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Continuum model of irradiation-induced spinodal decomposition in the presence of dislocations
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A model of phase-separation kinetics in systems exposed to energetic particle irradiation has been extended
to include the effects of mobile dislocations. It is shown that when dislocations are allowed to participate in
the decomposition reaction, phase separation can occur at temperatures above the coherent spinodal, which is
in agreement with several experiments on irradiated alloys. A linear stability analysis of the governing kinetic
equations is performed and three regimes of microstructural evolution are identified within the parameter space
of damage cascade size vs incident flux: complete phase separation, solid-solution behavior, and compositional
patterning. In addition, numerical simulations of the evolving dislocation density and composition fields are
performed. The numerical results provide the amplitude and wavelength of the stable patterns that can form
under irradiation and elucidate the role of misfit dislocations in reducing the coherency strain due to atomic size
mismatch.
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I. INTRODUCTION

In alloys exposed to a flux of energetic ions, electrons,
or neutrons, the phase equilibrium and phase transformation
behavior can be quite different from that observed in the
absence of irradiation.1 As shown experimentally for the case
of Ge precipitates in Al-Ge alloys,2 the generation of excess
vacancies and mobile interstitials from damage cascade events
can enhance the kinetics of nucleation.3 In other instances,
however, irradiation damage can lead to the dissolution of
particles and/or the stagnation of precipitate coarsening.4–8

Furthermore, irradiation can lead to the formation of incoher-
ent precipitates of phases that do not appear on the equilibrium
phase diagram9 and for the case of coherent precipitation,
Cauvin and Martin have shown both experimentally10 and
theoretically11 that irradiation effects can lead to nucleation
in undersaturated solid solutions. In addition to changes in
nucleation and growth behavior, irradiation, in the case of
order-disorder reactions, can change the qualitative nature
of the transition. Not only can phase stability be altered
under irradiation conditions,12 but second-order transitions can
become first order above a critical ballistic mixing flux.13,14

Spinodal decomposition, or the initial stages of phase
separation following a quench into the unstable region of the
temperature-composition equilibrium diagram, also has been
studied extensively for alloys under irradiation. A small-angle
neutron-scattering experiment on Ni-Cu by Wagner et al.15 has
shown that the increased solute mobility arising from electron
irradiation leads to spinodal decomposition at temperatures
where diffusivities under thermal conditions are extremely low.
A similar mechanism has been suggested for phase separation
in the case of Fe-Ni alloys.16 Perhaps the most comprehensive
investigation of irradiation-induced spinodal decomposition
is the work of Nakai, Kinoshita, and co-workers17–19 who
have studied various compositions of Au-Ni, Cu-Ni, and
Fe-Mo alloys using transmission electron microscopy. A
particularly striking result of the Nakai et al. experiments is the
observation that under irradiation, phase separation can occur
at temperatures far above the coherent spinodal. The authors

attribute the seemingly contradictory result of unstable growth
within the stable region of the phase diagram to fluctuations in
the composition of excess point defects, which occur over the
same length scale as the solute composition field and which
act to relieve the coherency strain arising from atomic size
mismatch. However, Nakai et al. offer no quantitative model
for their proposed mechanism and in the present work we
suggest an alternative explanation. The excess point defects
generated during a cascade can provide sufficient mobility to
dislocations such that strain relieving misfit dislocations move
in concert with the concentration field during phase evolution.
A continuum model of a mobile dislocation density field has
been formulated by Haataja and co-workers20–22 and indeed
Leonard and Haataja23 have shown that phase separation can
take place above the coherent spinodal if dislocations are
allowed to participate in the process. Some qualitative experi-
mental evidence for a defect-assisted spinodal decomposition
mechanism has been provided by Asai et al.19 who observed
periodic arrays of interstitial loops in Au-Ni with a period
coincident with the spatial variation in solute concentration.

In a series of papers Enrique and Bellon24–28 have demon-
strated that for phase separating systems, microstructural
evolution under the influence of ballistic mixing effects from
energetic particles can exhibit a wide range of behavior
depending on the irradiation conditions. The spatial extent
of the cascade region, a function of the energy of incident
particles, introduces an additional length scale in the problem,
which can compete with the length scale established by the
wavelength of the fastest growing composition modulation
found from the linear theory of spinodal decomposition.
Similarly, the time scale arising from the flux of incident
particles can compete with the time scale of solute diffu-
sion. The complex interaction between the time and length
scales leads to three distinct regimes in parameter space: a
region where a solid solution is maintained, a region where
normal macroscopic phase separation is observed, and an
intermediate case where a uniform solid solution is unstable,
yet complete phase separation does not occur. The latter
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region is characterized by a steady-state composition pattern
where the dominant concentration wavelength and amplitude
are unchanged with time. It is of interest to note that the
aforementioned experiments of Nakai et al. have found a
time-independent concentration amplitude.

