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Kondo and charge fluctuation resistivity due to Anderson impurities in graphene
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Motivated by experiments on ion-irradiated graphene, we compute the resistivity of graphene with dilute
impurities. In the local moment regime we employ the perturbation theory up to third order in the exchange
coupling to determine the behavior at high temperatures within the Kondo model. Resistivity due to charge
fluctuations is obtained within the mean-field approach on the Anderson impurity model. Due to the linear
spectrum of the graphene, the Kondo behavior is shown to depend on the gate voltage applied. The location of the
impurity on the graphene sheet is an important variable determining its effect on the Kondo scale and resistivity.
Our results show that for chemical potential near the node the charge fluctuations is responsible for the observed
temperature dependence of resistivity, while away from the node the spin fluctuations take over. Quantitative
agreement with experimental data is achieved if the energy of the impurity level varies linearly with the chemical
potential.
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I. INTRODUCTION

A logarithmic upturn in the resistivity at low temperature
has been observed in graphene with vacancies.1 A fit to the tem-
perature dependence of resistivity with conventional Kondo ef-
fect yields a large Kondo temperature (with Tk � 30 ∼ 90 K),
which shows a nonmonotonic behavior with respect to the gate
voltage.1 The vacancies in the graphene sheets are induced
by ion irradiation in ultrahigh vacuum and the magnetism in
sputtered graphite has been experimentally observed.2–6 Our
goal is to study whether the Kondo effect alone in graphene
can explain the experimental results in Ref. 1.

We start with the Anderson impurity model7,8 to study the
impurity effect on transport. In the local moment regime where
the impurity occupation for a given spin nd,s � 0.5 we use
the Schrieffer-Wolff transformation9 to write down the Kondo
model from the Anderson impurity Hamiltonian. Since we are
interested in the resistivity due to impurity spin fluctuations,
we study the Kondo model by a standard perturbation method.
The perturbative approach fails at T � Tk , with Tk representing
the Kondo temperature but works for Tk � T . We compute the
scattering rates in this weak-coupling regime. The scattering
rates are determined via perturbative calculations of the T

matrix.10–12 The Kondo effect in the pseudogap system has
been explored in the context of graphene as well as in that of
a d-wave superconductor13–20 via various different approaches
such as numerical renormalization group (NRG) or the mean-
field approach.7,8 The advantage of our approach is the ability
to determine high-temperature behavior of the scattering rate
and resistivity accurately within a perturbation theory.

We assume a dilute concentration of impurities and
ignore the spin-spin interactions, such as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction. In graphene these
interactions, in addition to being oscillatory with distance
between impurities, depend on the sublattice on which the
impurities are located.21,22 For a chemical potential at the Dirac
point our results are in agreement with the prediction of the
existence of an intermediate coupling fixed point.13–16 Near
the node the exchange coupling J needs to be larger than a
critical value Jc to have the Kondo effect. The dependence
of Tk on the chemical potential is qualitatively different

for μ � Tk and μ � Tk . For impurities breaking the lattice
symmetry, a power law in T divergence of the scattering rate
is obtained for μ � Tk , while a logarithmic divergence appears
for μ � Tk . For impurities preserving the lattice symmetry, a
power law in T 3 divergence of the scattering rate is obtained
for μ � Tk , while a similar logarithmic divergence appears for
μ � Tk . For both cases the scaling of resistivity with a single
Kondo temperature breaks down in the vicinity of the Dirac
point. Our results for the Kondo temperature obtained within
the T -matrix formalism is in agreement with the mean-field
results for the development of the Kondo phase.7,17 The
resistivity obtained displays for different chemical potential
dependences. For impurities breaking the lattice symmetry the
resistivity decreases as the chemical potential increases, while
for impurities preserving the lattice symmetry the resistivity
increases as the chemical potential increases. For the same set
of physical parameters the dominant source of resistivity is
from impurities, which breaks the lattice symmetry.

We also explore the region near the empty orbital to the
mixed valence one in the Anderson impurity model to find
the resistivity due to charge fluctuations. From the NRG14,15

the Kondo effect is suppressed as the critical exchange
coupling Jc → ∞ for a chemical potential close to the Dirac
point. Thus we use the unrestricted Hatree-Fock method23 on
the Anderson impurity model to find the resistivity near the
empty orbital regime. The resulting resistivity shows a similar
dependence on the chemical potential as well as dominance
from symmetry-breaking impurities as the resistivity obtained
in the Kondo model. Near the node the Kondo scale, extracted
from the logarithmic temperature dependence region on
resistivity, yields a Kondo temperature comparable to the
observations in the experiment in Ref. 1, while away from
the Dirac point the extracted Kondo scale is higher than the
experiment by one order of magnitude.

By combining the charge fluctuation effect for μ � 0 and
the Kondo effect (spin fluctuations) for finite μ, we obtain
a Kondo temperature dependence on μ that is qualitatively
consistent with experimental results1 with a gate voltage of less
than 30 V. Our conclusion is that the observed experimental
results, albeit fitted well by NRG for a conventional metal
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Kondo model,24 cannot be solely explained by Kondo screen-
ing in the entire range of chemical potentials. For a chemical
potential near the node the charge fluctuations is responsible
for the observed resistivity temperature dependence, while
away from the node the spin fluctuations take over.

This paper is organized as following: We start with the
Anderson impurity Hamiltonian to describe the dilute impurity
physics in the graphene system. To study the local moment
regime we use the Schrieffer-Wolff transformation to obtain
the Kondo model from the Anderson Hamiltonian. In Sec. III
we evaluate resistivity due to spin fluctuations, with different
impurity locations, by perturbation computations on the Kondo
model. In Sec. IV we compute the resistivity due to charge
fluctuations when the impurity occupation is close to zero by
using a mean-field approach on the Anderson model. In Sec. V
we show the numerical results of temperature dependence of
the resistivity with different symmetries and mechanisms. In
Sec. VI we compare our results with the experiment in Ref. 1.
The results are summarized in Sec. VII. Two appendixes con-
tain derivations for the perturbative results in the Kondo model.

II. HAMILTONIAN

We start from a graphene Hamiltonian in the presence
of dilute impurities described by the Anderson impurity
Hamiltonian,7

H = Hg + Hd + HU + HV ,

Hg = −t
∑
k,s

φka
†
k,sbk,s + H.c. − μ(a†

k,sak,s + b
†
k,sbk,s),

Hd =
∑

s

εdd
†
s ds, (1)

HU = Ud†
s dsd

†
−sd−s ,

HV =
∑
k,s

[V ∗
a,ka

†
k,s + Vb,kb

†
k,s]ds + H.c.

Hg is the nearest hopping in the momentum space, with t �
2.7 eV being the nearest-neighbor hopping strength. μ defines
the Fermi level measured from the Dirac point. a†

k,s and b
†
k,s are

the particle creation operators on the a and b sublattices. φk =∑3
i=1 ei	k·	ai , with 	a1 = a0 	x, 	a2 = a0(−	x/2 + √

3	y/2), and
	a3 = a0(−	x/2 − √

3	y/2) being the nearest-neighbor lattice
vector. a0 � 1.42 Å is the lattice constant. HV describes
the hybridization between the impurity level and graphene
electrons with Vk,a/b = ∑3

i=1 Vi,a/be
i	k·	ai . HU describes the

Coulomb repulsion on the impurity level and Hd is the
Hamiltonian describing the localized level of the d electron.
We diagonalize Hg by defining c

†
ks± = [a†

ks ± (φk/|φk|)b†ks].
In this basis the Hg term becomes

Hg =
∑
ksn

(nt |φk| − μ)c†ksncksn, (2)

with n = ± denoting the conduction and valence bands. The
hybridization term HV in this rotated basis is

HV = V
∑
n=±

∑
k,s

[�knc
†
ksnds + H.c.],

with �kn = (Vk,b + nV ∗
k,aφ

∗
k /|φk|)/(

√
2V ). Denote εk,n =

nt |φk| − μ as the energy of the bands evaluated from the
chemical potential μ and {k} = (	ksn) as combinations of
momentum, spin, and n the band index. The Anderson impurity
Hamiltonian describing the impurity in the graphene can be
written as

H =
∑
{k}

εknc
†
ksncksn +

∑
s

εdd
†
s ds + Ud†

s dsd
†
−sd−s

+V
∑
{k}

[�knc
†
ksnds + �∗

knd
†
s cksn]. (3)

To explore the local moment regime where impurity occupa-
tion for a given spin nd,s � 0.5, we perform a Schrieffer-Wolf
transformation to project out the charge degree of freedom.7

The exchange Hamiltonian or Kondo model obtained after
this transformation with the additional term Hint ∝ 	Sr · 	Sr ′

describing spin-spin interaction at different sites is given by
H = Hg + Himp + Hint, with

Hg =
∑
{k}

εknc
†
ksncksn,

Himp = 1

N

∑
{k},{k′}

�∗
kn�k′m

(
Kδs ′s − J

2
	S · 	σs ′s

)
c
†
k′s ′mcksn,

Hint = −
∑
r,r ′

W (r − r ′)	Sr · 	Sr ′ (4)

Here J � V 2[1/(εd − μ) − 1/(εd + U − μ)] and K �
(V 2/2)[1/(μ − εd ) + 1/(μ − εd − U )]. The interaction be-
tween impurity spins Hint is added for the inclusion of
the spin-spin interaction but is assumed to be small due
to a small concentration of the impurities in this paper.
Including this term would lead to a time-dependent impurity
spin via S(τ ) = eHintτ Se−Hintτ , with τ being the imaginary
time.10

For impurities preserving the C3v point group symmetry
of the triangular sublattice in the graphene system, the factor
|�kn| ∝ |φk|, while for impurities breaking the symmetry the
factor |�kn| is a constant. To evaluate the resistivity due to spin
fluctuations we use Eq. (4) as the starting Hamiltonian. We use
a perturbation expansion on the one-particle Green’s function
T matrix to compute the scattering rate and from the Boltzmann
transport to obtain a linear response resistivity in both impurity
breaking and preserving the lattice symmetry cases. We use a
mean-field approach on the Anderson impurity model shown
in Eq. (3) to obtain resistivity due to charge fluctuations in
both symmetry breaking and preserving cases. The following
two sections are the computation results for each of the cases
mentioned above.

