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Interfacing carbon nanotubes of arbitrary chiralities into linear heterojunctions
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Motivated by recent advances in synthesis and characterization of carbon nanotube (CNT) heterojunctions, we
introduce a systematic approach for obtaining atomic geometries that connect two carbon nanotubes of different
chiralities. Using our approach, it is straightforward to construct atomic interface geometries between two
single-walled CNT’s of arbitrary chiralities arranged at different orientations and angles. Our method generalizes
existing approaches and is readily applicable to joining domains of graphene nanoribbons as well. As an example,
we focus on linear heterojunctions, and we postulate the minimum number of simple topological defects required
at the interface, and the preferred spatial arrangements, to obtain maximally linear heterojunctions given any two
arbitrary chiralities. We also provide a physical picture of the defect structure of the resultant interface geometries
using the results of classical force-field simulations.
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I. INTRODUCTION

Since their discovery,1 carbon nanotubes (CNT’s) have long
held great promise as central building blocks of mechanical
and electrical components in a variety of nanoscale devices.
Single-walled CNT’s can be semiconducting or metallic, de-
pending on their chirality (n,m), and usually maintain a single
chirality over their entire length. However, it is also possible to
grow or connect two CNT’s of different chiralities, resulting
in a zero-dimensional sp2-bonded nanoscale interface, or
heterojunction (HJ). Such CNT-HJ’s themselves constitute a
distinct subclass of carbon nanostructures, and could eventual
play a role as active elements in all-carbon nanoelectronic
devices.

Over 15 years ago, a theoretical study by Chico et al.
predicted that a semiconducting-metallic CNT HJ would
behave like a Schottky diode.2 But because CNT HJ’s occur
rarely in nature, and because of the fundamental challenges
associated with simultaneous structural characterization and
electrical measurements at nanometer length scales, many
properties of this important class of nanoscale interfaces have
yet to be systematically studied. Novel transport behavior of
semiconductor-metallic CNT HJ’s has been reported, includ-
ing rectification3 and, more recently, molecular-scale quantum
dot behavior4 for a HJ of well-defined chiralities. Previous
work on CNT-HJ’s with scanning tunneling microscopy5–7

revealed the presence of multiple interfacial pentagons and
heptagons, which are the simplest topological defects possible
in graphene without creating dangling bonds. While it is well
known that a pair of such simple topological defects can be
used to connect two CNT’s8,9 of different chiralities, previous
theory has demonstrated that their electronic properties can
depend critically on the number and arrangement of such
defects.2,10–12 The physical factors influencing the number of
such defects and their spatial arrangement on formation—as
well as how those structural properties are connected to
potential device performance—are still largely unexplored.

CNT-HJ’s are most often discovered by chance, primarily
due to a dearth of controllable synthesis strategies. Yet recent
advances in CNT-HJ synthesis may change this situation.
For example, controlling the temperature during chemical

vapor deposition13 has been observed to alter chirality during
growth. Direct fusing of two CNT’s of dissimilar chiralities
through current-induced annealing has also been recently
reported.14 Rayleigh scattering-based techniques15 can be used
to determine constituent chiralities, and when combined with
precise electrical transport measurements through CNT-HJ’s,4

such studies would enable a systematic understanding of
relationships between structure and electronic properties of
single-walled CNT-HJ devices.

The advances in synthesis and characterization described
above will lead to a need for additional atomistic theoretical
work on this unique class of nanostructures. A central element
of any atomistic theory of a CNT HJ device is an atomistic
model of the interface. In principle, any two CNT’s can be
simply interfaced8,9 using a single pentagon and a single
heptagon. However, as discussed in Sec. II, to relieve strain
such interfaces often result in HJ’s bent at an appreciable
angle. In contrast, CNT-HJ’s reported in recent literature4–6

are largely linear, suggesting that the interfacial atomic
structure cannot be simply rationalized by one pentagon
and heptagon.8,9 In addition, existing schemes to connect
dissimilar CNT’s8,9 cannot be extended to obtain coplanar
connectivity between two dissimilar graphene domains.16,17

In this paper, we develop a general geometric approach
for interfacing two single-walled CNT’s of arbitrary chirality
at arbitrary angles with a minimum number of topological
defects. We illustrate our method by constructing HJ’s between
two CNT’s that are linear in extent. Our approach constitutes a
well-defined scheme for building atomic models of interfaces
of connected CNT’s or graphene nanoribbons16,17 of arbitrary
chirality, a useful starting point for future studies of the
electronic and transport properties of carbon nanostructured
materials.