The purpose of the present work is to extend the Enrique-
Bellon model to include the effects of mobile dislocations.
In the next section we establish the equations governing
the time evolution of both the concentration field and the
dislocation density field for a system under irradiation. In
the subsequent section we perform a linear stability analysis
and investigate how the regime of macroscopic phase sepa-
ration, solid solution, and patterning are influenced by such
materials parameters as dislocation mobility, temperature,
solute-dislocation coupling, and dislocation core energy. Also
in the results section, we will present numerical solutions to
the kinetic equations and compare microstructures for systems
within and outside the patterning region. The final section
summarizes the conclusions of this work.

II. THEORETICAL BACKGROUND

The starting point for the description of dislocation-assisted
spinodal decomposition under irradiation conditions is a model
for the free energy of the binary alloy. The free energy can be
written as a sum of four separate terms:

F = Fchem + Fb + Fcoup + Fball. (1)

For the chemical contribution, the first term on the right-
hand side of Eq. (1), we will adopt the Cahn-Hilliard29

formulation given by

Fchem =
∫

dx
[

− a

2

(
1 − η̃2E

a

)
c2 + h

4
c4 + ε2

2
|∇c|2

]
,

(2)

where c is the concentration minus the overall average
composition of the alloy and ε2 is the gradient energy
coefficient. The parameters a and h are constants describing
the double-well free energy of a homogeneous system; a is
negative for temperatures above the chemical spinodal and
a > 0 for temperatures within the region of instability with
respect to composition. In Eq. (2) the coherency strains due
to atomic size mismatch are captured by the term containing
Young’s modulus E and the parameter η̃, which is the relative
change in the lattice parameter with respect to the composition
and is defined by l = l0(1 + η̃c) with l0 being the lattice
parameter for an alloy of average concentration30 (see also
Ref. 31). The elastic energy contribution employed here differs
from that originally derived by Cahn because we are assuming
a two-dimensional rather than a three-dimensional system (see
Appendix A). The elastic strain energy determines the coherent
spinodal as the point at which a − η̃2E = 0 and illustrates the
fact that larger values of a, i.e., deeper quenches, are required
to overcome the stabilizing effect of coherency strains.

Dislocation-dislocation interactions are incorporated in the
model through the Fb term. Following Haataja et al. we can
write

Fb =
∫

dx
[
α

2
|b̃|2 + 1

2E
(∇2X̃d )2

]
, (3)

where α describes the core energy of the dislocations. Let b̃x

and b̃y represent the x and y components of the continuous
dislocation density field and confine the discussion to a
two-dimensional system. Then the elastic strain energy of the
system is governed by the Airy’s stress function X̃d , which
must satisfy

∇4X̃d = E(∇x b̃y − ∇y b̃x). (4)

The third term on the right-hand side of Eq. (1) describes
the coupling between the solute concentration and the strain
field of the dislocations. As shown in Appendix A, the Fcoup

contribution can be written as

Fcoup = η̃

∫
dx c∇2X̃d, (5)

where η̃ has been defined above. The dislocation model
described above has also been used (albeit without the
composition effect) in a study of two-dimensional melting
by Nelson and co-workers32,33 and more recently by Bako
and Hoffelner34 (see also Ref. 35) in a theoretical study of
dislocation patterning during plastic deformation. In addition,
Enomoto and Iwata36 have employed a similar approach to
model phase separation in misfitting binary thin films.

