial positions corresponding to
a perfect triangular lattice plus a randomly oriented displacement of
0.05 LJ unit, and initial velocities are given by a Gaussian distribution
corresponding to each temperature (initial condition IC1). From the
bottom-right to the top-left curves, the temperatures are T = 0.4050,
0.4095, 0.4130, 0.4160, 0.4200, and 0.4250. Bottom: Positions and
velocities are provided, at each temperature, by the equilibrium values
obtained in a previous run at T = 0.40725 (initial condition IC2).
From the bottom-right to the top-left curves the temperatures are
T = 0.40725, 0.41000, 0.41250, 0.41500, 0.42 000, 0.42 500, and
0.44 000. All simulations were carried out at vanishing external
pressure.

g(r) could be found within the interval of temperatures given
by T− = 0.40 725 < T < T+ = 0.4095. However, it was not
possible to reach equilibrium in between these two temperature
values within the available simulation time scales (data not
shown). Defining the relative change in enthalpy as �h ≡
2(h+ − h−)/(h+ + h−) [where h± ≡ h(T±)] and the relative
change in temperature as �T ≡ 2(T+ − T−)/(T+ + T−), we
find �h = 0.1433 and �T = 0.0044. Within this narrow
temperature interval, our data are consistent both with an
abrupt jump from a low to a high enthalpy value at some
intermediate temperature, as would be the case for a first-order
transition (i.e., with latent heat), and with a two-step change of
enthalpy as a function of temperature within the temperature
interval, as would be the case for a continuous transition,
without latent heat (Fig. 3).

[σ]

FIG. 2. Top: The pair correlation function at T = 0.40 725
indicates long-range translational order; at T = 0.41000, the absence
of it. Bottom: Orientational correlation function at T = 0.407 25
indicates long-range order; at T = 0.41000, the lack of it.

B. Relaxation times slightly above melting increase as the
melting temperature is approached

Near a critical point, relaxation times increase as criti-
cality is approached. This is due to the increasing size of
fluctuations,37 which reach macroscopic dimensions at the
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FIG. 3. Final enthalpy as a function of temperature. It shows a sig-
nificant increase at Tc = 0.40 815 ± 0.00 090. The low-temperature
phase is a solid, as evidenced by the behavior of pair and orienta-
tional correlation functions. The high-temperature phase is a liquid
(Figure 2).
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FIG. 4. Relaxation time as a function of temperature as the
transition temperature Tc is approached from above. There are four
sets of points, corresponding to the two different initial conditions
(IC1 and IC2) indicated in Fig. 1, and two possible values of Tc,
determined by the finite interval in which Tc is found. The time
increases without limit as Tc is approached, consistent with criticality.
Error bars are given by tmin − tmax.

critical point. To determine the nature of the phase transition
observed at p = 0, we monitored the relaxation time (tR) as
a function of temperature in the simulations mentioned at
T > Tc (Fig. 4).

The relaxation time tR is defined, grossly, as the instant
where the second derivative of enthalpy vs time vanishes
and, more precisely, as follows: the enthalpy-vs-time curve
is interpolated by a smooth function whose second derivative
is computed numerically, and the times tmax, where curvature is
a maximum, and tmin, where it is a minimum, are determined.
The relaxation time is then defined through tR = tmax + (tmin −
tmax)/2.

Within the accuracy of the simulation, this time grows
without limit as the melting temperature is approached, consis-
tent with an approach to criticality and a second-order phase
transition. The range of values that was explored, however,
was not large enough to detect a possible power-law behavior.
These results did not depend on the initial conditions used
(IC1 or IC2) or on the critical temperature used [Tc = 0.40 725
or Tc = 0.4095, as there is no exact melting temperature but
rather an interval (T−,T+)].

