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Metastable tilted states in anisotropic ferromagnets in external magnetic fields
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We show that, in suitable anisotropic ferromagnets, both stable and metastable “tilted” phases occur, in which
the magnetization �M makes an angle between zero and 180 degrees with the externally applied �H . Tuning
either the magnitude of the external field or the temperature can lead to continuous transitions between these
states. A unique feature is that one of these transitions is between two metastable states. Near the transitions the
longitudinal susceptibility becomes anomalous with an exponent which has an exact scaling relation with the
critical exponents.
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Anisotropic antiferromagnets1,2 have long been known to
have very rich phase diagrams, including phases exhibiting
Ising, XY , and both types of orders simultaneously. Less
attention seems to have been focused on the ferromagnetic
case. Here we analyze that case, and show that it too can
exhibit phases with simultaneous Ising and XY orders. In
this case, such “mixed” order implies extremely novel “tilted”
phases, in which the magnetization �M makes an angle between
zero and 180 degrees with the externally applied �H . These
phases can be both stable and metastable. This phenomenon
has previously been predicted for thin ferromagnetic films at
T = 0 by Clarke et al.;3 here, we show it occurs for bulk films
at finite temperature as well.

Our results are summarized in the figure, which illustrates
both the equilibrium and metastable phases of a suitable
hexagonal ferromagnetic crystal in the H -t⊥ plane, where H

is the external magnetic field, and t⊥ is a phenomenological
parameter that increases monotonically with temperature T .
“Suitable,” in this context, means the crystal field obeys certain
conditions that we will specify more precisely later. For now,
we simply point out that these conditions prove to be “generic”:
that is, they do not require “fine-tuning” of any material
parameters. This does not mean that all hexagonal crystals
will exhibit the phase diagram in Fig. 1; it simply means that
some of them should.

Metastable phases, of course, depend on the sample history.
In Fig. 1, we have assumed that the system starts in an ordered
state with both the external field �H and the magnetization �M
large, and in the −ẑ direction, where ẑ is the unit vector normal
to the hexagonal planes. Keeping temperature fixed, and the
external field �H along the ẑ axis, the component Hz of �H along
ẑ is then varied from large negative to large positive values.

In the region below the locus FDG and above the locus
EBKAJ there is no metastability, and the equilibrium state
is just the conventional one, with the magnetization �M ‖ �H
the external field. The region JAKDG is likewise quite
familiar: here, the equilibrium state remains �M ‖ �H , while
the metastable state is the conventional one with �M ‖ − �H .

All of the other regions of the phase diagram exhibit tilted
phases either in the equilibrium or the metastable state or
both. In the region BKD, the tilted phase is metastable; the

equilibrium state still has �M ‖ �H . In the regions CDF and
CBE, there is no metastability, the equilibrium states are tilted;
while in CBD, both the metastable and equilibrium states are
tilted, but the components of �M along the external field are of
opposite sign.

The loci DF and EB are equilibrium tilting transitions,
while the locus KD is a very strange one indeed: it represents
a purely metastable transition (i.e., a continuous transition
between two metastable states).

For the sample history we have specified above, the locus
BD is not a transition line if the system is trapped in
the metastable states. However, if the system is allowed to
equilibrate, it is also an equilibrium transition.

In all of the tilted states, the projection of the tilted
magnetization onto the hexagonal planes always lies along
one of six six-fold symmetry related directions.

For a part of the parameter space of our model, the tilting
is continuous, and belongs to the universality class of the
three-dimensional XY model;4 that is, for H → Hc(t⊥), where
Hc(t⊥) is the t⊥-dependent critical field H at which the tilting
transition occurs (i.e., the value of H on one of the tilting loci
DF , EB, and KD just discussed), the tilt angle θ is given by

θ ∼ |H − Hc|β, (1)

where the universal exponent β = 0.3485 ± 0.0002 (Ref. 5)
is the order parameter exponent for the three-dimensional XY

model.
The tilting transition can also be crossed by varying

temperature. In this case, H and Hc are replaced in Eq. (1)
with T and Tc, respectively, with Tc being the temperature on
the tilting loci. Note that, in contrast to the usual ferromagnet-
paramagnet critical point, temperature T and external field H

are equivalent here, in the sense just described.
Since the projection �M⊥ of the magnetization �M perpen-

dicular to the applied field is the order parameter for this
tilting transition, both the associated susceptibility (namely,
the uniform transverse susceptibility) χ⊥ and the correlation
length ξ for correlations of �M⊥ diverge near the tilting
transition, according to the laws