In Sec. II, we start with the simplest approach to connect
two single-walled CNT’s with a single pentagon and heptagon,
and illustrate how it often leads to bent HJ’s. We then
describe how the colinearity of the constituent CNT’s increases
systematically with the introduction of additional topological
defects, and how a linear HJ emerges from an optimal
minimum number of such defects. In Sec. III, we provide
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examples connecting different types of CNT’s, followed by a
companion study of the effect of the arrangement of defects
on the shape, i.e., relative orientation of the constituent CNT’s
of the HJ, and their energetics using an empirical force-field
model. Although we focus on connecting CNT’s of similar
radii, our approach can be easily generalized to connect CNT’s
of different radii, as shown in Sec. II B, and also graphene
nanoribbons. Based on the proposed scheme, freely available
web-based software18 has been made available to form linear
HJ’s from dissimilar CNT’s of similar radii.

II. INTERFACING CARBON NANOTUBES

Upon unwinding, two single-walled CNT’s of arbitrarily
different chiralities (n,m) and (n′,m′) form graphene nanorib-
bons, with the graphene lattice in one ribbon rotated relative to
that in the other by an angle that is not necessarily a multiple
of 60◦, as shown in Figs. 1(a) and 1(b). Thus the problem of
connecting two CNT’s can be reduced to that of connecting two
graphene nanoribbons at different orientations. The chiralities
of the two CNT’s define two characteristic triangles ABC

and A′B ′C ′ at the ends of the unwound ribbons, as shown in
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FIG. 1. (a) Two CNT’s of similar radii but dissimilar chirality.
(b) Characteristic triangles ABC and A′B ′C ′ at the edges of the
two graphene ribbons due to unwinding of the CNT’s. (c) Interface
quadrangle ABA′C formed by connecting the two characteristic
triangles.

Fig. 1(b). To connect the two CNT’s to form an (n,m)-(n′,m′)
HJ, the irregular quadrangle ABA′C, formed by joining the
two triangles by their circumferential sides BC and B ′C ′, as
shown in Fig. 1(c), must be tiled with three-coordinated carbon
atoms with minimally strained C-C bonds. Below we describe
how this can be accomplished in a general way to achieve
interfaces of increasing degree of linearity.

In what follows, minimum energy structures of CNT
HJ’s are obtained using Tersoff-Brenner19,20 classical force
fields. More specifically, we use a conjugate gradient min-
imization of the total energy EHJ, as computed with the
empirical interatomic potential (EIP) introduced by Tersoff19

and Brenner20 (TB). This short-range and bond-order-type
TB-EIP has been extensively used21–23 in prior studies of
carbon-based materials, including CNT’s.

Based on the total energies of the optimized HJ’s obtained
using the TB-EIP force fields, we compute the strain energy
associated with the interfaces connecting CNT segments
of different chiralities. For all calculations, the HJ’s are
finite, consisting of two dissimilar finite CNT segments. The
segments are chosen to be long enough so that in the middle
of each segment, the effect of the uncapped ends is negligible,
and the C-C bond lengths are converged to that for an infinite
CNT of the same chirality. After optimizing the structure of
an HJ, there are several C-C bonds in the vicinity of the
interface, whose lengths depart from the respective bulk value.
We refer to the energy associated with these strained bonds as
the interfacial strain energy Estrain. To calculate Estrain from
the total energy EHJ, we first subtract out the total energy of
a hypothetical HJ with the same C-C connectivity scheme but
no strained C-C bonds. This gives us the total strain energy
due to the interface and the two uncapped ends. Thus the strain
energy of the interface, connecting two finite CNT segments
1 and 2, is given by

Estrain = EHJ − NHJE0 − (Eend1 + Eend2), (1)

where NHJ is the total number of atoms in the HJ, and Eend1(2)

is the strain energy associated with the uncapped end of tube
1 (2). Additionally, E0 = (E1 + E2)/2, where E1 (E2) are the
energy (atom) of periodic tubes of chiralities 1 and 2, with C-C
bond lengths equal to their bulk value. The HJ’s considered
here are of length typically between 60 and 70 Å, with NHJ in
the range of 850–1050 atoms.

