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We present the formulation of a scattering matrix method for the study of light-scattering properties of metal
films. The method is employed for the study of the optical excitation of surface plasmons in a gold film of
15–230 nm thickness, patterned periodically with subwavelength nanoholes. The gold film is placed on a thick
SiO2 wafer, and the nanoholes as well as the top side of the gold film are filled with H2O. Light is incident on the
gold film from either the SiO2 or the H2O side. The extinction and reflectance spectra of the system, as well as
the electromagnetic field distributions at certain characteristic wavelengths, are calculated. The extinction spectra
show, depending on system parameters, one or several peaks in the visible wavelength range. The extinction
peaks are found to be caused by surface plasmons. A simple model based on the dispersion relation for surface
plasmons in an unperforated gold film is shown to predict the peak positions of the extinction for thick perforated
films very well. Even for thin films, this simple model, which includes coupling of surface plasmons on both
surfaces of the film, predicts peak positions of the extinction well if the hole diameter is small enough. As the hole
diameter increases, the extinction peaks of thin films show redshifts. Extinction peaks caused by surface plasmons
at the SiO2/Au interface in thick films exhibit strong redshifts when the film thickness is decreased. However,
the extinction peaks caused by surface plasmons at the H2O/Au interface in thick films show a completely
different behavior. In this case, the extinction peaks do not move noticeably when the film thickness is decreased.
Instead, they are weakened and finally disappear. It is also found that each extinction peak is accompanied by
an extinction dip and that a reflectance dip is located in the wavelength between the extinction peak and the
dip. This arrangement of an extinction peak, a reflectance dip, and an extinction dip is a general property of the
surface-plasmon excitation. The calculated electromagnetic field distributions in both thick and thin films show
clearly the signature of the excitation of surface plasmons at the extinction peaks, the extinction dips, and the
reflectance dips. In thick films with small holes, the electric-field strength in the vicinity of the holes is weak
at wavelengths for which surface plasmons are excited. In contrast to this, for thin films at the surface-plasmon
excitations, a much stronger electric field is seen in the vicinity of the holes.
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I. INTRODUCTION

The discovery of the extraordinary optical transmission
enhancements through an optically thick metal film patterned
with an array of subwavelength holes1 has initiated great
interest in the research society.2–28 A metal-dielectric interface
can support bound surface waves, so called surface plasmons
(SP’s).29 SP’s cannot be excited by normally incident light
in smooth, planar, metal films.29 Initially, the transmission
maxima were found to be closely connected to the excitation
of SP’s in both hole1,3,4 and slit5 arrays, where the period-
icity of the array enables the SP excitation. At frequencies
corresponding to the transmission maxima, both SP’s and
hole excitations were seen to occur.6 These results are in
agreement with other studies, which show that both SP’s and
localized waveguide modes are of importance for the enhanced
transmission through a metal film with an array of either
holes7,8 or slits.9 Furthermore, it has been shown that both
the size and geometry of the holes have large impacts on the
extraordinary optical transmission.10–15 Indeed, it is possible
to study the extraordinary optical transmission enhancements
in terms of coupled modes where the SP’s of the continuous
film are coupled with the localized waveguide modes of either
the nanoholes16 or the nanoslits.17

The transmission spectra of an optically thick metal film
perforated with a periodic array of subwavelength holes

also exhibit well-defined minima (transmission suppressions).
Initially, the transmission suppressions were assumed to be
due to the Rayleigh wavelength anomalies.3,18 The Rayleigh
wavelength anomalies occur at frequencies for which one of
the diffracted orders is parallel to the film surface.30 It was,
however, noted that both for slits19 and for two-dimensional
(2D) arrays of holes,6,16,20,24 the positions of the transmission
minima seemed to coincide with the frequencies of SP’s
on unperforated surfaces. In corroboration to this claim, a
perturbative approach21 for SP effects on flat interfaces peri-
odically corrugated by subwavelength apertures has predicted
that the transmission suppressions appear at these frequencies.
However, the cause of transmission minima in perforated metal
films is still claimed from time to time13–15,22,23 to be due to the
Rayleigh wavelength anomalies. A focused investigation on
the effect of SP’s on the suppressed transmission is, therefore,
necessary to clarify the cause of the transmission suppressions.