χ⊥ ∼ |H − Hc|−γ , ξ ∼ |H − Hc|−ν, (2)
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FIG. 1. Phase diagram for hexagonal ferromagnets below the
Curie temperature in the presence of an external field �H perpendicular
to the hexagonal planes (this direction will hereafter be called the “ẑ
axis”). Each phase is identified by two arrows. The right arrow denotes
the orientation of the magnetization in the true equilibrium state, and
the left one denotes the orientation in the state actually reached upon
increasing Hz from large negative values; when this differs from the
true equilibrium state, the state is metastable. The locus KD is a
“metacritical” line separating two metastable states, while the loci
BE and DF are “true” critical lines separating distinct equilibrium
states.

where the critical exponents γ = 1.3177 ± 0.0005 and
ν = .67155 ± 0.00027 are, respectively, the universal sus-
ceptibility and correlation length exponents of the three-
dimensional XY model.5

In addition, the generalized longitudinal susceptibility
is renormalized by the critical fluctuations and becomes
wavelength dependent. It displays a weak anomaly

χz(�q) ≈ constant −
{

C±q−α/ν, q � ξ−1,

C±|H − Hc|−α, q 	 ξ−1,
(3)

where α = −0.0146 ± 0.0008 is the universal specific heat ex-
ponent of the three-dimensional XY model. C± are nonuniver-
sal positive constants for H above and below Hc, respectively.
Their ratio C+

C−
is universal.

We have also investigated these phenomena for other crystal
lattice symmetries. For a cubic ferromagnetic crystal we find
that if the external field is along one of the cubic axes
[e.g., (100)], a continuous tilting transition is possible. The
universality class of the transition is again that of the three-
dimensional XY model, and the longitudinal susceptibility is
again given by Eq. (3).

If the external field is along one of the body diagonal di-
rections [e.g., (111)], the tilting transition is in the universality
class of the three-dimensional three-state Potts model, which
is believed6 to be first order.

In the case of an orthorhombic crystal, when the external
field is along one of the three nonequal primary axes, the
tilting transition can be continuous. Furthermore, it can happen
between metastable as well as equilibrium states. The univer-
sality class of this transition is that of the three-dimensional
Ising model. Near the critical point χz displays a divergence
of the form (3), but with C± < 0, ν = 0.630 ± 0.001, and
α = 0.109 ± 0.004 (Ref. 7), where ν and α are, respectively,

the universal correlation length and specific heat exponents of
the three-dimensional Ising model.

Our model for an anisotropic hexagonal ferromagnet in an
external field �H is

F = 1

2

∫
ddr

[
gzM

2
z + t⊥| �M⊥|2 + C| �∇ �M|2 + uzM

4
z

+u⊥| �M⊥|4 + u⊥z| �M⊥|2M2
z − 2HMz

]
, (4)

where ⊥ denotes the x-y plane, taken to be the plane of
the hexagonal symmetry, and the positive direction of the
field is along ẑ. This model was first studied as a model
for antiferromagnets in uniaxial crystals in the presence of
a staggered field along ẑ by Fisher et al.,1 where the focus
was on the critical region of the order-disorder transition.
It includes all terms to fourth order in �M allowed by the
hexagonal symmetry. There are sixth order in �M terms allowed
by the hexagonal symmetry that break the continuous rotation
invariance of this model in the ⊥ plane down to six-fold
rotational invariance. Such terms pick out six equivalent
preferred directions within the ⊥ plane for the tilting, but do not
affect either the topology of the phase diagram in the figure,
or the universality classes of any of the various transitions
therein.

In what follows we will consider only the case gz < 0.
Moreover, for simplicity we restrict ourselves to the region of
parameter space u⊥,z > 0, 0 < u⊥z < 2

√
u⊥uz.

We take the initial field to be so strong (i.e., a large negative
H ) that in the ground state the nonzero magnetization points
along −ẑ.