III. RESISTIVITY DUE TO IMPURITY
SPIN FLUCTUATIONS

To study the resistivity due to spin fluctuations we start
with the Kondo Hamiltonian shown in Eq. (4). We calculate
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transport properties from the T matrix, which is related to the
single-particle Green’s function by10

G{k′},{k},α′,α(iω1,iω2)

= G0
{k′},{k}(iω1) + G0

{k′},{k′}(iω1)T{k′},{k},α′,α

× (iω1,iω2)G0
{k},{k}(iω2), (5)

where G0
{k′},{k}(iω1) = δk′,kδs ′,sδm,n(iω1 − εk,n)−1 and α, α′

are impurity spin state indices. The formalism used is the
generalization when one is interested in accounting for
the dynamics of the spins.10 When the dynamics of spins
are trivial, HRKKY = 0, i.e., governed by the coupling to
the conduction electron spin. The thermodynamic average is

performed, as shown in Eqs. (9), (11), and (12) below, by
replacing two spin correlation functions 〈s(t)s(0)〉 by s(s + 1).
This expression is related to the time-dependent Green’s
function by

G{k′},{k},α′,α(iω1,iω2)

=
∫ β

0

∫ β

0
dτ dτ ′ei(ω1τ−ω2τ

′)G{k′},{k},α′,α(τ,τ ′), (6)

with ω = (2r + 1)πT = (2r + 1)π/β and r being integers
(We put the Boltzmann constant kB = 1 to simplify the
notation.) Based on perturbation in Hint this time-dependent
Green’s function can be written as

G{k′},{k},α′,α(τ,τ ′) = −〈Z〉−1
∞∑

n=0

(−1)n

n!

∫ β

0
dτ1 · · ·

∫ β

0
dτn

∑
q1,q

′
1,...,qm,q ′

n

∑
s1,s

′
1,...,sn,s ′

n

∑
n1,m1,...,nm,mn

×
{
TS

[
�∗

k1,n1
�k′

1,m1

(
Kδs ′

1,s1 − J

2
	S(τ1) · 	σs ′

1,s1

)
· · · �∗

kn,nn
�k′

n,mn

(
Kδs ′

n,sn
− J

2
	S(τn) · 	σs ′

n,sn

)]}
α′,α

×〈Tτ (ck′s ′m(τ )c̄ksn(τ ′)c̄k′
1s

′
1m1 (τ1)ck1s1n1 (τ1) · · · c̄k′

ns
′
nmn

(τn)cknsnnn
(τn)〉He

. (7)

Here TS and Tτ are the time ordering operators and 〈Z〉 is the
S matrix. The first order in J and K is given by

T
(1)
{k′},{k},α′,α(iω1,iω2)

= �∗
kn�k′m

[
βδω1,ω2Kδs ′,sδα′,α − J

2
σs ′sSα′α(i(ω1 − ω2))

]
.

(8)

Here S(iω′) = ∫ β

0 dτ eiω′τ S(τ ), with ω′ = 2πrkBT . For
HRKKY = 0 we can simplify the above expression by noting
that S(iω′) = βSδω′,0, and we get

T
(1)
{k′},{k},α′,α(iω1,iω2) = βδω1,ω2T

(1)
{k′},{k},α′,α(iω1), (9)

with T
(1)
{k′},{k},α′,α(iω1) = �∗

kn�k′m(K − J
2 σs ′sSα′α). The gen-

eral second-order result of the T matrix, with fk,n ≡ 1/(eβεk,n +
1) and F (z) ≡ N−1 ∑

k,n |�kn|2(z − εk,n)−1, is expressed as

T
(2)
{k′},{k},α′,α(iω1,iω2)

= �∗
kn�k′m

{
βδω1,ω2δα′,αK2

−KJσs ′sSα′α(iω1 − iω2)
}
F (iω1)

+�∗
kn�k′m

(
J

2

)2

T
∑
ω′

1ω
′
2

(σ i1σ i2 )s ′sδω′
1+ω′

2,ω1−ω2

× 1

N

∑
q,l

|�ql|2G0
q,l(iω1 − iω′

1)

×{Si1 (iω′
1)Si2 (iω′

2) − fq,l[S
i1 (iω′

1),Si2 (iω′
2)]}α′α.

(10)

To focus on the Kondo contribution to the scattering rate,
we may set K = 0 and we set Hint = 0 by assuming dilute
impurities. For RKKY types of spin-spin interactions the

interaction strength decays as 1/R3 for symmetry breaking
or 1/R7 for the symmetry preserving case.7 Thus for sufficient
dilute impurities we may treat Hint = 0. In this limit Eq. (10) is
simplified to T

(2)
{k′},{k},α′,α(iω1,iω2) = βδω1,ω2T

(2)
{k′},{k},α′,α(iω1),

with

T
(2)
{k′},{k},α′,α(z) = �∗

kn�k′m

(
J

2

)2
[
S(S + 1)F (z)δs ′,sδα′,α

+ 1

N

∑
q,l

|�ql|2
εq,l − z

tanh

(
βεq,l

2

)
(Sα′α · σs ′s)

]
.

(11)

For noninteracting spins the third-order perturbation, after tak-
ing a trace over conduction electron spins and approximating
the reduction of three-spin correlation functions to two-spin
correlation functions,10 is given by

T (3)(z) = 2S(S + 1)

(
J

2

)3

�∗
kn�k′m

1

N2

×
∑
q1,n1

[
|�q1n1 |2
z − εq1,n1

∑
q2,n2

|�q2n2 |2 tanh
( βεq2 ,n2

2

)
εq1,n1 − εq2,n2

]
.

(12)

From Eqs. (11) and (12) we may define a general function
R(z) which we need to evaluate in computing the T -matrix,

R(z) = 1

N

∑
q,n

|�qn|2
εq,n − z

tanh

(
βεq,n

2

)
. (13)
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By using εq,n = nt |φq | − μ � n 3ta0
2 |q| − μ = n|ε| − μ we

may write the continuous form of Eq. (13) as

R(z) = 8

9πt2

∫ �

−�

dε|ε| |�ε |2
ε − (z + μ)

tanh

(
β(ε − μ)

2

)
,

(14)

where � is the linear spectrum cutoff. In the following
we will separate the discussions into two cases:7 One with
impurity interactions breaking the C3v lattice symmetry, in
which |�kn|2 = 1

2 , and we denote R(z) = RSB(z) in this case;
another with impurity interactions preserving the symmetry,

in which |�kn|2 = 9|k|2a2
0

8 = |ε|2
2t2 , and we denote R(z) = RSP(z)

in this case.

A. C3v symmetry breaking impurities

For the case of symmetry breaking, the cutoff scheme we
choose for a linear density of states (DOS) with a cutoff � is
multiplying the argument of the right-hand side of Eq. (14) by

�2

ε2+�2 and extending the integration limit from ±� to ±∞.
The resulting RSB(z), with details shown in Appendix A, is

RSB(z) = 4

9πt2

{
�

π

[
P

∫ ∞

0

x dx

x − �
F (x,μ,z)

−
∫ ∞

0

x dx

x + �
F (x,μ,z)

]

−ψ

(
1

2
− i

βz

2π

)
2�2(z + μ)

(z + μ)2 + �2

}
. (15)

Here F (x,μ,z) is defined as

F (x,μ,z) = ψ
(

1
2 + i

βμ

2π
+ βx

2π

)
x + i(μ + z)

+ ψ
(

1
2 − i

βμ

2π
+ βx

2π

)
x − i(μ + z)

.

and ψ(z) is the digamma function. Analytic forms can be
obtained in two asymptotic limits by using the asymptotic
forms of the digamma function. For βμ � 2π we have

RSB(z) � 4

9πt2

[
π� + 4γ + 4 ln(2) − 4 − 3ζ (2)

β

− (4γ − 2ζ (2) + 8)(z + μ)

π
tan−1

(
π

β(z + μ)

)

+ βz(z + μ)

2
ln

[
1 +

(
π

β(z + μ)

)2 ]

− 2�2(z + μ)

(z + μ)2 + �2
ψ

(
1

2
− i

βz

2π

) ]
, (16)

where γ � 0.577 is the Euler constant and ζ (2) = π2/6 is the
Riemann zeta function evaluated at 2. In the limit βμ � 2π

we get

RSB(z) � 4

9πt2

{
4

π
ln

(
β|μ|
2π

)
(z + μ) tan−1

( |μ|
z + μ

)

+π� + 4|μ|
π

[
π

2
− tan−1

( |μ|
z + μ

)
− 1

]