Finally, for the free energy increase due to ballistic mixing
of atoms arising from irradiation cascade events we will use
the model developed by Enrique and Bellon:

Fball = �

2M

∫
dx c(x)

∫
dx′ g(x − x′)c(x′). (6)

Here � is the flux of energetic particles and M denotes
the solute mobility. Furthermore, the function g is a kernel
satisfying

∇2g(x − x′) = −[δ(x − x′) − wR(x − x′)]. (7)

The term wR is a weighting function that describes
the spatial extent of ballistic exchanges under irradiation
conditions and is normalized such that the integral of wR

over all space is unity. Enrique and Bellon chose a Yukawa
potential for the weight function. The Yukawa form is both a
fairly accurate description of irradiation effects in crystals and
allows for an analytic linearized formulation, in Fourier space,
of the ballistic mixing contribution. Therefore, in the present
work we will adopt the two-dimensional analog of the Yukawa
potential, which can be written as

wR(x) = 1

2πR2
K0(x/R), (8)

where K0 is the modified Bessel function of order zero.
The radius R appearing in the weighting function represents
the spatial extent of the cascade event and is a function
of the energy of the incident particle. As alluded to in the
Introduction, R and � are length and time scales due to
irradiation effects that compete with the wavelength of the
fastest growing concentration fluctuation according to the
linear theory of spinodal decomposition and the solute mobility
M . Enomoto and Sawa37 have investigated a Gaussian weight
function rather than a Yukawa potential and found qualitatively
similar behavior to the Enrique-Bellon results.
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The kinetics of the conserved c, b̃x , and b̃y fields can be
established from the free-energy formulations of Eqs. (1) and
(2)–(6):

∂c

∂t
= M∇2 δF

δc
, (9)

∂b̃x

∂t
= (

Mg∇2
x + Mc∇2

y

) δF

δb̃x

, (10)

∂b̃y

∂t
= (

Mc∇2
x + Mg∇2

y

) δF

δb̃y

. (11)

In the above formulation we have neglected contributions due
to thermal noise.

Before proceeding, it is convenient to cast all variables into
dimensionless form. The scaled variables are found from:

r =
(

ε2

a

)−1/2

x, u =
(a

h

)−1/2
c, Xd =

(
Eε4

h

)−1/2

X̃d,

b =
(

a3

Eε2h

)−1/2

b̃, mc,g = Mc,gε
2E

Ma2
.

With the above definitions and an evaluation of the
variational derivatives in Eq. (11),38 the following equations
governing the composition and dislocation density fields are
established:

∂u

∂τ
= ∇2

[−(1 − η)u + u3 − ∇2u
] + η∇4Xd

−γ

∫
dr′ [δ(r − r′) − wR(r − r′)

]
u(r′), (12)

∂bx

∂τ
= (

mg∇2
x + mc∇2

y

)
×

[
∇yXd + η∇y

∫
dr G(r,r′)∇2

r′u + ebx

]
, (13)

and an analogous equation arises for by , but with ∇y replaced
by −∇x . In the above formulation three more scaled parameters
have been introduced and they are given by e = a

ε2E
α, η =

(E
a

)1/2η̃, and γ = �ε2

Ma2 . Furthermore, the coherent spinodal is
now located through the variable η and the appropriate time
scale for the problem becomes τ = Ma2

ε2 t . Finally, the Green’s
function appearing in Eq. (13) must satisfy

∇4G(r,r′) = δ(r − r′). (14)

III. RESULTS

A. Linear stability analysis

A great deal of insight into the interaction between
dislocations, irradiation, and spinodal decomposition can be
gained by performing a linear stability analysis of Eqs. (12)
and (13). Before doing so, however, it is worthwhile discussing
some important simplifications. First, we have neglected any
defect production term in the equation of motion describing
the Burgers vector field. At the early stages of phase separation
when the density of cascade-generated vacancy loops is much
less than the total dislocation density, this is a reasonable
assumption. At later times, however, the assumption may break
down. In a future contribution we will investigate in more

detail the role of defect production. Second, in what follows we
will assume mg = mc = m⊥. Under normal circumstances one
would expect the glide mobility to be much greater than that of
climb, but under irradiation conditions, due to irradiation hard-
ening and the fact that excess point defects aid in dislocation
climb, the relative magnitudes of the two mobility components
are unknown. Thus, equal mobilities is not an unreasonable
assumption and, as shown below, tractable analytic results
can be obtained. Finally, the model assumes that the excess
point defect concentrations provide a mechanism for increased
dislocation mobility, but annihilation and recombination of
vacancies and interstitials is not explicitly included. Therefore
effects such as radiation-induced segregation via the inverse
Kirkendall effect are not described by the current model.