We will begin by treating this model in the Landau theory,
in which we find the state of the system by minimizing
this Landau free energy Eq. (4). Expanding it around the
ground state by writing �M = (−M0 + δMz)ẑ + �M⊥ where M0

satisfies M0gz + 2uzM
3
0 + H = 0, we obtain

F = 1

2

∫
ddr

[
A(δMz)

2 + B(δMz)| �M⊥|2 + C| �∇ �M⊥|2

+D| �M⊥|2 + u⊥| �M⊥|4], (5)

where we have defined A ≡ gz + 6M2
0 uz, B ≡ 2M0u⊥z, and

D ≡ t⊥ + u⊥zM
2
0 . Initially (i.e., when H is large and nega-

tive), we have A,D > 0.
Now let us consider the effect of gradually increasing

the value of H (i.e., decreasing its magnitude by making
it less negative) while fixing all other parameters (e.g., the
temperature). Increasing H decreases M0, hence decreasing
the coefficient D. We find that for t⊥ < 0, when H reaches

Hc =
[
−gz + 2uz

u⊥z

t⊥

]√
−t⊥
u⊥z

, (6)

D = 0. H = Hc defines the tilting locus AKDF in the figure.
The locus DE is the mirror image of DF about the t⊥ axis.
For H > Hc, D < 0, and the magnetization tilts away from
−ẑ such that its transverse component �M⊥ becomes nonzero.
For small tilting, the tilt angle θ ∝ | �M⊥|/M0. Therefore, �M⊥
is the order parameter of this transition, and θ is proportional
to its magnitude.

However, if the coefficient A changes sign before D

does, the untilted phase becomes unstable. This happens at
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H = Hu
i ≡ − gz

3

√
−2gz

3uz
. Thus for the tilting transition to occur

we must have Hc < Hu
i . In terms of the parameters in model

(4), this condition can be written as t⊥ < tmax ≡ u⊥z

6uz
gz. For

t⊥ > tmax, increasing H only leads to the complete flipping
of the magnetization from −ẑ to ẑ without any tilting. This
flipping occurs on the locus AJ in the figure. Assuming
t⊥ < tmax near the tilting transition we can eliminate the degree
of freedom δMz from the free energy Eq. (5). This gives

F = 1

2

∫
ddr

[
C| �∇ �M⊥|2 + D| �M⊥|2

+
(

u⊥ − B2

4A

)
| �M⊥|4

]
, (7)

where D ∼ Hc − H near the transition. For the tilting transi-
tion to be continuous, at H = Hc the coefficient of the quartic
term has to be positive, which leads to

t⊥ <
gzu⊥u⊥z

6u⊥uz − u2
⊥z

. (8)

This condition can be satisfied in the region on the left side of
the point K in the figure. Thus we conclude that a continuous
tilting transition is possible on the locus KDF . Since �M⊥ is a
two-component vector, and since the model Eq. (4) is invariant
under rotations of �M⊥ in its XY plane, the universality class
of the tilting transition is that of the three-dimensional XY

model. Recognizing this leads to the critical exponents for this
transition quoted in Eqs. (1), (2), and (3) at the beginning of
this Brief Report.

Further increasing H after the continuous tilting transition
eventually leads to an instability of the tilted phase. The
determinant of the Hessian matrix of the Landau free energy
Eq. (4) vanishes at this instability limit, which, after some
algebra, we find is at

H = 1

u⊥
√

4u⊥uz − u2
⊥z

(
t⊥u⊥z − 2gzu⊥

3

) 3
2

. (9)

This instability limit is illustrated by the locus KBC in the
figure.

Our main results are summarized by the phase diagram
in the H -t⊥ plane illustrated in the figure. This phase diagram
should be viewed as a collection of an infinite number of exper-
imental loci which are straight lines parallel to the H axis. Each
of these loci corresponds to experiments in which the temper-
ature is fixed and the external field is tuned. In experiments in
which the temperature T is varied and the external field H is
fixed, one will move along some locus in the extended, multi-
dimensional parameter space (H , t⊥, gz, etc.) of our model.
This path will be nonuniversal since every material will have a
different temperature dependence for all of these parameters. If
we assume that only t⊥ depends on temperature, these loci will
be horizontal lines in the figure, and can, for suitably external
field H , cross any of the nonhorizontal phase boundaries in
the figure, including the tilting transitions (both equilibrium
and metastable). Clearly, such a possibility remains generic,
though by no means ubiquitous, when the temperature de-
pendence of the other parameters in our model is taken into
account. The other features of this phase diagram, including

the loci of all the phase boundaries and special points, can be
obtained by straightforward minimization of the Landau free
energy. Details will be given in a future publication.

