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Stability of quasicrystals composed of soft isotropic particles
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Quasicrystals whose building blocks are of mesoscopic rather than atomic scale have recently been discovered in
several soft-matter systems. Contrary to metallurgic quasicrystals whose source of stability remains a question of
great debate to this day, we argue that the stability of certain soft-matter quasicrystals can be directly explained by
examining a coarse-grained free energy for a system of soft isotropic particles. We show, both theoretically and nu-
merically, that the stability can be attributed to the existence of two natural length scales in the pair potential, com-
bined with effective three-body interactions arising from entropy. Our newly gained understanding of the stability
of soft quasicrystals allows us to point at their region of stability in the phase diagram, and thereby may help control
the self-assembly of quasicrystals and a variety of other desired structures in future experimental realizations.
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Quasicrystals are more common than one had originally
expected when their discovery was first announced.1 More
than a hundred different metallic alloys are known to form
stable quasicrystalline phases of icosahedral symmetry alone,2

with a few dozen additional stable phases exhibiting decagonal
(tenfold) and possibly other symmetries.3 Yet, to this date,
there is no general agreement regarding the origin of their
stability and the respective roles of energy and entropy in
determining the observed phases.4 These growing numbers of
stable solid-state quasicrystals, whose building blocks are on
the atomic scale, have been joined in recent years by a host
of soft-matter systems exhibiting quasiperiodic long-range
order with building blocks on a much larger scale of tens to
hundreds of nanometers—micelle-forming dendrimers,5,6 star
block copolymers,7 mesoporous silica,8 and binary systems
of nanoparticles.9 These newly discovered soft quasicrystals
hold the promise for applications based on self-assembled
nanomaterials,10 with unique electronic or photonic properties
that take advantage of their quasiperiodicity.11 At the same
time, they provide alternative experimental platforms for the
basic study of quasiperiodic long-range order, and offer the op-
portunity to study the thermodynamic stability of quasicrystals
from a fresh viewpoint. To this date, soft quasicrystals have
been observed only with dodecagonal point-group symmetry,
having quasiperiodic order in the 12-fold plane and periodic
order normal to the plane, whereas dodecagonal solid-state
quasicrystals are rare and mostly only metastable.3 Soft
quasicrystals may belong, therefore, to a distinct class of
quasicrystals, whose source of stability is likely to be different
from their solid-state counterparts. We propose here a simple
theoretical framework to address these new systems. We use it
to explain the stability of the observed structures and indicate
the (surprisingly simple) minimum conditions under which
quasicrystals could be stabilized. Knowledge of these condi-
tions gives us the ability to estimate the location of the region
in the phase diagram where quasicrystals should be stable, and
thus may help control the self-assembly of quasicrystals and
other desired structures in future experimental realizations.

Several microscopic models have been studied over the
years, mainly using computer simulations, but also using
sophisticated analytical methods such as thermodynamic
perturbation theory,12 to explore the structures arising from

pair potentials that possess more than one microscopic length
scale. These studies have yielded surprisingly rich phase
diagrams even within the limited scope of single-component
systems, interacting via isotropic pair potentials,13–17 in some
cases even finding stable quasicrystals.12,18–21 On the other
hand, phenomenological models based on coarse-grained free
energies have been widely applied to treat phase diagrams and
transitions22 and to explain the stability of different phases,
including quasicrystals.23 This is especially true in the case of
soft-matter systems24,25 due to their intermediate mesoscopic
building blocks, which are significantly larger than the atomic
scale, rendering a long-wavelength gradient expansion a valid
approximation.

A particular free energy of this sort, which is relevant
for what follows below, was developed by Lifshitz and
Petrich,26 (henceforth LP) who extended the Swift-Hohenberg
equation27 to study parametrically-excited surface waves
(Faraday waves),28 exhibiting dodecagonal quasiperiodic or-
der. The LP free energy has the form

FLP [ρ(r)] =
∫

dx dy

{
1

2
[(∇2 + 1)(∇2 + q2)ρ]2

−1

2
ερ2 − 1

3
αρ3 + 1

4
ρ4

}
, (1)

where ∇2 = ∂x
2 + ∂y

2 is the two-dimensional Laplacian. It is
quite generic, imposing only two requirements on a material
described by a two-dimensional density ρ(x,y): (a) the exis-
tence of two characteristic length scales, whose ratio is given
by the parameter q; and (b) effective three-body interactions,
weighted by the parameter α, that act to stabilize structures
containing triplets of density modes with wave vectors adding
up to zero. LP showed that if q is chosen around 2 cos(π/12) =√

2 + √
3 � 1.93 one can obtain a quasiperiodic ground state

with dodecagonal symmetry, yet no choice of q yields globally
stable ground states with octagonal or decagonal symmetry,
due to insufficiently many resonant triplets of modes. Inspired
by this simple result, we conjectured that the existence of two
characteristic length scales along with three-body interactions
may constitute the source of stability of soft quasicrystals,
all of which (to date) are dodecagonal.29 Here we confirm this
conjecture by coarse-graining a microscopic partition function
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for isotropic soft particles into an effective free energy. In the
limit of small deviations away from the uniform, or liquid,
phase, this coarse-grained free energy can be expanded in a
power series and mapped onto the simple LP form (1), allowing
us to gain important insight from the simpler LP model, and
consequently to explain the stability of the observed phases
using the full coarse-grained free energy.