To proceed with a linear stability analysis, we multiply
Eq. (13) by the quantity ∇y and multiply the corresponding
equation describing the kinetics of the by field by the term −∇x .
Addition of the two equations results in a differential equation
involving only the function ψ , which is a shorthand notation
for ψ = ∇4Xd . Furthermore, a linearization of the governing
equations yields the following Fourier space representation:[

∂U
∂τ
∂�
∂τ

]
=

[
ω η

m⊥ η k2 −m⊥(1 + ek2)

] [
U

�

]
, (15)

where k is the magnitude of the wave vector and U and �

are the Fourier space counterparts of the composition and ψ

fields. In Eq. (15) the quantity ω is defined by

ω = k2(1 − η2) − k4 − γρ2k2

1 + k2ρ2
, (16)

where ρ is the dimensionless cascade radius.
At this point it is interesting to consider the special

case in which mobile dislocations instantaneously adjust to
the evolving composition field. Mathematically, this can be
achieved by taking the limit m⊥ → ∞ in Eq. (15), with the
result that the perturbation growth rate λ for the composition
field is given by

λ = k2(1 − η2) + η2k2

1 + ek2
− k4 − γρ2k2

1 + k2ρ2
. (17)

The second term in Eq. (17) accounts for the presence of
dislocations with finite core energy e. It can be seen that
in the limit of vanishing e, λ = k2 − k4 − γρ2k2

1+k2ρ2 , which
describes the behavior of the alloy within the chemical spinodal
under irradiation. That is, infinitely mobile dislocations may
relax all coherency misfit strains, in agreement with the
analysis in Appendix B. At finite core energy and long
wavelengths corresponding to ek2 � 1, on the other hand,
λ ≈ k2 − η2ek4 − k4 − γρ2k2

1+k2ρ2 to leading order. In this limit,
the contribution from the finite core energy can be incorporated
into a renormalized surface tension �eff = �(1 + η2e)1/2

which drives the coarsening of the alloy. This simple analysis
suggests that phase separation in irradiated alloys is indeed
possible at temperatures very close to the chemical spinodal.

Turning to the more general case of finite m⊥, instability
in the system occurs when an eigenvalue of the matrix on the
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right-hand side of Eq. (15) is positive. The eigenvalues, λ, are
given by

2λ = (ω − m⊥[1 + ek2])

±
√

(ω − m⊥[1 + ek2])2 + 4m⊥(1 + ω + [e + η2]k2).

(18)

An important result from the linear stability analysis is
the fact that for m⊥ 	= 0 and in the absence of irradiation the
system is always unstable for all points below the chemical
spinodal (a > 0) and it is only in the limit of zero dislocation
mobility that the Cahn coherent spinodal line is reproduced.
However, as shown in the Fig. 1 plot of largest eigenvalue
vs wave number k, the growth rate of the fastest growing
composition mode varies with m⊥. The solid lines refer to
the materials parameters η = 1, e = 0, ρ = 2, γ = 1, and the
labels on each curve denote the dislocation mobility. The λ vs
k curves increase with increasing mobility and as m⊥ tends to
infinity the eigenvalue function approaches the case η = 0 as
discussed above. There is, however, an effect due to dislocation
core energy as depicted by the dotted line in Fig. 1, which
corresponds to the case where the parameter e is increased to
0.2 (m⊥ = 1). Clearly the effect of increasing core energy is
a decrease in the initial amplification rate and a shift of the
dominant wavelength to coarser structures.

The dispersion curves of Fig. 1 are qualitatively similar
to Cahn’s original treatment of spinodal decomposition in
that even in the limit of k approaching zero the system is
unstable. Under irradiation conditions, however, the phase
separation behavior can be quite different. Figure 2 shows
(solid lines) the λ vs k relation for the set of parameters η = 1,
m⊥ = 1, and e = 0, but now the energy of incident irradiation
is increased such that ρ = 2. Three curves are depicted where,
from top to bottom, the flux of energetic particles is increased
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FIG. 1. Solid lines show the dispersion relationship, λ vs k, for
an irradiated system with ρ = 2, γ = 1, e = 0, η = 1, and various
values of m⊥ labeled on each curve. The results demonstrate that
instability occurs for all points below the chemical spinodal and with
increasing dislocation mobility the dispersion relation approaches
that with no coherency strain η = 0. The dotted line depicts the case
when the dislocation core energy is increased to e = 0.2.