−|z + μ| ln

(
1 + μ2

μ2 + z2

)

− 2�2(z + μ)

(z + μ)2 + �2
ψ

(
1

2
− i

βz

2π

) }
. (17)

In Eqs. (16) and (17) we have assumed 0 � z � μ. Using
the Boltzmann equation with a relaxation time hypothesis25

and noticing that the honeycomb symmetry is broken by the
impurity, we find the scattering rate is related to the T matrix
by

1

τSB(εk,n)

= πnI

h̄

∫
δ(εk,n − εk′,m)|Tk,k′ |2(1 − cos θk,k′)

d 	k′

(2π )2

+ πnI

h̄

∫
δ(εk,n − εk′,m)|Tk,k′ |2(1 − cos θk,k′)

d 	k′

(2π )2

= −2nI

h̄
Im[Tk,k(εk,n)]. (18)

The second line of Eq. (18) represents the scattering pro-
cess related to different Dirac points in the Brillouin zone,
and the third line is the scattering event within the same
Dirac cone. We have used the fact that Im[Tk,k(ε+)] =
−π

∑
k′ |Tk,k′(ε+)|2δ(ε − εk′) and |Tk,k′(ε+)|2 is independent

of angle θk,k′ between momenta k and k′ in the symmetry
breaking case in the above equation. The scattering rate,
τ−1

SB (ω) with τSB(ω) being the relaxation time, to third order is

h̄τ−1
SB (ω) = 4nIS(S + 1)

[ (
2

9t2

) (
J

2

)2

|ω + μ|

−2

(
2

9t2

)(
J

2

)3

|ω + μ|Re[R(ω)]

]
. (19)

The Kondo effect is reflected in the divergence of the relaxation
time in the parquet approximation. This involves treating the
cubic term as the first in an infinite series, which is summed to
give

h̄τ−1
SB (ω) = 4nIS(S + 1)

(
2

9t2

) (
J

2

)2 |ω + μ|
1 + J Re[R(ω)]

.

(20)

We are mainly interested in the dc response so we shall
study the relaxation time when ω → 0. Figure 1 shows the
function RSB(0) plotted as a function of temperature for
different chemical potentials. We define the Kondo temper-
ature as the temperature when the relaxation time diverges
when ω → 0. For the case βμ � 2π the singularities from
1 + J Re[R(0)] � 0 can be expressed, by using Eq. (16), as

4J

9πt2

[
π� + 4γ + 4 ln(2) − 4 − 3ζ (2)

βk

]
� −1

→ Tk = − π�

4γ + 4 ln(2) − 4 − 3ζ (2)

(
1 − Jc

J

)
, (21)

where Jc = −9t2/4� and βk = 1/Tk . Thus for chemical
potential μ � T we have no Kondo effect if |J | < |Jc|. As
one increases the chemical potential we may include the linear
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FIG. 1. (Color online) The function RSB(0) plotted as a function
of temperature kBT in the unit of eV. Energy cutoff � = 3.5 eV and
t = 2.7 eV.

order of μ in Eq. (16) and obtain the expression for the Kondo
temperature as

Tk = −π�
(
1 − Jc

J

) + [4 ln(2) + ζ (2) − 4]μ

4γ + 4 ln(2) − 4 − 3ζ (2)
, (22)

where we have used tan−1( π
β(z+μ) ) → π

2 and ψ( 1
2 ) = −γ − 2

ln(2). Thus the Kondo temperature increases with increasing
chemical potential.

In the opposite limit where βμ � 2π , we use Eq. (17) to
obtain the Kondo temperature as

Tk = c1μ exp

[
π�

μ

(
1 − Jc

J

)]
, (23)

where c1 = exp[γ + ln(2) − 1 − 4/π ]/2π � 0.058.
Equation (23) can be expressed as Tk ∝ exp[(J − Jc)/(ρgJ )],
with ρg ∝ μ the electron DOS of graphene. Compared with the
Kondo temperature in conventional metal Tk ∝ exp(1/ρgJ ),
there exists acritical value of exchange coupling for the Kondo
effect to be realized in this two-dimensional pseudogap
system. Figure 2 shows the Kondo temperature as a function
of the chemical potential for various values of J . For J/Jc

smaller than 0.87, the Kondo temperature is smaller than the
chemical potential for the range shown. In this regime Tk is
given by Eq. (23) and is exponentially smaller than the energy
scale set by the chemical potential. As J/Jc approaches
one from below, the Kondo temperature grows faster than
the chemical potential. As Tk(μ) � μ/2π the exponential
behavior crosses over to the linear dependence shown in
Eq. (22).

Given the relaxation time we obtain the linear response
conductivity as

σ s
SB(T ) = −2e2

3

∑
n

∫
v2

F τSB(εk,n)
∂f

∂εk,n

d	k
(2π )2

= −2e2

3

4v2
F

9πa2
0 t

2

∫ ∞

−∞
dε|ε|τSB(ε − μ)

∂f

∂ε
. (24)

For a small chemical potential or βμ � 2π we use
Eqs. (16), (20), and (22) and approximate

∫
g(ε)(−∂f/∂ε) �∫ μ+T

μ−T
g(ε)/(2T ) since the dominant contribution is for en-
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J Jc 1

J Jc 1.05

J Jc 1.15

FIG. 2. (Color online) The Kondo temperature as a function of
chemical potential for various values of J . Energy cutoff � = 3.5 eV
and t = 2.7 eV gives |Jc| � 4.68 eV.

ergies close to μ. We get the resistivity at a low chemical
potential as

ρs
SB(T ) � 3

2e2

πS(S + 1)a2
0nI

h̄v2
F

(
J

2

)2 9πt2

2J

(
1

r(T ,μ)

)

� 3πnIS(S + 1)

4

(
J

2

)
h

e2

(
1

r(T ,μ)

)
, (25)

with

r(T ,μ) = [4γ + 4 ln(2) − 4 − 3ζ (2)](T − Tk)

−
[

2γ − ζ (2) + 4 − 2ψ

(
1

2

)]
(T − μ)2

2T
.

For temperature μ/2π < T < μ but higher than Tk , the same
approximation scheme gives

ρs
SB(T ) � 3πnIS(S + 1)

4

(
J

2

)
h

e2

(
1

r(T ,μ)

)
.

(26)
r(T ,μ) = [4γ + 4 ln(2) − 4 − 3ζ (2)](T − Tk).

Thus we see that for T > μ the Kondo contribution to resis-
tance is not determined by a single scale Tk . For temperature
range between μ/2π < T < μ the scaling of the resistivity
goes as 1/(T − Tk). This power-law behavior indicates that at
a sufficiently low chemical potential the magnetic impurities
are not completely quenched while a logarithmic behavior is
expected in the conventional metal case.

For large μ or βμ � 2π , a Kondo effect similar to magnetic
impurities in the conventional metals is obtained. For a
large chemical potential we approximate ∂f/∂ε � −δ(ε − μ).
Under this approximation the resistivity ρs

SB(T ) = 1
σ s

SB(T ) is
given by

ρs
SB(T ) � 3

2e2

πS(S + 1)a2
0nI

h̄v2
F

(
J
2

)2

1 + J Re[RSB(0)]
. (27)

Using Eq. (17) for Re[RSB(0)] with T > Tk we get

ρs
SB(T ) � 3

2e2

πS(S + 1)a2
0nI

h̄v2
F

(
J

2

)2 9πt2

2Jμ

(
ln

[
Tk

T

])−1

� 3πnIS(S + 1)

4

(
J

2μ

)
h

e2

(
ln

[
Tk

T

])−1

. (28)
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B. C3v symmetry preserving impurities

For the case of impurities preserving the symmetry of a
honeycomb lattice, the cutoff scheme we choose for a linear
DOS with a cutoff � is to multiply the argument of the
right-hand side of Eq. (14) by �4/(ε4 + �4) and extend the
integration limit from ±� to ±∞. The resulting RSP(z), with
details shown in Appendix B, is

RSP(z) = 4

9πt4

{
2�4

π

∫ ∞

0
dx

x3

x4 + �4
F (x,μ,z)

−2
(z + μ)3�4

�4 + (z + μ)4
ψ

(
1

2
− i

βz

2π

)

+ Re

[
�4ψ

(
1
2 + i

βμ

2π
− i

β�

2π
ei 3π

4
)

�ei 3π
4 − (z + μ)

− �4ψ
(

1
2 − i

βμ

2π
− i

β�

2π
ei π

4
)

�ei π
4 − (z + μ)

]}
. (29)

Analytic forms of RSP(z) are obtained by taking the asymptotic
behavior of the digamma function in the following two limits:
βμ/2π � 1 and βμ/2π � 1. For βμ/2π � 1 we have

RSP(z) � 4�3

9πt4

{
π√

2
+

[
π − 4 ln

(
2π
β�

)]
zμ

�2√
2

+
(

1 −
[
4 + 8 ln

(
z
�

)]
z

π�

)
π

β�

+
√

2

3

(
1 + 2zμ

�2

) (
π

β�

)2

+
(

4[1 + 2 ln(2)]

9π
+ μ

2πz

)(
π

β�

)3

+O

[(
μ

�

)2

,

(
z

�

)2]}
. (30)

For the opposite limit βμ/2π � 1 we have

RSP(z) � 4�3

9πt4

{
π√

2
+ 2π

β�

+ (z + μ)

π�

[
2μ

�
− (2 + π )

μ2

�2

+ 2

(
1 + μ2

�2

)
tan−1

(
μ

�

)]

+ zμ√
2�2

[
π − 2 − 4 ln

(
π

β�

)]

+ 4

�3π

[
−μ(z + μ)2 + (z + μ)3 tan−1

(
μ

z + μ

)

+ μ3

3

]
ln

(
βμ

2π

)
+ μ2(μ + z)

�3

+ (μ + z)3

�3
ln

(
(μ + z)2

μ2 + (μ + z)2

) }
. (31)
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0.253

0.254

0.255

0.256

0.257

0.258

0.259

T eV

R
0

1
eV

0.3

0.22
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0

FIG. 3. (Color online) The function RSP(0) plotted as a function
of temperature kBT in units of eV. Energy cutoff � = 3.5 eV and
t = 2.7 eV. Compared with Fig. 2, RSP(0) shows more temperature
variations when T → 0, indicating the Kondo effect can only be
observed on a lower temperature as compared with the symmetry
breaking case.