Our starting point is the grand partition function for a system
of particles with pairwise interactions,

Z =
∞∑

N=0

eβμN

N !

∫ N∏
n=1

drne
−βH[{rn}], (2a)

H[{rn}] = 1

2

∑
m�=n

U (rm − rn), (2b)

where {rn}n=1,...,N are the two-dimensional positions of the
centers of N particles, U their pair potential, β = (kBT )−1 the
inverse temperature, and μ the chemical potential, which deter-
mines the mean particle density c̄. Using standard methods,30

one can rewrite the partition function in terms of collective
coordinates—namely, the particle density c(r) ≡ ∑N

n=1 δ(r −
rn), and its conjugate field—rather than discrete positions. At
the mean-field level, which amounts to a saddle-point approx-
imation for the integration over the conjugate field, the trans-
formed partition function becomes Z = ∫

Dce−βF[c], where

F [c(r)] = 1

2

∫
drdr′c(r)U (r − r′)c(r′)

+
∫

dr{kBT c(r)[ln c(r) − 1] − μc(r)}. (3)

The coarse-grained free energy functional given in Eq. (3)
contains the familiar mean-field terms of pair interaction and
ideal entropy. Although it could have been written from the
outset, we wish to highlight the ability to extend the current

theory to higher order, particularly in light of the cautionary
remarks of Schwartz and Vinograd.31 We shall assume that the
equilibrium density field is the one that minimizes F for the
given T and μ and the specific choice of U (r). Results of such
direct minimization will be presented shortly. However, since it
is not a priori obvious what pair potentials and thermodynamic
parameters may yield quasicrystalline order, it is beneficial
first to characterize F and relate it to FLP of Eq. (1).

Above a certain critical temperature, T > Tc, the equilib-
rium density for any μ should be uniform, c(r) ≡ c̄. Minimiz-
ing F with respect to such a uniform field yields the relation

μ = kBT ln c̄ + Ũ0c̄, (4)

where Ũ0 ≡ ∫
drU (r). For T < Tc the equilibrium density

is expected to become nonuniform at a certain value of μ

(or, alternatively, above a certain mean density c̄). Assuming
that T is only slightly smaller than Tc, we substitute
c(r) = c̄[1 + ρ(r)] in F and expand to fourth order in small
ρ. The result can be written as

F [ρ]

c̄kBTc
�

∫
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ρ4(r)

}
,

(5)

where tildes denote Fourier-transformed quantities. The
critical temperature, below which perturbations start to grow,
is given by

kBTc = −c̄Ũmin, (6)

where Ũmin is the minimum of the Fourier-transformed pair
potential, which must be negative for Tc to be positive.
The approximate coarse-grained free energy (5) resembles
FLP (1), with the gradient term replaced by a Fourier-space
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FIG. 1. Three of the isotropic pair potentials used in this study (top row), whose Fourier transforms (bottom row) are designed so that the
ratio q of the positions of their first two minima is approximately 1.93. The first potential in (a), motivated by the structure of dendritic micelles,
consists of a normalized repulsive core, with a short range (van der Waals) attraction at the core boundary, and an exponentially decaying soft
shoulder. This behavior is approximated by even simpler three-step and two-step potentials, shown in (c) and (e). Potential parameters: (a)
U (r) = 1 for 0 < r < 1; and −u1/(r − 1 + δ) + u2 exp[−(r − 1)/λ], with u1 = 0.020 57, u2 = 1.057, λ = 0.9756, and δ = 0.01, for r > 1.
(c) U (r) = 1 for 0 < r < 1; −0.0770 for 1 < r < 1.0485; 0.4690 for 1.0485 < r < 1.6570; and 0 for r > 1.6570. (e) U (r) = 1 for 0 < r < 1;
0.457 for 1 < r < 1.7442; and 0 for r > 1.7442.
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integral of the pair potential, and the expansion in powers of
the density arising from the entropy term of Eq. (3).

To try to predict the conditions under which dodecagonal
quasicrystals minimize F of Eq. (3), let us recall the findings
of LP, who showed that such crystals are stabilized in
their simpler model, FLP of Eq. (1), under the following
conditions: (i) q � 2 cos(π/12); (ii) 0 < ε/α2 � 0.088. LP
further showed that, for ε/α2 � 0.088, a hexagonal state is
obtained. In terms of our free energy expansion (5), condition
(i) translates into a requirement for the properties of Ũ (k).
The first two minima of this function should be located at
wave vectors k1 and k2, whose ratio q = k2/k1 is around
2 cos(π/12) � 1.93, and should have a similar depth. Con-
dition (ii) translates into a requirement for the thermodynamic
parameters, T and μ (or c̄), namely, 0 < 1 − T/Tc � 0.066,
i.e., T is restricted to a small range below Tc.