0 0.5 1 1.5
Wave number k

-0.4

-0.2

0

0.2

0.4

E
ig

en
va

lu
e

.5

1.0

1.5

η = 0.8

e =. 2

FIG. 2. The solid lines show the dispersion relationship for an
irradiated system with ρ = 2, e = 0, and m⊥ = 1. The top curve (γ =
0.5) illustrates the case where complete phase separation is expected
and the bottom curve with γ = 1.5 depicts irradiation conditions
where a homogeneous solid solution is maintained. The intermediate
case (γ = 1.5) shows a dispersion relation suggesting patterning. The
change in the dispersion relationship (γ = 1) with a change in η is
depicted by the dashed line and the dotted curve illustrates the change
arising from an increase in the dislocation core energy to e = 0.2.

and the value of γ is labeled for each line. At relatively
low flux (γ = 0.5) the system is unstable with respect to
infinitely long wavelengths and the system is expected to
exhibit complete phase separation. For high fluxes (the bottom
curve) the ballistic mixing effect is sufficiently vigorous that
the system is stable and a homogeneous solid solution is
maintained. The intermediate case (γ = 1) describes a system
that is unstable but the instability occurs over a band of
wave numbers. As explained by Enrique and Bellon, in these
cases the competition between the stabilizing effect of ballistic
mixing and the thermodynamic tendency to phase separate
results in a stable composition pattern characterized by a fixed
periodicity and amplitude. For the case of patterning, some
Fourier modes will increase in amplitude at an early time, but
complete coarsening will be supressed due to the change in
sign of the eigenvalue in the low k regime. It is interesting to
note that the qualitative behavior with respect to patterning,
phase separation, and complete mixing is unchanged with a
change in m⊥. That is, the amplitude of the fastest growing
perturbation varies with the dislocation mobility, but the zeros
of the dispersion curves remain the same. However, a change
in η or e will alter the regimes where patterning is observed.
With γ = 1 and ρ = 2, the dashed curve in Fig. 2 illustrates
the change in the dispersion relation when η is decreased to
0.8 (notice the system changes from a patterning system to
complete stability) and the dotted line shows the behavior as
the core energy is increased to 0.2.

The results of Fig. 2 and subsequent discussion suggest
a qualitative means of identifying when an irradiated system
will exhibit patterning, complete phase separation, or solid-
solution tendencies. As pointed out by Enrique and Bellon, in
a space of ρ vs γ the locus of points where the first derivative
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A

FIG. 3. The Enrique-Bellon plot showing regions in ρ-γ space
where complete phase separation, solid solution, and patterning are
predicted. Results for η = 1 and η = 0.5 are shown. Other parameters
are m⊥ = 1 and e = 0. The dashed line shows the change in the
patterning–solid-solution boundary when e is increased to 0.2 (η =
1). The point labeled A denotes the conditions used in the numerical
simulation.

of λ with respect to k in the k → 0 limit equals zero will
define the region of complete phase separation. Furthermore,
the conditions when a single root of the λ vs k functions
is observed at k 	= 0 delineates the onset of compositional
patterning. Two examples of the Enrique-Bellon plot are
depicted in Fig. 3.39 For systems exhibiting a lower atomic size
mismatch (η = 0.5) the onset of patterning behavior shifts to
lower values of the incident flux and slightly higher values of
the cascade radius ρ. The dashed line in Fig. 3 depicts the shift
in the solid-solution–patterning boundary when the dislocation
core energy e is increased from 0 to 0.2 (for η = 1). Clearly,
with increasing e there is a decrease in area of the patterning
regime resulting from a shift of the solid-solution–patterning
boundary to lower γ .

Many of the predictions from the linear stability analysis are
consistent with previous experimental studies of irradiation-
induced spinodal decomposition. For example, Nakai and
Kinoshita17 have observed, in agreement with theory, that
the wavelength of composition modulations in several alloy
systems decreases with increasing irradiation flux and in-
creasing temperature. There are, however, observations that
unfortunately, appear to be at odds with the model described
here. Consider the case of Au-Ni alloys. Nakai et al. have
observed concentration fluctuations at high temperatures quite
close to the chemical spinodal. In this temperature regime
the length scale for the composition field becomes very
large and hence the scaled cascade radius ρ becomes very
small. Moreover, the Nakai experiments employed 0.4–1 MeV
electrons, which produces damage cascades of roughly one
nearest-neighbor spacing. Since ρ is predicted to be small,
according to the stability diagram of Fig. 3, the system
cannot exhibit patterning. The discrepancy between theory and
experiment can perhaps be traced to the assumptions invoked.