Similar to Eqs. (16) and (17) we have assumed 0 � z � μ.
Using Eq. (18), but with the appropriate relaxation times
determined in this section, we compute the resistance. For
this case Im[Tk,k(ε+)] = −π

∑
k′ |Tk,k′(ε+)|2δ(ε − εk′) and

|Tk,k′(ε+)|2 is independent of angle θk,k′ between momenta
k and k′ since |Tk,k′(ε+)|2 ∝ |k|2|k′|2. The scattering rate to
third order is

h̄τ−1
SP (ω) = 4nIS(S + 1)

[ (
2

9t4

) (
J

2

)2

|ω + μ|3

−2

(
2

9t4

)(
J

2

)3

|ω + μ|3 Re[RSP(ω)]

]
. (32)

The expression for the relaxation time τSP within the same
approach as the previous section is

h̄τ−1
SP (ω) = 4nIS(S + 1)

(
2

9t4

) (
J

2

)2 |ω + μ|3
1 + J Re[RSP(ω)]

.

(33)

The dc conductivity is related to the relaxation time with
ω → 0. Figure 3 shows the function RSP(0) plotted as a
function of temperature for different chemical potentials.
RSP(0) shows small variations with temperature except when
the temperature is close to zero, where exponential growth with
decreasing temperature is observed. For the case βμ � 2π the
singularities from 1 + J Re[RSP(0)] � 0 can be expressed, by
using Eq. (30), as

4J

9πt4

[π�3

√
2

− 1

2π

(
π

βk

)3 ]
� −1

→ Tk �
(√

2�3

π

) 1
3
(

1 − Jc

J

) 1
3

. (34)

In the above we have used the leading-order correction as
(1/β)3 since its prefactor is μ/z, which diverges as we take
z → 0. Higher-order expansion in μ/z shows it as a sum of
an infinite series in powers of (−μ/z)n, with n being some
integer. Thus the infinite sum gives a factor of −1.
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FIG. 4. (Color online) The Kondo temperature as a function of
chemical potential for various values of J . Energy cutoff � = 3.5 eV
and t = 2.7 eV gives |Jc| = 9

√
2t4

4�3 � 3.94 eV for the symmetry
preserving case.

In the opposite limit where βμ � 2π we use Eq. (31),

4J

9πt4

[
π�3

√
2

+ 4

π
�μ2 +

(
1 − 8

3π

)
μ3 ln

(
βkμ

2π

)]
� −1

→ Tk � μ

2π
exp

[
c2

(
�

μ

)3(
1 − Jc

J

)+ c3
�

μ

]
, (35)

where c2 = 3π2√
2(3π−8)

� 14.69, and c3 = π2

4
√

2
� 1.74. Thus for

both cases we obtain results similar to mean-field results
obtained in Ref. 7.

Figure 4 shows the Kondo temperature as a function of
chemical potential for various exchange coupling strengths
J . For J/Jc smaller than 0.75 the Kondo temperature is
always smaller than the chemical potential for the range
shown. J/Jc approaches one from below and for Tk � μ/2π

the exponential dependence on μ crosses over to a power
law.

Given the relaxation time we obtain the linear response
conductivity as

σ s
SP(T ) = −2e2

3

∑
n

∫
v2

F τSP(εk,n)
∂f

∂εk,n

d	k
(2π )2

= −2e2

3

4v2
F

9πa2
0 t

2

∫ ∞

−∞
dε|ε|τSP(ε − μ)

∂f

∂ε
. (36)

For βμ � 2π , T > μ, and T > Tk we use Eqs. (30) and (34)
and again approximate

∫
g(ε)(−∂f/∂ε) � ∫ μ+T

μ−T
g(ε)/(2T ).

The conductivity for 0 < μ < T has no analytic form as the
integral in Eq. (36) involves

∫ μ+T

μ−T
dε/|ε|2, which diverges as

μ < T . This vanishing resistivity for μ < T for impurities
preserving the lattice symmetry is due to the fact that the
scattering rate goes to zero faster than the chemical potential
at the node. For C3v symmetry preserving impurities the
scattering rate goes as the third power of energy while the
DOS is linear in energy. The vanishing resistivity is true even
without the box approximation for the energy integral. Thus
the contribution to scattering near the node is dominated by
other sources of scattering as compared to exchange scattering
of impurities that preserve the lattice symmetry.

For βμ � 2π , μ/2π < T < μ, and T > Tk we use
Eqs. (30) and (34) and use the same approximation scheme
as above, and we obtain the resistivity as

ρs
SP(T ) � 3

2π

h

e2
nIS(S + 1)J

(
μ2 − T 2

T 3
k − T 3

)
. (37)

Thus even for larger chemical potentials the resistivity does
not scale solely with the Kondo temperature. The behavior for
T < μ goes as μ2/(T 3 − T 3

k ).
For large chemical potentials or βμ � 1 we approximate

−∂f/∂ε � δ(ε − μ). Combining with Eqs. (31) and (35) we
get

ρs
SP(T ) � 9π2

(8π − 8)
nIS(S + 1)

h

e2

J

μ

(
ln

[
Tk

T

])−1

. (38)

Thus at large chemical potentials the Kondo contribution to
resistivity is similar in form to the magnetic impurities in a
conventional metal.

IV. RESISTIVITY DUE TO IMPURITY
CHARGE FLUCTUATIONS

From |J | � V 2|U |
|(εd−μ)(εd+U−μ)| � V 2/|μ − εd |, for a large

Coulomb repulsion U , it follows that to obtain |J | � |Jc|
the impurity level εd must be close to the Fermi surface
μ. Since the DOS in the graphene is proportional to the
energy scale away from this Fermi surface, or ρg(ε) ∝ |ε|
with ρg(ε) denoting the graphene DOS, the phase space for
charge fluctuation is very small and the local moment region
is large compared with the case of the magnetic impurities in
a conventional metal.7 However, it is still likely to have an
impurity level close to μ which is not in the local moment
region.8 Thus it is worthwhile to estimate the resistivity
contribution from impurity charge fluctuations.

We use a mean-field approach on the Anderson impurity
model shown in Eq. (3) and rewrite HU → ∑

s Un−sd
†
s ds −

Un↑n↓, with ns = 〈d†
s ds〉 determined self-consistently, to

obtain the impurity Green’s function. From the imaginary part
of this Green’s function we obtain a temperature dependence
of the linear response resistivity by assuming Boltzmann
transport. Under this mean-field approach we obtain the
retarded impurity Green’s function as8

GR
dd,s(ω) = 1

ω − εd − Un−s − �R
dd,s(ω) + i0+ . (39)

The self-energy part �R
dd,s(ω) is given by

�R
dd,s(ω) = V 2

N

∑
	q,n

|�	q,n|2G0R
cc,s(	q,ω)

= V 2

N

∑
	q

|�q |2(ω + μ)

(ω + μ)2 − v2
F |q|2 + i0+sign(ω + μ)

.

(40)

In the above we have used |�	q,n| = |�q |2. |�q |2 = 1/2 for
the symmetry breaking case and |�q |2 = 9|q|2a2

0/8 for the
symmetry preserving case. We take the principal part of
�R

dd,s(ω) between (−�,�), with � being the linear spectrum
cutoff. In the nonmagnetic mixed valence regime in which
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we are interested in, 0 < ns = n−s < 1/2. The impurity
occupation ns is given by

ns =
∫ μ

−�

dω
−1

π
Im

[
GR

dd,s(ω)
]
. (41)

By using Eqs. (39) and (40) we find the relation between εd

and ns by solving self-consistent conditions numerically.

A. C3v symmetry breaking impurities

For impurities breaking the symmetry the self-energy
�R

dd,s(ω) obtained from Eq. (40) is given by

�R
dd,s(ω) = − 2V 2

9πt2

[
(ω + μ) ln

×
( |(ω + μ)2 − �2|

(ω + μ)2

)
+ iπ |ω + μ|

]
.

Since Tk,k(ω) = ∑
s V 2|�k|2GR

dd,s(ω) we use Eqs. (18) and
(24) to obtain the impurity conductivity, denoted as σ c

SB(T ).
The resistivity ρc

SB(T ) = 1/σ c
SB(T ). We are mainly interested

in the leading-order temperature dependence of the resistivity
contributed by the charge fluctuation in the Anderson impurity
model. Thus we use the same approximation − ∫

g(ε)∂f/∂ε �∫ μ+T

μ−T
g(ε)/2T in Eq. (24) to extract the leading order in

temperature dependence. The resistivity obtained for 0 � μ <

T is

ρc
SB(T ) � 9nIV

4

t2

h

e2

1

r(μ,T )
,

r(μ,T ) = 3T 2α ln

(
�2 − ε̃2

d

T 2

) [
3α ln

(
�2 − ε̃2

d

T 2

)
+ 4α − 6

]

+T 2[α((8 + 9π2)α − 12) + 9] + 27(ε̃d + μ)2.