A. Illustrative example: Connecting (10-8)-(12,6) CNT’s

To tile the “interface quadrangle” ABA′C by three-
coordinated atoms, the first task is to identify the smallest
spatial region (or “patch”) that cannot be tiled by hexagons
alone. In Fig. 2(i)(a)–(c), we identify these patches as those
without any solid C-C bonds within the context of a specific
example, a (10,8)-(12,6) interface. The simplest way to “stitch
up” the patch, particularly in the present case where (n + m) =
(n′ + m′), is to connect a pair of atoms sequentially as shown
by dashed lines in Fig. 2(i)(a)–2(c). Straightforwardly, if
(n + m) �= (n′ + m′), we need only to introduce extra “zigzag”
ridges of number |(n + m) − (n′ + m′)| within the patch. Note
that in this simplistic approach to tiling the “patch,” we would
always obtain a single pentagon and a single heptagon, as
shown with dark and light shading in Fig. 2(i)(a) .
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FIG. 2. (i)(a)–(d) Heterojunctions with different numbers of
topological defects with CNT (10,8) on the left and CNT (12,6)
on the right. (ii)(a)–(d) Corresponding energy-minimized structures.
(iii) The net strain energies for the four different heterojunctions.
For reference, within the empirical force-field model (TB-EIP) used
in this work, the strain energy to create a single pentagon-heptagon
paired defect in a CNT of similar radii is about 5.4 eV.

Thus the example shown in Fig. 2(i)(a) presents the simplest
scheme to connect single-walled CNT’s (10,8) on the left
to (12,6) on the right. The C-C bonds indicated by dashed
lines are under tensile strain, and each of the atoms would
eventually need to relax further toward one other to form
stable C-C bonds. As a result of the induced strain at the
interface, the two graphene ribbons will no longer be coplanar;
this implies that if the two ribbons are wound up, the two
CNT’s will not be collinear. In Fig. 2(ii)(a), we show the
minimum energy structure of the HJ obtained with classical
force fields.19,20 This example indicates that to make the two
CNT’s maximally collinear, the simple solution is to reduce
the number of unrealistically long C-C connectivities in the

interface quadrangle, which is clearly beyond the scope of
the simplest scheme involving a single pentagon and a single
heptagon.

Figure 2(i)(b)–(d) illustrates that indeed, with the intro-
duction of an increasing number of pentagon-heptagon (5-7)
pairs, the number of unrealistically long C-C connectivities
is reduced, reaching zero with the introduction of four
such pairs of pentagons and heptagons. Concomitantly, the
minimum energy structure of the HJ’s becomes increasingly
linear, i.e., the constituent CNT’s become more collinear
with the introduction of such defect pairs, as is evident from
Fig. 2(ii)(b)–(d). Note that the HJ shown in Fig. 2(ii)(d) is
perfectly linear, with only small protrusions and depressions
localized at the 5-7 defect sites.

Strain energies corresponding to the four interfaces shown
in Fig. 2(i)(a)–(d) are plotted in Fig. 2(iii). As is evident, the
interface that results in a bent HJ [Fig. 2(ii)(a)] is least strained.
This implies that the collinear structure of the (10,8)-(12,6)
HJ with four 5-7 defects at the interface [Fig. 2(ii)(d)] is
not thermodynamically favorable. However, to evolve into
a less strained structure, the number of carbon atoms at
the interface would have to be reduced, as the different
connectivity schemes require different numbers of atoms to
tile the interface quadrangle while preserving bond topology.
This points to large activation barriers between the different HJ
structures. Thus the collinear structure of the (10,8)-(12,6) HJ,
which is not a global minima for strain energy, nevertheless
can be locally stable under ambient conditions. However, as
we show here, one can select chiralities of constituent CNT
segments such that they form a thermodynamically favorable
stable collinear HJ.

B. General approach for heterojunctions of increasing linearity

In the previous section, we have shown that introducing
additional topological defects in a chirality-specific interfacial
quadrangle can increase the linearity of CNT and GNR HJ’s.
In this section, we will outline an approach to determine the
required type and number of topological defects to tile the
interface quadrangle such that all the C-C bonds are minimally
strained. This approach is general in that it can also be used to
enumerate and position defects to interface CNT’s at arbitrary
angles.