C. Behavior of elastic constants is consistent
with KTHNY theory

Another way to determine the nature of the phase tran-
sition at p = 0 and whether it is consistent with theoretical
predictions consists of monitoring the behavior of the elastic
constants of the system. The elastic response of an isotropic,
homogeneous, continuum solid is characterized by two Lamé
coefficients, λ and μ. They appear in the compliance tensor as

Sijkl = 1

4μ

(
δikδjl + δilδjk − λ

λ + μ
δij δkl

)
, (2)

where

εij = Sijklσkl,

εij is the strain, and σkl the stress. There are several possible
ways to extract λ and μ from this tensor. In the continuum
theory they are, of course, equivalent. But in a numerical
calculation involving a finite number of atoms, this will no
longer necessarily be the case. They should coincide, however,
within the numerical accuracy and error bars (see below).
The following relations hold for the combination of Lamé
coefficients:

K ≡ 4μ(λ + μ)

2μ + λ
(3)

= 1

S0000
≡ K1 (4)

= 1

S1111
≡ K2 (5)

= 1

S0011 + 2S0101
≡ K3. (6)

It is a significant prediction of the KTHNY theory that K

approaches a universal value as the critical temperature Tc is
approached from below:

lim
T →T −

c

K = 16π
kBTc

b2
≡ Kc, (7)

where b is the Burgers vector of the dislocations (given by the
lattice constant at zero temperature). K vanishes above Tc.

We have computed the strain of our system following Ray
and Rahman,39,40

ε = 1
2

[(
h−1

R

)t
hthh−1

R − I
]
, (8)

where h is a 2 × 2 matrix whose column vectors define the
simulation box, hR is a reference box (here taken as the time
average of the simulation box), and I is the identity matrix.
The compliance tensor is given in terms of strain fluctuations
through

Sijkl = βVR(〈εij εkl〉 − 〈εij 〉〈εkl〉), (9)

where VR is the volume of the reference box.
The compliances were calculated from simulations of 2.5 ×

106 time steps, after 5 × 105 equilibration steps. The error
bars were estimated by performing blocking averages33,34 and
then propagating the error in Eq. (9). The simulation data
were divided into five data blocks. The value of the Burgers
vector was estimated as the lattice constant that minimizes

FIG. 5. Elastic constant K1/Kc (left), K2/Kc (middle), and
K3/Kc (right) as a function of temperature. Within numerical
accuracy they coincide, as they should. Near the transition their value
is consistent with 1, as predicted by the KTHNY theory.
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FIG. 6. Pk , the fractional number of sites with k neighbors, as
a function of temperature for k = 4,5,6,7,8. There is a significant
decrease in P6 across the solid-liquid transition, with a corresponding
increase in P5 and P7, consistent with a transition driven by the
unbinding of dislocation pairs.

the energy of a triangular crystal, b0 = 1.11145σ . Figure 5
shows the ratios K1/Kc, K2/Kc, and K3/Kc as a function of
temperature as the transition is approached from below. The
computed values are consistent with the KTHNY theory.

D. Proliferation of dislocations is consistent
with KTHNY theory

Finally, and to fully characterize the transition observed at
p = 0, we monitored the number of dislocations as a function
of temperature, counting the number of neighbors for each
point using a Voronoi construction after equilibrium had been
reached. Figure 6 shows Pk , the fractional number of sites
with k neighbors, as a function of temperature. Of course, for
a perfect triangular lattice, P6 = 1 and Pk = 0 for n �= 6. A
dislocation is characterized by two neighboring sites, one with
five and the other with seven neighbors. The KTNHY theory
predicts that the loss of long-range translational order is due
to the proliferation, and subsequent unbinding, of thermally
generated dislocation pairs. Such pairs will be characterized
then by clusters of four sites, two of them with five and two
of them with seven neighbors. Figure 6 shows that across the
solid-to-liquid transition there is a significant decrease in P6,
and a corresponding increase in P5 and P7, consistent with the
KTHNY theory.

Figure 7 also provides a visual illustration of the number of
dislocations, monitored with the number of sites having five or
seven nearest neighbors, within the simulation box for different
temperatures. Their proliferation is apparent, consistent with
the KTNHY theory.

IV. DISCUSSION: THE ROLE OF EXTERNAL PRESSURE

An hexatic phase has been observed in simulations pre-
sented by Chen et al.26 and also reproduced here. However,
this phase is transient, not in equilibrium, and occurs when the
LJ is subjected to the significant external pressure of 20. The
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FIG. 7. (Color online) Dislocation dipole population as a function
of temperature, monitored with the sites having five (red) and seven
(blue) neighbors. Top left, T = 0.400; top right, T = 0.405; bottom
left, T = 0.40 725; all three temperature values below Tc. Bottom
right: T = 0.4095, just above Tc. The number of dislocation dipoles
steadily increases as the transition is approached. Sites with eight
neighbors (green) are also indicated.

use of a constant-pressure ensemble MD ensures the existence
of a homogeneous phase. However, we have been unable to
observe the hexatic phase at a constant vanishing external
pressure. Is there a reason, within the KTHNY theory, not to
observe an hexatic phase at zero external pressure with a finite
number of particles?