(42)

Here α ≡ −2V 2

9πt2 and ε̃d ≡ εd + Un−s . An analytic result of
resistivity for T � μ can also be obtained but the expressions
are cumbersome and we defer a numerical analysis to Sec. V.
From Eq. (41) we find the nonmagnetic region8 by demanding
ns = n−s when εd � μ. Within this charge fluctuation regime
(0 � ns � 0.5) we study the temperature variation of resistiv-
ity at a given μ and Coulomb repulsion U .

B. C3v symmetry preserving impurities

For impurities preserving the honeycomb lattice symmetry,
the self-energy �R

dd,s(ω) is given by

�R
dd,s(ω)

= − 2V 2

9πt4

[
(ω + μ)3P

∫ �2

(ω+μ)2

0

x dx

x − 1
+ iπ |ω + μ|3

]
.

(43)

We again use Eqs. (18) and (24) to obtain the impurity
conductivity, denoted as σ c

SP(T ). The resistivity ρc
SP(T ) =

1/σ c
SP(T ). For temperature dependence we use the approxi-

mation − ∫
g(ε)∂f/∂ε � ∫ μ+T

μ−T
g(ε)/2T in Eq. (24) to extract

the leading order. To perform this computation we need to
find the ω dependence in the principal integral of Eq. (43).

This is done by fitting numerically the principal value of the
integral for large �/(ω + μ). This is because the relevant
integration region for ω in the expression of conductivity is
ω ⊂ (−T ,T ), which makes � � |ω + μ| in our discussion.
From the numerical fit with 10 < �2

(ω+μ)2 < 102 (chosen for an
experimentally accessible range) we have

P

∫ �2

(ω+μ)2

0

x dx

x − 1
� 2.589 + 1.022

�2

(ω + μ)2
.

The conductivity obtained is

σ c
SP(T ) � 2e2

3

4v2
F

9πa2
0 t

2

∫ μ+T

μ−T

dε|ε|τ
c
SP(ε − μ)

2T
,

1

τ c
SP(ε − μ)

= −2nI

h̄

V 2|ε|2
2t2

∑
s

Im
[
GR

dd,s(ε − μ)
]
.

For 0 < μ � T , the resistivity ρc
SP(T ) = 1/σ c

SP(T ) → 0 simi-
lar to the case for spin fluctuation in Eq. (36). For T < μ we
have

ρc
SP(T ) = 27πα

8

h

e2
nI

3πT α(T 2 − μ2)5

t2rc
SP(μ,T )

rc
SP(μ,T ) = T ((a4 + π2)α2T 12/t4 + · · ·)

+ 3a2 α

t2
(ε̃d + μ)(μ2 − T 2)5 ln

(
μ − T

μ + T

)
.

(44)

Here a = 2.589 is the parameter from principal integral of the
dot self-energy. We find the nonmagnetic region from Eq. (41)
and study the temperature variation of resistivity within this
charge fluctuation regime (0 � ns � 0.5).

C. Range of validity for mean-field result

Before we proceed to compare the temperature depen-
dences of resistivity due to charge fluctuations, spin fluctu-
ations, and the influence of the impurity position, we pause
here to discuss the regimes where mean-field results are valid
in this Anderson impurity model. The order parameter of this
unrestricted Hartree-Fock is the d-level occupation for a given
spin nd,s . To make a comparison with exact d-level occupation
done by a Bethe ansatz,26 we need to go back to the case for
the conventional metal where the mean-field results were done
by Anderson.23 The d-level occupation for a given spin s at
zero temperature is

nd,s = 1

π
cot−1

(
εd + Und,−s − εF

�

)
. (45)

Here � = πV 2ρ(εF ), with ρ(εF ) = 1/2π the DOS for con-
ventional metal. We solve Eq. (45) in the nonmagnetic region,
where nd,s = nd,−s , and compare the answers with the exact
results obtained by the Bethe ansatz. The comparison for
d-level occupation for a given spin versus impurity level, with
εF = 0, is shown in Fig. 5.

From this figure we can see that the mean-field results
deviate from the exact ones in a range nd,s ∼ 0.06–0.1 for the
range of U ∼ 2–8�, indicating that the mean field is a good
approximation when the impurity level εd is higher than the
Fermi energy εF or, in the other words, the impurity is near
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FIG. 5. (Color online) Comparison of Bethe ansatz with mean-
field d-level occupation vs impurity level for conventional metal. The
Fermi energy is set at εd = 0. Lines denoted BA mean the Bethe
ansatz results and lines denoted MF mean the mean-field results. The
two match better in the region where nds � 0.1. This upper bound
increases with decreasing U/�.

the empty orbital region. For larger Coulomb repulsion U/�

the minimum value of εd of the overlapping region is closer to
εF . Since for a two-dimensional system the mean-field results
are marginal, we expect the mean-field result works for εd �
εF = μ, as the s-wave scattering in the conventional metal
considered above23,26 is a one-dimensional problem. Since
the crossover shifts to increasingly lower values of nd as U

increases, this is a rough criterion but establishes a basis for
the mean-field calculations.

V. RESISTIVITY TEMPERATURE DEPENDENCE

In Secs. III and IV we have shown the analytic results
of the temperature dependence of resistivity for βμ � 1
and βμ � 1. Here we compute numerically the temperature
dependence of resistivity due to spin fluctuations, ρs

SB(T ) and
ρs

SP(T ), for impurities breaking and preserving the honeycomb
lattice symmetry, and the temperature dependence of resistivity
due to charge fluctuations, ρc

SB(T ) and ρc
SP(T ). We use the full

form of RSB(ω) and RSP(ω) and extract the results for T > Tk ,
with Tk obtained numerically the same way as we obtain the
Kondo temperature in Figs. 2 and 4. We compare the resistivity
for different symmetries with the same sets of parameters.
The resistivity due to symmetry preserving impurities is much
smaller than that of the symmetry breaking case due to the
factor of (μ/t)2 [see Eqs. (20) and (33)]. We examine the
resistivity due to impurity spin and charge fluctuations in
the symmetry breaking case and make a comparison with the
experimental results1 in the next section.

A. Comparison of resistivity due to spin and charge fluctuations
with different symmetry

We use t = 2.7 eV, � = 3.5 eV, V = 1 eV, and U = 4 eV
in all of the numerical results within this section. We choose a
different impurity level εd to explore the resistivity due to spin
and charge fluctuations. The resistivity versus temperature is
evaluated numerically between T ⊂ (10−4,10−1) eV.

5 10 4 0.001 0.005 0.010 0.050 0.100

0.030

0.032

0.034

0.036

0.038

0.040

0.042

T eV

ρ
n i

h
e2 0.3

0.2

0.1

10 4

FIG. 6. (Color online) Perturbation results for resistivity vs
temperature for the symmetry breaking case with εd = −1 and
various μ. The exchange coupling strength |J | is larger than 0.2432
(for μ = 0.3 eV) and less than 0.2884 eV (for μ = 10−4 eV) in the
range chosen. In all cases the Kondo temperature is less than 10−12 eV,
so the temperature range chosen is well above the Kondo scale.

Let us first study the local moment region. We choose
εd = −1 eV to ensure the d-level occupation nd,s � 0.5. The
chemical potential μ is chosen between 10−4 and 0.3 eV.
From |J | � V 2|U |

|(εd−μ)(εd+U−μ)| this choice of parameters renders
the exchange coupling strength 1.14 eV < |J | < 1.33 eV. For
both cases these exchange coupling strengths are less than the
critical value |Jc|, and the Kondo temperature Tk obtained
for both cases is extremely small (Tk < 10−12 eV). With
this choice of parameters, Tk � μ, and therefore the analytic
expression for Tk corresponds to Eq. (23) for the symmetry
breaking case and Eq. (35) for the symmetry preserving
case. The resistivity versus temperature are plotted in Figs. 6
and 7.

In Fig. 6 we see the Tk � T tails of the logarithmic upturns
occurring when T � Tk . The resistivity goes down as the
chemical potential increases. This tendency is quite different
from the case of the symmetry preserving ones, shown in Fig. 7.

5 10 4 0.001 0.005 0.010 0.050 0.100
10 7

10 6
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0.001

T eV

ρ
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h
e2

0.3

0.2

0.1

10 2

FIG. 7. (Color online) Perturbation results for resistivity vs
temperature for the symmetry preserving case with εd = −1 and
various μ. The exchange coupling strength |J | is larger than 0.2889
(for μ = 0.3 eV) and less than 0.3380 eV (for μ = 10−2 eV) in the
range chosen. In all cases the Kondo temperature is less than 10−12 eV,
so the temperature range chosen is well above the Kondo scale.
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FIG. 8. (Color online) Mean-field results for resistivity vs tem-
perature for the symmetry breaking case with εd = 0 and various μ.
The d-level occupation nd,s is greater than 0.024 (when μ = 10−2 eV)
and less than 0.093 (when μ = 0.3 eV) in the chosen range.