SP’s in nanostructured materials can be used, for example,
for beaming and focusing of light transmitted through sub-
wavelength slits,25–28 for enhancement of the light-emission
efficiency of light-emitting diodes,31 and for decreasing the
beam divergence from edge-emitting semiconductor lasers.32

Biosensing is another field for which nanostructured plas-
monic materials are of large interest.33,34 For all these
applications, it is important to know whether SP’s in periodic
structures cause transmission suppressions.
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The objective of this paper is to investigate the impact
of SP’s on transmission suppressions in both optically thick
and thin metal films. We carry out a full electromagnetic
field modeling and study the light-propagation properties and
electromagnetic field distributions by employing a scattering
matrix method. Such a method has been successfully used
to study the scattering problems of scalar waves and spinor
waves.35–41 Here, we will employ the formalism to treat the
scattering problems of electromagnetic field waves of light,
i.e., vector waves, in a dissipative material system. We consider
a periodically patterned gold film surrounded by two different
homogeneous materials. The periodicity, hole diameter, film
thickness, and surrounding materials are varied. We present
our results in terms of the (optical) extinction, instead of the
transmittance, to emphasize that we move our attention from
the extraordinary optical transmission enhancements to the
transmission suppressions.

We have found that SP’s cause transmission minima (ex-
tinction peaks) in both thick and thin, periodically perforated,
metal films. We show that an extinction peak in a thick film
caused by an SP localized to the interface between the gold
film and the homogeneous material of higher refractive index
redshifts as the film thickness is decreased. A completely
different behavior is found for an extinction peak that is caused
in a thick film by an SP localized to the interface between the
gold film and the homogeneous material of lower refractive
index. In this case, the extinction peak did not move noticeably,
but weakened and finally disappeared when the film thickness
was decreased. We have also found that each extinction peak
is accompanied by an extinction dip and a reflectance dip, and
that the reflectance dip is located in the wavelength between
the extinction peak and the dip.

The remainder of the paper is organized as follows. We
start by introducing the system in Sec. II and presenting a
formulation of a general scattering matrix method for light
scattering in metal and dielectric films. In Sec. III, we present
the results of calculations and discuss the dependencies of the
extinction and reflectance spectra on system parameters. We
compare the results of the calculated extinction and reflectance
spectra with the results obtained for optical excitation of SP’s
in unperforated films. We also calculate the electromagnetic
field distributions at the resonant SP’s of the system. Finally, in
Sec. IV, we summarize the paper and give concluding remarks.

II. METHOD

A. System

The system we study consists of a gold film of thickness
t sandwiched between SiO2 on the left side and H2O on the
right side, as shown in Fig. 1. Light is incident either from
the left or from the right as a plane wave with wave vector
k · êz �= 0, where êz is the unit vector along the z axis. There
is a periodic array of holes in the gold film. The holes have
diameter D and the array has periodicity L in both the x and
the y directions. The holes are filled with H2O. The z axis is
chosen in such a way that z = 0 and z = t are at the SiO2/Au
and the H2O/Au interface; see Fig. 1. The x and y axes are
chosen so that x ∈ [0,L] and y ∈ [0,L] define a unit cell with
the center of the hole located at (L/2,L/2); see Fig. 2. The
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FIG. 1. (Color online) Cross-sectional view of the system studied
in this work. The system consists of a gold film of thickness t

perforated by a periodic array of subwavelength holes of diameter
D and two surrounding materials SiO2 and H2O. The holes are filled
with H2O and the array has a period of L in both the x and y directions.
Here in the figure only a cross-sectional view of a unit cell of the
system is shown.

generalized permittivity ε̃ is material-dependent and can be
obtained from

ε̃(x,ω) = ε0n(x,ω)2, (1)

where ε0 is the permittivity of vacuum and n is the refractive
index. In this work, tabulated values of the refractive index n of
gold,42 H2O,43 and SiO2 (Ref. 44) are used for the calculation
of ε̃. The system is dissipative but nonmagnetic. The results are
presented in terms of the free-space wavelength λ ≡ 2πc/ω,
where c is the speed of light.

B. Scattering matrix method

We present the formulation of a scattering matrix method
for the scattering problem of light by a metal material system
under the condition that light is incident from a semi-infinite
region located either on the left side or on the right side of the
system. The method is general in the sense that it allows for the
material system to be of arbitrary form and the semi-infinite
regions to be of arbitrary homogeneous materials. In addition
to the scattered fields (far-field regions), the method can be
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FIG. 2. (Color online) Front view of the gold film in the system
with the periodic array of H2O-filled holes. The holes have a diameter
D and the array has a period L in both the x and y directions. Here,
only nine unit cells of the system are shown. The dotted line, together
with the coordinate system axes, indicates the unit cell used in the
simulations.
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used to obtain the electromagnetic fields near and inside the
material structure in a straightforward manner.