To begin, we note that a single hexagon can be seen to
constitute a “unit quadrangle” whose sides u,v,u′,v′—which
are similar to indices n,m,n′,m′ of the interface quadrangle—
are all unity, as shown in Fig. 3(a). Therefore, if n �= m′
and/or n′ �= m, the interface quadrangle cannot be tiled by

(a) (b) (c)
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v=1

u′=1

v′=1

v=1

v=2

u=3
u′=3

v′=1

u′=2
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FIG. 3. The three basic quadrangles to be used as building blocks
to tile the interface polygon.
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hexagons alone; quadrangular building blocks of unequal sides
are necessary. For example, to tile an interface quadrangle
with (n − m′) = (n′ − m) > 0, similar quadrangular building
blocks are required. The smallest block would have (u − v′) =
(u′ − v) = 1. Specifically, |n − m′| such building blocks, in
addition to the unit quadrangles (i.e., simple hexagons), are
needed to tile the interface quadrangle. Furthermore, if (n −
m′) �= (n′ − m), similar quadrangular building blocks with
(u − v′) �= (u′ − v) are needed to tile the interface quadrangle.
The smallest such building block should therefore satisfy
(u − v′) = 2,(u′ − v) = 1.

The smallest building block with (u − v′) = (u′ − v) = 1
is a 5-7 defect, a single pentagon and heptagon joined together
through a common C-C bond, as shown in Fig. 3(b). We refer
to this as a B-type building block. Similarly, the simplest
quadrangular building block with (u − v′) = 2,(u′ − v) = 1
would be two 5-7 defects connected as shown in Fig. 3(c).
We denote this structure as a C-type building block. This
is demonstrated in Fig. 4, where the interface quadrangle
shown in (a), connecting (7,5) and (6,6), has (n − m′) =
(n′ − m) = 1, while the quadrangle shown in (b), connecting
(8,5) and (6,6), has (n − m′) = 2,(n′ − m) = 1. Accordingly,
the (7,5)-(6,6) and (8,5)-(6,6) HJ’s require one B-type block
and one C-type block, respectively, to complete the tiling of
the interface quadrangle with three-coordinated carbon atoms.
Note that the B- and C-type quadrangular blocks are shown as
solid lines in Fig. 4, while the rest of the interface quadrangle
can all be tiled with hexagons alone.

Having defined three irreducible quadrangular building
blocks (Fig. 3)—a single hexagon (A) and two arrangements
of 5-7 defects (B and C)—the next task is to determine the
minimum number of B- and C-type blocks required to connect
two CNT’s of chiralities (n,m) and (n′,m′).

To simplify the following discussion, we assume n �
m′,n′ � m, and (n − m′) � (n′ − m), as shown in Fig. 1(c).
The characteristic triangles of the two CNT’s can always be
oriented such that the resultant interface quadrangle satisfies
these conditions. If p and q are the minimum numbers of B

and C defect blocks inside the interface quadrangle, then its

(7,5)
(a) (b)

(6,6) (8,5) (6,6)

FIG. 4. HJ’s made of CNT segments of chiralities (6,6) and (5,7)
shown in (a) requiring one B-type block, and chiralities (6,6) and
(5,8) shown in (b) requiring one C-type block, in order for the HJ’s
to be maximally linear.

opposing perimeter segments [(AB,CA′) and (BA′,AC) in
Fig. 1] reduce in length by (p + 2q) and (p + q) in units of
|�a|, with �a being a primitive lattice vector of graphene. Thus,

n − m′ = p + 2q, (2)

n′ − m = p + q, (3)

which yield

p = 2(n′ − m) − (n − m′), (4)

q = (n − m′) − (n′ − m), (5)

implying a total of (n′ − m) defect blocks.
It is important to note that there are two possibilities in

which any two CNT’s of dissimilar chirality can be connected.
In one case, the n and m of one of the CNT’s is reversed
with respect to that in its counterpart in the other case. For
example, as shown in Fig. 7(i)(a)–(h) and Fig. 8(i)(a)–(f),
(10,8) and (12,6) CNT’s can be interfaced to form linear
(10,8)-(12,6) or (8,10)-(12,6) HJ’s, with just two and four
5-7 defects, respectively. As shown in Sec. III, the HJ’s with
a higher number of 5-7 defects at the interface have a lower
number of strained C-C bonds, and thus in general are more
energetically favorable.