The dependence of resistivity on chemical potential μ for the
symmetry preserving case shows ρs

SP(μ) ∝ μ2 by comparing
the resistivity at T = 10−4 eV in Fig. 7. At temperatures
higher than the chemical potential, the resistivity decreases
with increasing temperature faster than the logarithmic tail for
all cases in Fig. 7. This is due to the divergence in conductivity
when μ � T . The order of magnitude of resistivity at the
same temperature for the symmetry preserving case is much
smaller than the resistivity for the symmetry breaking case.
Thus we can safely ignore the contributions from the symmetry
preserving type of impurities when considering the resistivity
due to spin fluctuations.

For the case of charge fluctuations we choose εd = 0 eV
to ensure the d-level occupation nd,s < 0.1. The chemical
potential μ is chosen between 10−4 and 0.3 eV. We com-
pute the resistivity v.s. temperature for T ⊂ (10−4,10−1) eV
numerically from the mean-field results. The resistivity versus
temperature are plotted in Figs. 8 and 10 for the symmetry
breaking and symmetry preserving cases.

Figure 8 shows ρc
SB(T ) ∝ ln(T ) for T > 10−2 eV and tends

to a flat region for small temperature, which is very similar to
the screening result of the Kondo effect at T < Tk . Conductivity
at T = 10−4 shows a quadratic chemical potential dependence,
shown in Fig. 9, consistent with the gate voltage dependence
on conductivity seen in the experiment.1 The experimental fit
in Ref. 1 for the Kondo scale, however, is approximately one
order of magnitude smaller as compared with the energy scale
obtained in the logarithmic temperature range in Fig. 8. The
temperature dependence of resistivity in this charge fluctuation
regime is similar to that of the Kondo model in this case,
but the physics is not related to spin but charge fluctuation.
To facilitate comparing our results with experimental ones in
Ref. 1, we refer to the energy scale as a Kondo-like temperature
in the following discussion.

Figure 10 also shows ρc
SP(T ) ∝ ln(T ) for T � μ with a

shorter range of temperature and similarly tends to a flat
region for small temperature. The resistivity increases with
increasing chemical potential in Fig. 10, similar to the case of
spin fluctuation. The resistivity for the symmetry preserving
case is much smaller than that for the symmetry breaking
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FIG. 9. (Color online) Mean-field results for conductivity at
T = 10−4 eV vs chemical potential μ (in units of eV). The symbols
are the numerical data of conductivity at various chemical potentials
and the line is the fitted quadratic curve with σ � 0.32 + 2.08μ +
51.86μ2. This quadratic behavior is also seen in Fig. 3(d) of Ref. 1.

impurities and thus ignores the contribution from symmetry
preserving impurities.

In summary, when both types of impurities are present,
the resistivity due to impurities preserving lattice symmetry is
much smaller than that from impurities breaking the symmetry.
Thus we focus our discussions on symmetry breaking cases
for spin and charge fluctuations in the next section.

VI. COMPARISON WITH EXPERIMENTAL DATA

Here we make comparisons with the experimental data
given in Ref. 1. We start with the perturbative results of
the Kondo model in the case of impurities breaking the
honeycomb symmetry. To have a large Kondo temperature
(30 K � Tk � 90 K in the experiment) the exchange coupling
|J | must be very close to its critical value |Jc|. As the
perturbation breaks down when T ∼ Tk , we can only analyze
the gate voltage dependence of the Kondo temperature shown
in Fig. 4 of Ref. 1. The strategy is the following: We find the
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FIG. 10. (Color online) Mean-field results for resistivity vs
temperature for the symmetry preserving case with εd = 0 and
various μ. The d-level occupation nd,s is greater than 0.040 (when
μ = 0.1 eV) and less than 0.093 (when μ = 0.3 eV) in the chosen
range.
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TABLE I. Relationship between μ and εd obtained by fitting with
the experimental Kondo temperature. The left two columns show
the experimental Kondo temperature at a given gate voltage. We
compute the corresponding chemical potential in the third column
by using Vg = 5.3 + 515.387μ2. The impurity level εd , shown in the
last column, is obtained by evaluating the corresponding exchange
coupling strength J .

Tk (K) Vg (V) μ (eV) εd (eV)

31.5 5.3 0 −0.225 949
32 6 0.0368 538 −0.191 582
35 10 0.095 495 3 −0.140 059
40 12.5 0.118 195 −0.119 956
51 15 0.137 189 −0.102 273
56.2 20 0.168 885 −0.074 372 7

impurity level εd at a given chemical potential μ by using the
experimental Kondo temperature Tk as the Kondo temperature
obtained by the pole of resistivity, or 1 + JRSB(0) = 0, where
J � V 2/(εd − μ)(εd + U − μ).

In the experiment the Kondo temperature is obtained as
a function of gate voltage. We assume the gate voltage
Vg is connected with chemical potential μ via a capacitive
effect, i.e., Q/e = cgVg/e = 8cgμ

2/(27
√

3πt2a2
0), with Q

representing the electric charges, e = 1.6 × 10−19 C, and
cg = 1.15 × 10−8 F/cm2 as the capacitance of the graphene.
In the experiment of Ref. 1, Vg = 5.3 V is regarded as
the position of the Dirac node. Thus we take Vg = 5.3 +
8e/(27

√
3πt2a2

0cg)μ2 = 5.3 + 515.387μ2 by fixing Vg =
5.3V at μ = 0 eV. Using the experimental Kondo temperature
at a given chemical potential, we compute the corresponding
exchange coupling strength J and thus determine the relation-
ship between μ and impurity level εd . The results are shown
in Table I.

From Table I we find εd ∝ μ. The obtained impurity level
εd changes linearly with the chemical potential μ, as shown in
lower left-hand side of Fig. 11. One of the main conclusions
of this work is that the observed upturn in resistivity1 can be
understood in terms of an Anderson impurity model only if
the impurity level varies with the applied voltage. By using
the linear fit in this figure, we obtain the Kondo temperature
as a function of chemical potential as shown in the top of
Fig. 11. Between μ = 0.02 and 0.3 eV the Kondo temperature
grows monotonically from 14 to 90 K. The decrease of Tk

with increasing μ for 0 eV < μ < 0.02 eV may indicate the
failure of linearity between μ and εd for the onset of nonzero
chemical potential or the failure of the Kondo physics near the
node. The chemical potential dependence shown in top figure
of Fig. 11 is roughly consistent with Fig. 4 in Ref. 1 in the
intermediate gate voltage.

For gate voltage Vg larger than 30 V in Ref. 1, the
experimental Tk begins to decrease with increasing gate
voltage. This can be accounted for qualitatively, as shown in
Fig. 12, by assuming that the energy of the impurity level no
longer changes with the external gate voltage for Vg > 30 V
due to sufficient charge screening. For a small gate voltage
(chemical potential close to the node) the experimental Tk

increases monotonically with increasing gate voltage. In this
region neither a constant impurity level nor εd ∝ μ gives the
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FIG. 11. (Color online) Top: Kondo temperature Tk as a function
of chemical potential μ. The relationship is obtained by |J | ∼ V 2/

|μ − εd | and εd ∝ μ, which we find by fitting the experimental data
shown in the lower left-hand figure. Lower left-hand side: Impurity
level εd as a function of chemical potential. The symbols are obtained
by the data in Fig. 4 of Ref. 1 shown in Table I. The red dashed line
is the linear fitting function which gives εd = −0.2254 + 0.8951μ.
Lower right-hand side: Impurity occupation of a given spin nd,s as a
function of chemical potential evaluated by the mean-field approach.

corresponding experimental dependence on Vg based on our
perturbative Kondo results.

We also compute the impurity occupation as a function of μ

by using the mean field as shown by Eq. (41) in the symmetry
breaking case. The obtained impurity occupation for a given
spin increased from 0.057 to 0.082 monotonically between
μ ⊂ (0,0.3) eV. Given that the validity of the mean field is
limited to small values of the impurity level occupations (see
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FIG. 12. (Color online) Kondo temperature Tk as a function of
chemical potential μ. The relationship is obtained by |J | ∼ V 2/

|μ − εd | and εd = −0.2254 + 0.8951μ for 0 � μ � 0.21 eV and
εd = −0.029 456 (corresponds to Vg = 30˜V or μ = 0.2189 eV) for
0.21 eV < μ � 0.3 eV.
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Sec. IV C), we expect deviations away from the mean field.
Thus the system is not likely to stay in the local moment region
near the node, suggesting a crossover of impurity occupation
from the local moment to the empty orbital regime based on
the NRG results in Ref. 15. Thus the Kondo effect alone would
not be able to explain the logarithmic temperature dependence
seen in Ref. 1.