Assume that all the media in the structure have a linear
response to the electromagnetic field in the form of

D(x,ω) = ε̃(x,ω)E(x,ω), (2)

B(x,ω) = μ̃(x,ω)H(x,ω), (3)

where μ̃(x,ω) ≡ μ(x,ω)μ0 is the permeability, ω is the
frequency of incident light, and E, D, B, and H are the
the electric field, the electric displacement, the magnetic
induction, and the magnetic field, respectively. Here, we
assume μ̃(x,ω) ≡ μ(x,ω)μ0, where μ0 is the permeability
of vacuum, and hence allow for magnetic materials in the
formulation. We also assume that all the time dependencies
in E, D, B, and H are of the harmonic form. The Maxwell
equations are then written as

∇ × E(x,ω) = iωμ̃(x,ω)H(x,ω),

∇ × H(x,ω) = −iωε̃(x,ω)E(x,ω),
(4)

∇ · [μ̃(x,ω)H(x,ω)] = 0,

∇ · [ε̃(x,ω)E(x,ω)] = 0.

To simplify the notations, we will drop the argument ω from
all the physical quantities from now on.

To solve Eq. (4) for a given incident light of frequency ω,
we divide the system into N slices along the z direction in
such a way that both ε̃ and μ̃ are z-independent in each slice,
as schematically shown in Fig. 3. In the schematic figure, zj

is set at the left end of slice j . The semi-infinite regions on the
left and the right sides of the structure have z-independent ε̃

and μ̃ and are denoted as slice 0 and slice N + 1. The incident
light impinges on the system from these semi-infinite regions.

Let us consider the j th slice, in which zj � z �
zj+1, and denote the z-independent ε̃ and μ̃ in this
slice by ε̃j and μ̃j . The Maxwell equations, Eq. (4),

Slice Slice Slice
1 i N

ZL=Z1 Z2 Zi Zi+1 ZN ZN+1=ZR

C +
L

C -
L

C +
R

C -
R

C +
i

C -
i

FIG. 3. Schematic view of a system employed in the formulation
of the scattering matrix method in this work. The system is divided
into N slices in the z direction such that the permittivity and
permeability in each slice can be considered to be z-independent.
The C±

i are expansion coefficients of the field in slice i in terms of
the eigenmodes of the slice.

can then be written as45

∂

∂z

[
E

j
x (x)

E
j
y (x)

]
= T̂ j

1

[
H

j
x (x)

H
j
y (x)

]

≡
[

T̂ j

1,xx T̂ j
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T̂ j
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j
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]
, (5)

∂
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]
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j
x (x)

E
j
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]
, (6)

where E
j
x and E

j
y (Hj

x and H
j
y ) are the x and y components

of the electric field Ej (the magnetic field Hj ) in the j th slice
and the operators T̂ j

1 and T̂ j

2 are given by
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Combining Eqs. (5) and (6) gives

∂2

∂z2

[
E

j
x (x)

E
j
y (x)

]
= T̂ j

1 T̂ j

2

[
E

j
x (x)

E
j
y (x)

]
. (9)

This equation has, as possible solutions, eigenmodes of
the form Ẽα

j (x) = Ẽα
j (x,y)e±ikα

j (z−zj ), where Ẽα
j (x,y) =

[Ẽα
j,x(x,y),Ẽα

j,y(x,y)]T . By employing a complete, orthonor-
mal basis, {φm(x,y)}, the eigenmodes can be obtained from
the matrix eigenvalue equation,

βα
j dα

j = −T j

1 T j

2 dα
j , (10)

where βα
j = (kα

j )2, T j

λ is the operator matrix obtained when

the operator T̂ j

λ is projected onto the basis {φm(x,y)}, i.e., T j

λ

is a 2 × 2 block matrix whose elements in block 

′ are given
by (T j

λ,

′)mn = 〈φm|T̂ j

λ,

′ |φn〉, and dα
j contains the expansion
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coefficients of Ẽα
j (x,y) in the basis {φm(x,y)} and can be

written in the vector form of

dα
j =

[
dα

j,x

dα
j,y

]
. (11)

A general solution for the electric field, Ej (x) =
[Ej

x (x),Ej
y (x)]T , in slice j can be expressed in terms of the

eigenmodes as46

E
j

x(y)(x) =
∑

α

Ẽα
j,x(y)(x,y)

[
C

+,α
j eikα

j (z−zj ) + C
−,α
j e−ikα

j (z−zj )]
=

∑
α

∑
m

dα
j,x(y),mφm(x,y)

× [
C

+,α
j eikα

j (z−zj ) + C
−,α
j e−ikα

j (z−zj )]. (12)