In the special case in which a HJ consists of (n �= 0,m �= 0)
and zigzag (n′,0) CNT’s, the interface quadrangle reduces
to a triangle. To connect two tubes in this case, one can
convert the interface triangle to a quadrangle similar that of an
(n + 1,m)-(n′,1) case. This is demonstrated in Fig. 5, which
shows an interface triangle ABC connecting (8,10) to (16,0).
The interface triangle ABC is expanded to the quadrangle
AB ′C ′C, which connects (9,10) with (16,1). While rolling up
ribbon, if we ensure that the segment AA′ coincides with CC ′,
then we effectively connect CNT (8,10) to CNT (16,0).

To join CNT’s of different radii, building block C becomes
more important. In fact, a single C block can, in principle, be
thought to connect two CNT’s of chiralities (3,2) and (3,1),
whose radii, although unphysically small, are nevertheless
substantially different. Accordingly, with three C blocks we
can connect CNT’s of chiralities 3 × (3,2) → (9,6) and 3 ×
(3,1) → (9,3), which are of radii 5.10 and 4.22 Å, respectively,
as shown in Fig. 6(a). Figure 6(b) shows the energy-minimized
structure of an HJ made of CNT’s of chiralities (8,14) and
(12,6) with radii 7.52 and 6.19 Å, respectively, through an
interface quadrangle that incorporates four C-type blocks.

We note that the proposed scheme can be used to cap CNT’s
through a two-step process. First the CNT can be connected to
an armchair [(n,n)] edge of similar radius. Next the armchair
edge can be capped using half of a fullerene of commensurate
radius.

III. INTERFACIAL DEFECT ARRANGEMENT

Having established the minimal number of defects required
to join two CNT’s in a collinear fashion, we identify likely
arrangements of defects within the quadrangle. To start,
we consider the formation energetics of individual 5 and 7
defects. The obtuse interior angles between edges of pentagons
(heptagons) are smaller (larger) than for regular hexagons.
This results in compressive strain fields around pentagons and
tensile strain fields around heptagons. For adjacent pentagons
and heptagons, as in a 5-7 defect, these strain fields partially
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FIG. 5. Interface triangle ABC connecting CNT’s (8,10) and
(16,0).

compensate one another, reducing the total formation energy
relative to isolated pentagons and heptagons. Further, when
two 5-7 defects are in the vicinity of one another, arranged
so that the pentagon of one is closer to the heptagon of the
other, additional compensation of local strain fields will occur
for similar reasons, reducing the overall strain energy, as in a
Stone-Wales defect. Thus, we expect a tendency of defects at
CNT HJ’s to form in 5-7 pairs, and for these pairs to cluster in
a manner that compensates their local strain fields.

To explore this more concretely, we focus on an
(8,10)-(12,6) HJ, a system requiring only two B-type blocks

(a) (b)

FIG. 6. (a) HJ composed of CNT’s (9,6) and (9,3). (b) HJ
composed of CNT’s (14,8) and (12,6).
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FIG. 7. (i)(a)–(h) Different arrangements of two defects at the
interface of HJ (8,10)-(12,6). (ii)(a)–(h) Histogram plots of bond
lengths in the corresponding energy-minimized structures. (iii) Net
strain energies computed with TB-EIP.

(two 5-7 defects) to maintain connectivity within the interface
quadrangle. Using force fields, we compute the local minima
of energy for different separations between the two 5-7 defects
along the circumference, as shown in Fig. 7(i)(a)–(h). In
Fig. 7(ii), we plot strain energies as a function of separation
for two 5-7 defects along the circumference. Interestingly,
we find that a global minimum occurs when the two 5-7
defects are adjacent to each other, back-to-front, such that
the heptagon of one of the 5-7 defects is adjacent to the
pentagon of the other 5-7 defect, or at best separated by just
one hexagon, as shown in Fig. 7(i)(b) and 7(i)(c). This sets
the length scale for maximal cancellation of the strain fields
of one 5-7 defect due to the other. The net strain increases
with separation between two 5-7 defects oriented this way, as
the mutual cancellation of strain fields diminishes. However, as
argued earlier, there exist activation barriers between HJ’s with
different 5-7 arrangements, as the number of atoms required to
tile the interface quadrangle varies systematically with defect
separation. We expect the height of the activation barrier will
be directly related to the degree of variation in the number of
atoms tiling the interface quadrangle, which in general should
increase as the number of 5-7 defects at the interface grows.