Let us now investigate whether charge fluctuations can give
rise to a temperature dependence of resistivity seen in the
experiment. We take εd = −0.2254 + 0.8951μ and evaluate
the resistivity versus temperature from the mean-field results
of the impurity Green’s function for the symmetry breaking
case. For a chemical potential close to the node, we get a
reasonable temperature scale (the logarithmic behavior shows
up at T � 10−3 eV) from charge fluctuations as shown in the
top figure of Fig. 13. We also have μ2 being proportional to
conductivity at zero temperature, as seen in the lower left-hand
side of Fig. 13, which was observed in Ref. 1. Rescaling ρ(T )
by ρ(0) and T by the Kondo-like temperature T c

k obtained
by the temperature at which the resistivity begins to show a
logarithmic dependence in T , we obtain the universal curve
shown in the lower right-hand side of Fig. 13. In this range
of chemical potential the impurity occupation nd,s � 0.057.
It shows that even for the chemical potential μ close to
the node, the one-parameter scaling is still possible in this
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FIG. 13. (Color online) Top: Resistivity vs temperature for
the charge fluctuation case with εd = −0.2254 + 0.8951μ and a
chemical potential between 10−4 and 10−2 eV. Lower left-hand side:
Quadratic dependence on μ for conductivity at zero temperature.
The red line is the quadratic fitting which gives σ c

SB(μ,T = 0) =
0.000 0693 + 0.1675μ + 90.3726μ2 and the blue symbols are con-
ductivity at various chemical potentials. Lower right-hand side: Uni-
versality curve after rescaling resistivity and Kondo-like temperature
scale T c

k obtained by the temperature scale when logarithmic behavior
is shown. 1.1T c

k � Tk by comparing this universality curve with
Fig. 2(b) in Ref. 1.
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FIG. 14. (Color online) Resistivity due to charge fluctuations vs
temperature plot. For T < 10−2 eV the resistivity decreases slowly
with temperature. For 10−2 eV < T the logarithmic dependence on
temperature begins to appear.

charge fluctuation scheme, while as it is shown analytically in
Eq. (25), the one-parameter scaling is unlikely for μ � 0 in
the Kondo case.

For chemical potentials away from the Dirac node we plot
the resistivity versus temperature for μ = 0.1, 0.2, and 0.3 eV
in Fig. 14. The overall feature is very similar to the Kondo
results: Near zero temperature the resistivity decreases with T 2

while at large temperature ρ(T ) ∝ ln(T ). At zero temperature
the conductivity is proportional to μ2 as in the case shown
in Fig. 9. However, the logarithmic behavior shows up at
T � 10−2 eV, which is approximately one order of magnitude
larger than the experimental results in Ref. 1. Thus the charge
fluctuation cannot explain the experiment for large chemical
potentials.

By comparing the universal curve obtained by NRG24

shown in Fig. 2(b) in Ref. 1 and the one we have for
charge fluctuations in lower right-hand side of Fig. 13, we get
1.1T c

k ∼ Tk . The “Kondo temperature” for both charge and
spin fluctuations as a function of chemical potential is shown
in Fig. 15. From Fig. 15 we observe that charge fluctuations
give a large Kondo scale with increasing chemical potential
and good agreement with experimental results is obtained
only if μ � 10−3 eV. Away from the node, the Kondo scale
obtained by charge fluctuations grows much faster than that
of the spin fluctuations. The Kondo scale obtained from spin
fluctuation, on the other hand, gives a large Kondo scale for
μ < 10−2 eV and reaches its minimum when μ ∼ 0.02 eV.
The combined picture of the two cases as shown in Fig. 15,
by assuming charge fluctuation for μ ∼ 0 and spin fluctuation
for large μ, can give an overall consistent picture as seen
in the experiment for gate voltages of less than 30 V. For
10−3 eV < μ < 0.06 eV it shows the crossover from charge
fluctuations to spin fluctuations, which is not accounted for
in our simple mean field in Anderson model nor perturbation
in the Kondo model. For gate voltages of larger than 30 V
a nonmonotonic dependence of Tk on μ is seen in Ref. 1.
Given our analysis, we speculate that the screening due to the
finite density of carriers could modify the dependence of the
energy of the impurity level on the gate voltage. A weaker
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FIG. 15. (Color online) Kondo temperature Tk as a function
of chemical potential μ. The blue symbols are the Kondo-like
temperature, obtained by comparing the universal curve with NRG
results, for the charge fluctuation case. The purple symbols are the
Kondo temperature for the spin fluctuation case. Between μ = 10−3

and 0.02 eV, both cases give a Kondo temperature higher than
their neighboring chemical potentials. The “mixed” (brown symbols)
case takes the Kondo scale obtained by charge fluctuations with
μ < 10−3 eV and spin fluctuations with μ > 0.02 eV. By combing
these two, the Kondo scale obtained grows monotonically with
chemical potential.

dependence at a large gate voltage will lead to a decreasing
Kondo temperature.

VII. CONCLUSION

We use the Anderson impurity model to describe the dilute
impurity behavior in graphene. The goal is to test whether
the recent experiment on the resistivity of graphene with
vacancies induced by ion irradiation in ultrahigh vacuum1

can be solely explained by the single impurity Kondo effect
(spin fluctuations). To study this local moment regime we
use the Schrieffer-Wolf transformation to freeze the charge
degrees of freedom and obtain the Kondo Hamiltonian. In
the case of dilute impurities we may ignore the RKKY
interactions and treat the problem as a single impurity Kondo
model.

We have computed this Kondo contribution to dc resis-
tivity by perturbation in a T -matrix formulation. Analytic
expressions are obtained for βμ � 2π and βμ � 2π by
taking the asymptotic form of the digamma function in the
integrand. The Kondo temperature dependence on chemical
potential and exchange coupling is obtained. Depending
on the location of the impurities, the Kondo contribution
to resistivity is very different. For the type of magnetic
impurities which break the C3v symmetry at low chemical
potentials, it shows a power-law temperature dependence as
1/(T − Tk). For the magnetic impurities preserving the C3v

symmetry of the lattice at low chemical potentials, it shows
a power-law dependence as 1/(T 3 − T 3

k ). At even lower
chemical potentials when the Fermi surface is close to the
node, both cases show an extra dependence on the chemical
potential as well as the Kondo scale. Near the node a critical
value of exchange coupling is needed for the Kondo effect
to be realized.13,15 The critical value |Jc| is larger for the

symmetry breaking case. For a large chemical potential μ both
cases show logarithmic dependence on temperature scaled by
the Kondo temperature. With increasing μ the resistivity at
a given temperature decreases for impurities breaking the
honeycomb symmetry while the resistivity increases for the
ones preserving the symmetry. The resistivity obtained with
the same set of parameters shows that the dominant source
of resistivity is from the impurities which break the C3v

symmetry.
We have also computed the effect of charge fluctuation for

impurity occupation 0 � nd,s � 0.5 by using the mean-field
approach on the Anderson impurity model. The resistivity at
a given temperature has a similar dependence on the chemical
potential as the case for spin fluctuations. Similar to the spin
fluctuation case, the dominant contribution to resistivity at
the same sets of parameters comes from the impurities which
break the honeycomb lattice symmetry.

By studying the resistivity versus temperature and compar-
ing with the experimental results in Ref. 1 from both spin and
charge fluctuations in the symmetry breaking case, we find
that the Kondo effect fails to give the correct Kondo scale and
is unable to describe single-parameter scaling for a chemical
potential near the node. For μ ∼ 0 the resistivity due to charge
fluctuations gives a reasonable temperature dependence and
the resistivity after rescaling also shows a single-parameter
universal behavior. The same analysis yields a large Kondo
scale for 10−2 eV < μ in the charge fluctuation case, which
is roughly the same chemical potential at which we obtain
nonmonotonic behavior of the Kondo temperature in the spin
fluctuation (Kondo) case.

The failure of a Kondo explanation near the node is
consistent with the NRG results,14 which find that the Kondo
effect near the node is suppressed for r > 1/2 for systems
having an electronic density of state ρ(ε) ∝ |ε|r . By combining
the low chemical potential results (0 � μ � 10−3 eV) from
charge fluctuation with the large 10−2 eV < μ results from
the Kondo effect, we obtain a Kondo scale consistent with the
experimental results. For a chemical potential in between these
two cases, the system should be in the mixed valence regime.
For gate voltages of higher than 30 V, a weaker dependence of
the impurity energy on the applied gate voltage as compared
to the dependence at smaller chemical potentials will lead to a
decrease in the Kondo temperature. Whether this effect or the
effect of RKKY interactions is responsible for the observed
nonmonotonic behavior on gate voltage will be the subject of
future studies.
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APPENDIX A: DERIVATION FOR SYMMETRY
BREAKING CASE

RSB(z) = 4

9πt2

∫ ∞

−∞

|ε|dε

ε − (z + μ)
tanh

(
ε − μ

2kBT

)
�2

ε2 + �2
.
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Defining y = ε − μ and using

tanh

(
βy

2

)
= 1

iπ

[
ψ

(
1

2
+ i

βy

2π

)
− ψ

(
1

2
− i

βy

2π

)]
.

As ψ( 1
2 ± i

βy

2π
) has poles on upper and/or lower complex plane, we may separate RSB(z) into two parts as RSB(z) = (I1 +

I2)4/(9πt2), with I1 and I2 given by

I1 = 1

iπ

∫ ∞

−∞
dy

|y + μ|
y − z

�2

(y + μ)2 + �2
ψ

(
1

2
+ i

βy

2π

)
, I2 = −1

iπ

∫ ∞

−∞
dy

|y + μ|
y − z

�2

(y + μ)2 + �2
ψ

(
1

2
− i

βy

2π

)
.