Other than to provide for an increased dislocation mobility,
excess point defects do not appear explicitly in the model
and it is well known that irradiation-induced point defects
can lead to compositional patterns even for alloys that do
not phase separate. Thus, we tentatively conclude that the
results at high temperatures observed by Nakai et al. are not
spinodal decomposition in the traditional sense and are more
accurately described by the models proposed by Martin40,41

and Murphy.42

It is important to stress that the results of Fig. 3 are based on
a linear stability analysis and thus provide only a qualitative
picture of phase separation in irradiated systems. To provide a
more accurate assessment of the evolution of the composition
and dislocation density fields, a numerical solution to the
governing kinetic equations is required and the results of the
nonlinear modeling will be discussed in the next section.

B. Numerical simulations

The main goal of this section is to compare phase-separating
microstructures in the absence of irradiation and the patterns
which can appear under a flux of energetic particles. A
complete survey of the trends observed as a function of
materials parameters, such as mobility and coherency strain, is
beyond the scope of the present work and will be investigated
in future studies. The nonlinear equations of motion in
dimensionless form are given by

∂u

∂τ
= ∇2[−(1 − η)u + u3 − ∇2u] + ηψ

−γ

∫
dr′[δ(r − r′) − K0(|r − r′|/ρ)]u(r′) (19)

and

∂ψ

∂τ
= −m⊥(ψ + η∇2u − e∇2ψ). (20)

The system of equations was solved in real space using
a straightforward explicit time-stepping scheme (see, e.g.,
Ref. 43). A computational domain consisting of a 200 × 200
square grid was employed with a grid spacing of �x = 1
(results are not changed for smaller values of the grid spacing).
The system was evolved starting from Gaussian-distributed
small-amplitude random fluctuations about the u = 0 and
ψ = 0 uniform states. For stability a time step of 0.01 was
needed. The singular grid point in the convolution integral
in Eq. (19) was evaluated by integrating over an equivalent
area circle and using the relation

∫
rK0(r)dr = −rK1(r). The

upper cutoff to the convolution integral was set at 5ρ, which
yielded a value of the integral over the weight function within
2% of the analytic result, and the simulation results were
unchanged by using a larger cutoff.44

Before investigating the effects of irradiation it is instructive
to discuss the phase-separation behavior when there is no
flux of incident particles (γ = 0). The top panel of Fig. 4
depicts the u field over the computational domain after a
dimensionless time of τ = 1000 and a quench position given
by η = 1. The regions of high concentration are represented by
white (yellow), whereas the black areas correspond to values
of u = −1. In the γ = 0 run a dislocation mobility of m⊥ = 1
was chosen and a core energy of e = 0.1 was assumed. The
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FIG. 4. (Color online) Top: The concentration field u after a
dimensionless time of τ = 1000 for the case where no irradiation
effects are included. The black areas represent low values of
the concentration, whereas white (yellow) corresponds to u = +1.

Bottom: The function ψ after the same time, where for clarity ψ has
been multiplied by a factor of 2. ψ is nearly zero (red) everywhere
except at phase boundaries.

bottom panel in the figure shows the function ψ after the same
aging time, where for clarity of presentation, the value of ψ

has been multiplied by a factor of 2. The important observation
here is the fact that ψ is nearly equal to zero (red) everywhere
except at the boundaries of the emerging phases. As a phase
boundary is traversed, ψ varies from a high positive to a low
negative value. Since ψ is defined in terms of the gradients of
the dislocation density fields [Eq. (4)], the oscillation near the
interfaces indicates that in order to reduce the strain energy due
to atomic size mismatch, misfit dislocations have segregated
to the boundaries. The segregation effect can perhaps be seen
more clearly in Fig. 5, which shows the u and ψ functions
plotted along a horizontal slice through the center of the
computational box. The coupling between the dislocation
(dashed line) and concentration fields (solid line) during the
coarsening process is evident. A similar coordinated motion
of dislocations and phase boundaries has been observed at the
atomic scale in a recent study of the phase field crystal model
of a binary alloy.45

0 50 100 150 200
Position

-1

-0.5

0

0.5

1

u

γ = 0

ψ (x2)

FIG. 5. A slice through the center of the computational domain
showing the dislocation and concentration fields as a function of
position. The solid line corresponds to the top snapshot depicted in
Fig. 4, whereas the dashed line corresponds to the bottom panel.