Since the lifetimes of the metastable states are finite,
the transitions between them will be observable only if the
experiment is conducted within their lifetimes.

In what follows we discuss the singular behavior of the
longitudinal component Mz of the magnetization and the
longitudinal susceptibility χz at the tilting transition. For
convenience, we consider the transition induced by fixing H

and varying T only. The corresponding results for the opposite
case (i.e., fixing T and varying H ) can be derived in essentially
the same way.

Fluctuations of δMz are greatly affected near the tilting
transition by the critical fluctuations of �M⊥. To see this, note
that the model Eq. (5) implies that the truly massive quantity
is the combination δMz + B| �M⊥|2/2A. Therefore,

〈δMz〉 = − B

2A
〈| �M⊥|2〉 = AL±|T − Tc|1−α + constant,

(10)

where the ± subscript distinguishes coefficients above and
below Tc, respectively. These coefficients are different and
nonuniversal; however, their ratio AL+

AL−
is universal, and

identical to the analogous ratio of the specific heat coefficients
above and below Tc.

In deriving the above equation we have used the well-known
result8,9 from the theory of critical phenomena

〈| �M⊥|2〉 = AT ±|T − Tc|1−α + constant, (11)

and defined AL± = −BAT ±/2A.
Now we can calculate the average value of Mz using 〈Mz〉 =

M0 + 〈δMz〉. This gives

〈Mz〉 = −M0(H,T ) + AL±|T − Tc|1−α + constant. (12)

Thus we see that Mz exhibits a singularity at the tilting
transition, despite the fact that Mz itself is not the order
parameter for this transition. Indeed, this singularity (12) of
Mz is very similar to, and arises from the same mechanism
as, the well-known8 singularity of the lattice constant in
a compressible ferromagnet at the ferromagnet-paramagnet
transition.9

Right at the critical point, where D = 0, the model
Eq. (5) becomes very similar to that for an isotropic ferro-
magnet ordered with �M ‖ ẑ. In such an isotropic ferromagnet,
the longitudinal susceptibility χz is divergently renormalized
by the transverse fluctuations.10 We expect a similar anomaly
here, with the crucial difference that, in the isotropic case,
rotational invariance requires that the coefficients in model
Eq. (5) satisfy A = B = 4u⊥, while in our problem, B and
u⊥ are independent since rotational invariance is broken even
when D = 0. Similar issues arise in the smectic-A-smectic-C
phase transition in anisotropic environments.11,12

We calculate this anomaly as follows: In real space χz(�r,�r ′)
gives the change in 〈Mz(�r)〉 in response to an external field
which is along ẑ and at �r ′. That is,

χz(�r,�r ′) = 〈[δMz(�r) − 〈δMz(�r)〉][δMz(�r ′)
−〈δMz(�r ′)〉]〉. (13)
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Noting that the combination δMz + B| �M⊥|2
2A

is massive, we write

δMz = −B| �M⊥|2
2A

; then, in Fourier space

χz(�q) = B2

4A2T
G(�q), (14)

where G(�q) is the Fourier transform of the correlation function
〈| �M⊥(�r)|2| �M⊥(�0)|2〉 − 〈| �M⊥|2〉2. Standard scaling arguments4

imply that near the transition

G(�q) ≈ constant +
{

C ′
±qκ, q � ξ−1,

C ′
±ξ−κ , q 	 ξ−1,

(15)

where κ = −α/ν, and C ′
± = AT ±. Plugging Eq, (15) into

Eq. (14) leads to the result (3).
The results described earlier for the tilting transition in

cubic and orthorhombic ferromagnets can be derived by
applying the type of analysis used above for hexagonal
ferromagnets to Landau theories that respect the (different)
symmetries for those cases. This will be discussed in a future
publication.

In summary, we have studied the field-induced phase
transitions between ordering states in anisotropic hexagonal
ferromagnets. Some of these transitions are signaled by a
tilting of the orientation of the magnetization; in some cases
these tilting transitions occur between metastable states. We
also found the universality classes of these transitions. Similar
scenarios can occur for a variety of crystal symmetries and
field orientations.

The ideas presented here have implications for ferro-
magnetic superconductors13,14 which exhibit a spontaneous-
magnetization-induced flux lattice. Since these materials are
anisotropic ferromagnets, they should also undergo a tilting
transition in an applied external field. The coupling between
the magnetization and the flux lines will change the tilt-
ing transition. We leave this interesting problem for future
work.
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