We test these estimates, obtained from the approximate
free energy expansion (5), against the numerical minimization
of F [c(r)] of Eq. (3). We find that a variety of isotropic pair
potentials, three examples of which are shown in Fig. 1, contain
a sufficient number of tunable parameters to satisfy condition
(i) above. The form of these potentials is motivated by the
qualitative features of the experimental system,5 consisting
of spherical micelles whose interaction should contain an
inner repulsive core, a region governed by van der Waals
attraction, and a longer-range soft repulsion. Using these
potentials in Eq. (3), we find the minimum free-energy state
by numerically integrating the corresponding relaxational

equation, ∂tc = −δF/δc, using a pseudospectral method—
with local terms evaluated in direct space and nonlocal terms
in Fourier space—starting with random initial conditions and
waiting until a steady state is obtained. We note that this
equation does not describe the actual dynamics and is used
merely as a minimization tool.

When q is selected according to condition (i)—as demon-
strated in Fig. 1—and T and μ are set such that T is just below
Tc [condition (ii)], we indeed find a minimum free-energy state
which is a dodecagonal quasicrystal, as shown in the left-hand
column of Fig. 2 for the particular case of the three-step
potential of Fig. 1(c). When T is decreased slightly further
a transition is observed to a hexagonal state [middle column of
Fig. 2], restricting the stability of dodecagonal quasicrystals to
a narrower range than that predicted by the approximate free
energy expansion (5).32 The same stabilizing mechanism of
two length scales and three-body interactions can be used to
obtain other structures;26 for example, setting q = √

3 yields
immediately below Tc a hexagonal crystal, shown in the right-
hand column of Fig. 2. We have observed that slight variations
in the potential parameters still yield the expected phases. A
systematic study of the stability boundaries in parameter space
is left for future work, perhaps using more realistic potentials,
derived from specific experimental realizations.

While the first two minima of the Fourier-transformed pair
potential Ũ (k) must be negative to give a positive Tc, the
value of Ũ (k = 0) need not be negative. This allows a purely
repulsive pair potential U (r) to stabilize a quasicrystal, as

FIG. 2. Real space densities c(r) (top row) and their Fourier transforms |c(k)|, with c(k = 0) removed (bottom row), obtained by a numerical
minimization of the free energy (3), with the three-step potential of Fig. 1. Other potentials yield similar results. Dodecagonal crystal (left
column): Three-step potential, with parameters specified in Fig. 1(c). Thermodynamic variables are μ = 2.2895 and T = 0.999Tc. Hexagonal
crystal (middle column): Same as in the left column, but with a lower temperature T = 0.980Tc. Hexagonal crystal (right column): Three-step
potential similar to Fig. 1(c), with parameters U (r) = 1 for 0 < r < 1; −0.115 for 1 < r < 1.053; 0.370 for 1.053 < r < 1.600; and 0 for
r > 1.600, designed so that q � √

3. Thermodynamic variables are μ = 1.9041 and T = 0.999Tc.
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we show here for the simple two-step potential of Fig. 1(e).
Despite the appealing simplicity of this potential—defined
after scaling by two parameters only—we emphasize that
potentials of this sort can satisfy the requirements on the
Fourier space minima only near a single choice of their two
parameters. As a consequence, attempting a naive numerical
search for a dodecagonal quasicrystal with this potential, by
setting the extent of the second step to R = 2 cos(π/12) �
1.93, would fail. We now understand that in order for nonlinear
mode interactions to stabilize a dodecagonal quasicrystal, one
must adjust this ratio not in the real-space pair potential, but
rather in its Fourier transform. This is obtained in this case by
setting R � 1.74 in real space. We have managed to stabilize
a dodecagonal quasicrystal with the simple two-step potential
by eliminating the need to search around in parameter space.
Our theoretical understanding of the source of stability allows
us to point at the stability regions in parameter space, even
when these regions are extremely narrow.

Thus, we confirm that the existence of two characteristic
length scales and sufficiently strong three-body or higher-
order nonlinear interactions can account for the stability of
dodecagonal quasicrystals of isotropic soft particles. More
specifically, we determine the two length scales through
requirements on the minima of the Fourier-transformed pair
potential and, although three-body terms may arise from

various interactions,33 we show that translational entropy
suffices to provide the required term. Thus, the delicate in-
terplay between interaction and entropy can give rise to stable
quasicrystals even for relatively simple isotropic potentials. By
designing these potentials along the guidelines provided here,
one should be able to control the self-assembly of quite com-
plex structures. Preliminary tests, using molecular dynamics
simulations, indicate that our design principles seem to work.34

This work can be extended in several directions. The
results of the approximate theory presented here should be
verified using direct computer simulations. Importantly, such
simulations can be used to clarify the actual stability regions
of the quasicrystalline phase. The dynamics of crystallization,
and of collective degrees of freedom in the ordered state, can
be studied by replacing the equation used here to minimize
the free energy by one that is adequate for a conserved density
field, possibly while taking thermal fluctuations into account.
Finally, a similar coarse-graining procedure could be applied
to two-component systems or anisotropic potentials.7,9
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