There are many ways to arrange B- and C-type blocks in
the interface quadrangle. Different arrangements of four 5-7
defects at a (10,8)-(12,6) interface are shown in Fig. 8(i)(a)–
(f). The corresponding energy-minimized structures shown
in Fig. 8(ii)(a)–(f) suggest that linearity of the HJ increases
with uniformity of distribution of the defects along the
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FIG. 8. (i)(a)–(f) Interface quadrangle showing different arrange-
ments of the four 5-7 defects connecting CNT’s (10,8) and (12,6).
(ii)(a)–(f) Corresponding energy-minimized structures. (iii) Net strain
energies computed with TB-EIP.

circumference. This arises from uniform mutual cancellation
of strain due to the equispaced 5-7 defects. Net strain energies
corresponding to different arrangements of four 5-7 defects

are shown in Fig. 8(iii). A global minimum occurs when the
four 5-7 defects are adjacent to each other back-to-front so
that the heptagon of one defect sits next to the pentagon of
the other, as shown in Fig. 8(i)(e). This is consistent with the
global minimum found in the case of two adjacent 5-7 defects,
and is consistent with 5-7 defects preferring to be adjacent to
each other back-to-front, as shown in Fig. 7(i)(b).

The trends in the total energy and overall linearity of the
HJ’s as functions of the arrangement of defects suggest that
in order for the linear HJ’s to be energetically favorable, their
interface defects must be sufficiently close to one another and
be uniformly distributed around the circumference. This im-
plies that, given any two CNT’s, out of the two primary options
for their connectivity—(m,n)-(m′,n′) and (n,m)-(m′,n′)—the
one that requires the higher number of B and/or C blocks is a
better candidate to form a linear HJ. Thus in reality there exist
only a few chirality combinations that allow the formation of
perfectly linear HJ’s. We propose that if the chiralities of the
two CNT’s approximately satisfy the inequality

R =
√

m2 + n2 + mn − (3q + 2p)

p + q
� 1, (6)

then the HJ has a greater chance to be linear. The basis of
the inequality is simply the assertion that defect blocks along
the circumference should not be separated by more than one
hexagon for linear HJ’s to minimize strain energy. For (n,m)
and (n′,m′) such that the defect blocks are separated by more
than one hexagon, we expect that they may eventually migrate
close to each other, which would then result in net unbalanced
strain at the interface and consequently a bent HJ. Also, as the
strain fields associated with the B- and C-type blocks differ in
extent, for the linearity of an HJ, it is preferable that p and q

are multiples of each other and both greater than 1. In the case
of the HJ’s studied here, the value of Re for the (10,8)-(12,6)
HJ, with four 5-7 defects at the interface, is 1.9, while that
for (8,10)-(12,6), with two 5-7 defects at the interface, is 5.8,
implying that none of the HJ’s are feasible candidates for a
linear HJ. This is consistent with the optimized HJ’s shown
in Figs. 8 and 7, respectively. Instead, the (8,10)-(16,0) HJ,
shown in Fig. 5, and with Re = 0.33, is expected to form a
robust collinear HJ, as in this case defects can be uniformly
arranged adjacent to each other back-to-front over the entire
circumference.

IV. CONCLUSION

To conclude, we have discussed a class of single-walled
CNT HJ’s that are maximally linear in shape. We have shown
the possibility of seamless collinear connectivity between
two dissimilar CNT’s through interfaces incorporating simple
topological defects, whose type and numbers are unambigu-
ously determined by the chiralities of the constituent CNT’s.
The same scheme can also be used to connect two graphene
domains. We point out the criteria that the chiralities of the
constituent CNT’s should necessarily satisfy in order for
the resultant linear HJ to be energetically favorable. With
the advent of new experimental techniques14 to controllably
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make CNT HJ’s, the structural algorithm proposed here
can in principle guide the synthesis of linear HJ’s for both
fundamental studies and applications.
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