The hexatic phase arises2 after (i.e., at a higher temperature)
a triangular lattice undergoes a dislocation unbinding transition
but before (i.e., at a lower temperature) a disclination unbind-
ing transition occurs. The latter is possible because the plasma
of free dislocations screens the disclination-disclination inter-
action, allowing a transition much like the one originally con-
sidered by Kosterlitz and Thouless.1 As mentioned in Sec. I,
it is critical, in a numerical simulation, to have several length
scales available, since the KTHNY mechanism involves the
interaction among defects of different sizes, at many scales.
This is in addition to the fact that the theoretical analysis is
carried out in the thermodynamic limit. We now argue that
at least 106 particles are needed in simulations, to have three
decades in length scales.

The physics of dislocation unbinding changes considerably
when an external pressure p is included. Indeed, the energy
U of a dislocation dipole with Burgers vector 	b, whose
components are separated by 	R in this case, is38

U (R) = b2K

4π

[
log

(
R

τ

)
+ C − 1

2
cos 2θ

]
+ PbR sin θ,

(10)
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where τ is the dislocation core size; C, roughly, determines
the core energy (i.e., the minimum energy needed to generate
a dipole); R = | 	R|; b = |	b|; and θ is the angle between 	R and
	b. Clearly, when sin θ < 0 the last term on the right-hand side
turns the dislocation-dipole unbinding process into a thermally
activated one, with an activation energy UA (taking θ = −π/2,
the most favorable case, for illustration purposes):

UA ≡ b2K

4π

[
log

(
1

4π

K

P

b

τ

)
+ C − 1

2

]
.

Consequently, and given the logarithmic dependence on the
ratio of external pressure to elastic constant, even a modest
value of external pressure P , compared to K , will give values
for the activation energy in the same ballpark as the chemical
potential for the dislocation dipole, and a proliferation of
isolated dislocations will ensue. Thus, it will not be surprising
in those circumstances to observe an hexatic phase. However,
Eq. (10) shows that, at any given nonvanishing pressure, there
will be a finite rate of dislocation generation, driving the system
away from equilibrium. A quantitative study of this interesting
phenomenon is outside the scope of the present paper.

In the absence of external pressure, disclination pairs above
the dislocation unbinding transition interact via an energy that
depends on the logarithm of their mutual distance, with a
coupling (called KA by Nelson and Halperin)2 that is finite due
to the screening effect of the free dislocations. A second transi-
tion toward the liquid state thus occurs because of two distinct
screenings: free dislocations screen the interaction between
disclination pairs to an effective logarithmic interaction, and
then this interaction is renormalized because of the interaction
between disclination pairs at different length scales. So,
three length scales should be needed for this scale-dependent
interaction among disclination pairs to become operative. In
addition, a further length scale would seem to be necessary
to have enough free dislocations in between a disclination
pair for their interaction to be effectively screened. According
to this reasoning, at least ∼106 particles would be needed

to observe an hexatic phase as an equilibrium phase at zero
external pressure in a numerical simulation.

V. CONCLUSIONS

The KTNHY theory of melting in two dimensions1–3

involves the interaction among dislocation dipoles whose sizes
span different length scales. Thus, a numerical simulation
that aims at verifying the theory should involve enough
different length scales for this interaction to be possible.
In two dimensions, 104 particles thus appears to be the
absolute minimum. Increasing this number should improve
the statistics. By the same token, 106 particles should be
a minimum number to capture this type of effect in three
dimensions. Our simulation has been carried at constant
(vanishing) external pressure to prevent phase coexistence. We
find a solid-to-liquid transition, and the behavior of the solid
phase as the transition temperature is approached is consistent
with the predictions of KTNHY. The behavior of enthalpy
as a function of temperature is less conclusive: it changes
significantly across a narrow temperature range �T , from
a solid low-temperature phase to a liquid high-temperature
phase. The behavior within �T could not be resolved because
of the limited time scale that can be reached with simulations.
There could be an abrupt discontinuity, as in a first-order
transition, or there could be a smooth change, including
a temperature range with an hexatic phase. Above Tc, the
relaxation time increases as Tc is approached, consistent with
criticality.
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