The effect of irradiation on the phase-separation process
can be seen from the u field contour plot shown in Fig. 6.
Here the materials parameters are the same as those used
for the simulations of Fig. 4 but now the irradiation terms
ρ = 3.5 and γ = 0.12 have been employed. The irradiation
conditions correspond to the point labeled A in Fig. 3, which
lies in the patterning region predicted by linear theory (for
η = 1). The simulation time shown in Fig. 6 is τ = 1000,
which is the same as that depicted in the nonirradiation
case of Fig. 4, yet the characteristic domain size and the
amplitude of the concentration deviation are less than that
of the unirradiated phase-separation case. In fact, the u

and ψ fields for the irradiated conditions remain virtually
unchanged for much longer aging times, indicating the system
has reached a state of composition patterning. In addition, the
numerical simulations are consistent with the predictions of the

FIG. 6. (Color online) The u field for the case where ρ = 3.5 and
γ = 0.12 (the point A in Fig. 3) at a scaled time of τ = 1000. The
composition patterning observed is consistent with the prediction of
linear theory.
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FIG. 7. A cut through the computational domain showing the u

and � fields for the patterning case of Fig. 6.

linear stability analysis in the sense that both the amplitude
and wavelength of the composition pattern increases as the
irradiation conditions move to the left of point A in Fig. 3. The
patterned structure shown in Fig. 6 is qualitatively similar to
the results of Enomoto et al.37 Moreover, the pattern resembles
other systems, such as spinodal decomposition coupled with
chemical reactions46 and the Swift-Hohenberg model,47 that
exhibit qualitatively similar dispersion curves to the case
depicted by the middle function of Fig. 2.

The dislocation density field for the conditions leading
to patterning, i.e., point A in the Enrique-Bellon plot, is
qualitatively similar to the u field shown in Fig. 6. Therefore
the dislocation pattern is more clearly seen in Fig. 7, which
is a slice through the center of the commutational domain. As
in Fig. 5, the solid line represents the u function vs position
and the dashed line is ψ scaled by a factor of 2. The u profiles
illustrate the decreased amplitude of the concentration field
(note the change in scale from Fig. 5), which is indicative
of patterning. With respect to the ψ field, here, as in the
complete phase-separation case, there is a tendency for misfit
dislocations to segregate to the phase boundaries, but now
the segregation pattern is sufficiently fine that the dislocation
density does not decay completely to zero within the interior
of the domains. Perhaps a more accurate description of the
microstructure is one in which misfit dislocations are found
both at the interface and within each phase, with a difference in
sign of the Burgers vector between high and low concentration
regions.

IV. CONCLUSIONS

In previous studies of phase separation in alloys under
irradiation, two somewhat surprising results were observed.
(1) The alloys can exhibit a composition pattern whose
amplitude and wavelength are unchanged after long aging
times and (2) phase separation can occur at temperatures well
above the coherent spinodal. In this work we have shown
that by combining the Enrique-Bellon model of spinodal
decomposition under irradiation with the Haataja-Leonard

model of mobile dislocations both of these experimental
observations can be explained. The combined model consists
of coupled kinetic equations describing the evolution of the
composition field and the Airy’s stress function arising from
dislocation-dislocation interaction. A linear stability analysis
of the model allows for a qualitative picture of the regions
in ρ-γ space where complete phase separation, solid-solution
behavior, and patterning are expected. In short, the presence of
dislocations facilitates the phase-separation process above the
coherent spinodal, while sufficiently energetic irradiation gives
rise to compositional patterning. A full nonlinear treatment
reveals how misfit dislocations can alleviate the coherency
strains arising due to atomic size mismatch even in the
compositional patterning regime.
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APPENDIX A: TWO-DIMENSIONAL ANALYSIS OF
COHERENT MISFIT STRAINS

First, we will reproduce Cahn’s theory for coherent spin-
odal decomposition in two dimensions using mathematical
techniques that will be useful when extending the arguments
to dislocations. To this end, we write the stress-strain relation
as follows:

σij = E

1 + ν
(εij + η̃cδij ) + νE

(1 + ν)(1 − ν)
(εkk + 2η̃c)δij ,

(A1)

where again E denotes the (2D) Young’s modulus and ν is the
Poisson ratio. According to the equation above, stress-free
strains are ε

s−f
xx = ε

s−f
yy = −η̃c and ε

s−f
xy = 0, while εij =

ε
s−f

ij + εel
ij denotes the total strain (i.e., stress-free strain plus

elastic strain). Assuming that the displacement field u is
irrotational (∇ × u = 0), we can define a function W such
that u = ∇W , which implies that the total strains satisfy
εij = ∂2W/(∂xi∂xj ). Mechanical equilibrium equations then
imply that

∇2W = −η̃(1 + ν)c, (A2)

or from the definition of the strains

εij = −η̃(1 + ν)∇−2 ∂2c

∂xi ∂xj

, (A3)

where ∇−2 denotes the inverse Laplacian.48

Now, the elastic strain tensor can be written

←→ε el =
[
−η̃(1 + ν)∇−2 ∂2c

∂x2 + η̃c −η̃(1 + ν)∇−2 ∂2c
∂x∂y

−η̃(1 + ν)∇−2 ∂2c
∂x∂y

−η̃(1 + ν)∇−2 ∂2c
∂y2 + η̃c

]
,

(A4)
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while the corresponding elastic stress tensor becomes

←→σ =
[
E

( − η̃∇−2 ∂2c
∂x2 + η̃c

) −η̃(1 + ν)∇−2 ∂2c
∂x∂y

−η̃(1 + ν)∇−2 ∂2c
∂x∂y

E
( − η̃∇−2 ∂2c

∂y2 + η̃c
)
]

.

(A5)

The elastic energy corresponding to these deformations can be
written as

Fel = 1

2

∫
dr

[
σxxε

el
xx + σyyε

el
yy + 2σxyε

el
xy

]
, (A6)

or

Fel = (1 + ν)

2
η̃2E

∫
dr

[ (
∇−2 ∂2c

∂x2

)2

+
(

∇−2 ∂2c

∂y2

)2

+ 2

(
∇−2 ∂2c

∂x∂y

)2

− νc2

(1 + ν)

]
. (A7)

It is straightforward to demonstrate in a Fourier representation
that ∫

dr
[ (

∇−2 ∂2c

∂x2

)2

+
(

∇−2 ∂2c

∂y2

)2

+ 2

(
∇−2 ∂2c

∂x∂y

)2 ]
=

∫
dr c2. (A8)

Therefore, the elastic energy due to coherency strains in an
isotropic 2D system is given by the simple expression

Fel = 1

2
η̃2E

∫
dr c2, (A9)

which appears in the free expression given by Eq. (2).

APPENDIX B: COUPLING BETWEEN DISLOCATIONS
AND COHERENCY STRAINS

To incorporate misfit dislocations in the analysis above, we
first write the net elastic energy Fel = 1/2

∫
dr σij ε

el
ij in terms

of singular (i.e., those due to dislocations) and nonsingular
(those due to coherency stresses) pieces:

Fel = 1

2

∫
dr

(
σ s

ij + σns
ij

) (
ε

el;s
ij + ε

el;ns
ij

)
= Fns

el + F s
el + Fcoupl, (B1)

where Fns
el = 1

2

∫
dr σns

ij ε
el;ns
ij = 1

2 η̃2E
∫

dr c2 from Eq. (A9),

F s
el = 1

2E

∫
dr(∇2χ )2 and σ s

ij = εikεjl∇k∇lχ with ε denoting
the antisymmetric tensor (εxx = εyy = 0 and εxy = −εyx =
1), and the coupling Fcoupl = ∫

dr ε
el;ns
ij σ s

ij . Upon employing
the elastic coherency strains from Eq. (A4), we obtain

Fcoupl = η̃

∫
dr c∇2χ + η̃(1 + ν)

∫
dr

[
− ∂2χ

∂y2
∇−2 ∂2c

∂x2

−∂2χ

∂x2
∇−2 ∂2c

∂y2
+ 2

∂2χ

∂x ∂y
∇−2 ∂2c

∂x ∂y

]
. (B2)

It is straightforward to show by using a Fourier representation
that the last term in Eq. (B2) integrates to zero, and thus

Fcoupl = η̃

∫
dr c∇2χ. (B3)

Finally, we note that Fel is minimized when dislocations
completely relax the coherency strains.
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