We may write I1 = I11 + I12 with

I11 = −1

iπ

∫ μ

−∞
dy

y + μ

y − z

�2

(y + μ)2 + �2
ψ

(
1

2
+ i

βy

2π

)
= − �

2π

∫ −μ

−∞
dy

y + μ

y − z

(
ψ

(
1
2 + i

βy

2π

)
y + μ + i�

− ψ
(

1
2 + i

βy

2π

)
y + μ − i�

)

=
{

�

2π
iπ

−i�

−i� − (z + μ)
ψ

(
1

2
− i

βμ

2π
+ β�

2π

)
+ �

2π

∫ −�+δ

0
i dx

ix

ix − (z + μ)

1

i(x + �)
ψ

(
1

2
− i

βμ

2π
− βx

2π

)

+ �

2π

∫ −∞

−�−δ

i dx
ix
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1

i(x + �)
ψ

(
1

2
− i

βμ

2π
− βx
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+ �

2π

∫ −μ

−∞
dy

y + μ

y − z

ψ
(

1
2 + i

βy

2

)
y + μ − i�

.

In the third and fourth lines of the above equation we replaced y by y = −μ + ix and δ → +0. A similar computation gives I12 as

I12 = �

2π

∫ ∞

−μ

dy
y + μ

y − z

(
ψ

(
1
2 + i

βy

2π

)
y + μ + i�

− ψ
(

1
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i dx
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Combining I11 and I12 we get

I1 = �

2π

∫
C̄1

dz̄
z̄ + μ

z̄ − z

(
ψ
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βz̄
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Here C̄1 denotes the integration path taken from z̄ = −μ − i∞ to z̄ = −μ along the imaginary axis. We may also write
I2 = I21 + I22 in a different region as

I21 = 1

iπ
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Here C̄2 denotes the integration path taken from z̄ = −μ to z̄ = −μ + i∞ along the imaginary axis. I22 is expressed as
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The sum of I1 and I2 is then given by
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)

− �

πi

(∫ −�−δ

−∞
+

∫ 0

−�+δ

)
dx

xψ
(

1
2 − i

βμ

2π
− βx

2π

)
(z + μ − ix)(x + �)

+ �

πi

(∫ �−δ

0
+

∫ ∞

�+δ

)
dx

xψ
(

1
2 + i

βμ

2π
+ βx

2π

)
(z + μ − ix)(x − �)

+ i�ψ

(
1

2
− i

βz

2π

)(
z + μ

z + μ − i�
− z + μ

z + μ + i�

) ]
.

Rewriting z̄ = −μ + ix in the expression of RSB(z) along the C̄1 and C̄2 paths we get

RSB(z) = 4

9πt2

{
−�

iπ

(∫ ∞

0
dx

xψ
(

1
2 + i

βμ

2π
+ βx

2π

)
(μ + z − ix)(x + �)

−
∫ ∞

0
dx

xψ
(

1
2 − i

βμ

2π
+ βx

2π

)
(μ + z + ix)(x + �)

)

+ �

iπ

(∫ �−δ

0
+

∫ ∞

�+δ

)
dx

[
xψ

(
1
2 + i

βμ

2π
+ βx

2π

)
(μ + z − ix)(x + �)

− xψ
(

1
2 − i

βμ

2π
+ βx

2π

)
(μ + z + ix)(x + �)

]
+ ψ

(
1

2
− i

βz

2π

) [ −2�2(z + μ)

(z + μ)2 + �2

] }
.

By defining F (x,μ,z) as

F (x,μ,z) = ψ
(

1
2 + i

βμ

2π
+ βx

2π

)
x + i(μ + z)

+ ψ
(

1
2 − i

βμ

2π
+ βx

2π

)
x − i(μ + z)

,

we may simplify the above expression as

RSB(z) = 4

9πt2

[
�

π

(
P

∫ ∞

0
dx

F (x,μ,z)x

x − �
−

∫ ∞

0
dx

F (x,μ,z)x

x + �

)
− ψ

(
1

2
− i

βz

2π

)
2�2(z + μ)

(z + μ)2 + �2

]
. (A1)

APPENDIX B: DERIVATION FOR SYMMETRY PRESERVING CASE

Considering integrals of the form

RSP(z) = 4

9πt4

∫ ∞

−∞

|ε|3dε

ε − (z + μ)
tanh

(
ε − μ

2kBT

)
�4

ε4 + �4
,

and letting y = ε − μ, we get

RSP(z) = 4

9πt4

{
1

iπ

∫ ∞

−∞
dy

|y + μ|3
y − z

�4

(y + μ)4 + �4

[
ψ

(
1

2
+ iβy

2π

)
− ψ

(
1

2
− iβy

2π

)] }
= 4

9πt4
(Ī1 + Ī2).

We take the integration regions into two parts by writing Ī1 = Ī11 + Ī12 with

Ī11 = −1

iπ

∫ −μ

−∞
dy

(y + μ)3

y − z

�4

(y + μ)4 + �4
ψ

(
1

2
+ iβy

2π

)
= −1

iπ

{
− 2πi

(
�e− 3

4 πi
)3

�e− 3
4 πi − (z + μ)

× �4ψ
(

1
2 − i

βμ

2π
+ i

β�e
− 3

4 πi

2π

)
�3

(
e− 3

4 πi − e
1
4 πi

)(
e− 3

4 πi − e
−1
4 πi

)(
e− 3

4 πi − e
3
4 πi

) −
∫ −∞

0
dx

x3

ix − (z + μ)

[
�4ψ

(
1
2 − i

βμ

2π
− βx

2π

)
x4 + �4

] }
,

Ī12 = 1

iπ

∫ ∞

−μ

dy
(y + μ)3

y − z

�4

(y + μ)4 + �4
ψ

(
1

2
+ iβy

2π

)
= 1

iπ

{
− 2πi

(
�e− 1

4 πi
)3

�e− 1
4 πi − (z + μ)

× �4ψ
(

1
2 − i

βμ

2π
+ i

β�e
− 1

4 πi

2π

)
�3

(
e− 1

4 πi − e
1
4 πi

)(
e− 1

4 πi − e
3
4 πi

)(
e− 1

4 πi − e
−3
4 πi)

−
∫ 0

−∞
dx

x3

ix − (z + μ)

[
�4ψ

(
1
2 − i

βμ

2π
− βx

2π

)
x4 + �4

] }
.
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Thus

Ī1 = Ī11 + Ī12 = �4ψ
(

1
2 − i

βμ

2π
+ iβ�e

− 3
4 πi

2π

)
2
(
�e− 3

4 πi − (z + μ)
) − �4ψ

(
1
2 − i

βμ

2π
+ iβ�e

− πi
4

2π

)
2
(
�e− πi

4 − (z + μ)
)

+ 2

iπ

∫ −∞

0
dx

x3

ix − (z + μ)

�4ψ
(

1
2 − i

βμ

2π
− βx

2π

)
x4 + �4

.

Similarly we can write Ī2 = Ī21 + Ī22 with

Ī21 = 1

iπ

∫ −μ

−∞
dy

(y + μ)3

y − z

�4

(y + μ)4 + �4
ψ

(
1

2
− iβy

2π

)
= 1

iπ

{
2πi

(
�e

3πi
4

)3

�e
3πi

4 − (z + μ)

× �ψ
(

1
2 + i

βμ

2π
− i

β�

2π
e

3πi
4

)
(
e

3πi
4 − e

πi
4
)(

e
3πi

4 − e
−πi

4
)(

e
3πi

4 − e
−3πi

4
) −

∫ ∞

0
dx

x3

ix − (z + μ)

[
�4ψ

(
1
2 + i

βμ

2π
+ βx

2π

)
x4 + �4

] }

and

Ī22 = −1

iπ

∫ ∞

−μ

dy
(y + μ)3

y − z

�4

(y + μ)4 + �4
ψ

(
1

2
− iβy

2π

)
= 1

iπ

{
2πi

(
�e

πi
4
)3

�e
πi
4 − (z + μ)

× �ψ
(

1
2 + i

βμ

2π
− i

β�

2π
e

πi
4
)

(
e

πi
4 − e

−πi
4

)(
e

πi
4 − e

3πi
4

)(
e

πi
4 − e

−3πi
4

) + 2πi
(μ + z)3�4

(μ + z)4 + �4
ψ

(
1

2
− i

βz

2π

)

−
∫ 0

∞
dx

x3

ix − (z + μ)

[
�4ψ

(
1
2 + i

βμ

2π
+ βx

2π

)
x4 + �4

] }
.

Thus

Ī2 = Ī21 + Ī22 = �4ψ
(

1
2 + i

βμ

2π
− i

β�

2π
e

3πi
4

)
2
(
�e

3πi
4 − (z + μ)

) − �4ψ
(

1
2 + i

βμ

2π
− i

β�

2π
e

πi
4
)

2
(
�e

πi
4 − (z + μ)

) − 2
(z + μ)3�4

(z + μ)4 + �4
ψ

(
1

2
− i

βz

2π

)

− 2

iπ

∫ ∞

0
dx

x3

ix − (z + μ)

[
�4ψ

(
1
2 + i

βμ

2π
+ βx

2π

)
x4 + �4

]
.

We combine results of Ī1 and Ī2 to get

RSP(z) = 4

9πt4
(Ī1 + Ī2) = 16

81πt4

{
2�4

π

∫ ∞

0
dx

x3

x4 + �4
F (x,μ,z) − 2

(z + μ)3�4

(z + μ)4 + �4
ψ

(
1

2
− i

βz

2π

)

+ Re

[
�4ψ

(
1
2 + i

βμ

2π
− i

β�

2π
e

3πi
4

)
�e

3πi
4 − (z + μ)

− �4ψ
(

1
2 + i

βμ

2π
− i

β�

2π
e

πi
4
)

�e
πi
4 − (z + μ)

]}
.
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