In the above equation, the complex-valued wave vectors kα
j are

obtained from

kα
j =

√
βα

j , (13)

under the rule that Re kα
j > 0 if Im kα

j = 0 and Im kα
j > 0 if

Imkα
j �= 0. Thus, {C+,α

j } are the expansion coefficients in terms
of those eigenmodes α, which are either propagating forward
or exponentially decaying along the positive z direction
and {C−,α

j } are the expansion coefficients in terms of those
eigenmodes α which are either propagating backward or
exponentially growing along the z direction. Similarly, the
magnetic field Hj (x) = [Hj

x (x),H j
y (x)]T in slice j can be

expressed as

H
j

x(y)(x)=
∑

α

∑
m

hα
j,x(y),mφm(x,y)

×[
C

+,α
j eikα

j (z−zj ) − C
−,α
j e−ikα

j (z−zj )], (14)

where the expansion coefficients {hα
j,x} and {hα

j,y} can be
derived, with the use of Eq. (5), as

hα
j =

[
hα

j,x

hα
j,y

]
= ikα

j

(
T j

1

)−1
dα

j . (15)

Obviously, we have a set of unknown coefficients {C+,α
j }

and {C−,α
j } in the expansions of the electric and magnetic

fields, Ej (x) and Hj (x), in each slice region. However, from
the Maxwell equations, it can be shown that at the interface
between two adjacent slices, the transverse components of the
electric and magnetic fields are continuous. Thus, a matrix
equation that connects the expansion coefficients {C+,α

j } and

{C−,α
j } in slice j with the expansion coefficients {C+,α

j+1} and

{C−,α
j+1} in slice j + 1 can be derived,[

Pj+1 P j+1

Qj+1 − Qj+1

][
C+

j+1
C−

j+1

]
=

[
Pj P j

Qj − Qj

][
γ j 0
0 γ −1

j

][
C+

j

C−
j

]
, (16)

where

(Pj )nα = (
dα

j

)
n
, (17)

( Qj )nα = (
hα

j

)
n
, (18)

(γ j )mα = δm,αeikα
j (zj+1−zj ). (19)

Equation (16) can be rewritten, to define the transfer matrix
M(j,j + 1), as[

C+
j

C−
j

]
=

[
M11(j,j + 1) M12(j,j + 1)
M21(j,j + 1) M22(j,j + 1)

][
C+

j+1
C−

j+1

]
, (20)

where the submatrices of M(j,j + 1) are defined by

M11(j,j + 1) = γ −1
j T 11(j,j + 1),

M12(j,j + 1) = γ −1
j T 12(j,j + 1),

(21)
M21(j,j + 1) = γ jT 12(j,j + 1),

M22(j,j + 1) = γ jT 11(j,j + 1),

with

T 11(j,j + 1) = 1
2

(
P−1

j Pj+1 + Q−1
j Qj+1

)
,

T 12(j,j + 1) = 1
2

(
P−1

j Pj+1 − Q−1
j Qj+1

)
. (22)

It is possible in principle to calculate the total transfer
matrix for the whole system, which connects the expansion
coefficients of the electric and magnetic fields, {C+,α

R } and
{C−,α

R }, in the right semi-infinite homogeneous region to the
expansion coefficients of the electric and magnetic fields,
{C+,α

L } and {C−,α
L }, in the left semi-infinite homogeneous

region, by successive multiplications of individual transfer
matrices, {M(j,j + 1)}. It is, however, known that in the
calculation for the total transfer matrix, one often suffers
from a numerical instability due to the presence of both the
exponentially growing and exponentially decaying terms in the
formulation (see Ref. 35 for details). This numerical instability
can be removed from the calculations by reformulating the
problem with the use of a scattering matrix method.35,36,38,39

The essence of the method is to convert all the exponen-
tially growing terms to exponentially decaying terms and let
propagating modes rather than evanescent modes dominate in
the numerical calculations. This can be realized by coupling
explicitly the outgoing electromagnetic waves, {C+,α

R } and
{C−,α

L }, to the incoming electromagnetic waves, {C+,α
L } and

{C−,α
R }, via the equation35[
C+

R

C−
L

]
= S(L,R)

[
C+

L

C−
R

]
=

[
S11(L,R) S12(L,R)
S21(L,R) S22(L,R)

][
C+

L

C−
R

]
,

(23)

where S(L,R) is the scattering matrix for the total system
and can be obtained by an iterative procedure as described in
Ref. 35.

Let S(L,j ) denote the scattering matrix for the subsystem
consisting of the first j slices and the left semi-infinite
homogeneous region, i.e.,[

C+
j

C−
L

]
=

[
S11(L,j ) S12(L,j )
S21(L,j ) S22(L,j )

] [
C+

L

C−
j

]
. (24)

With the help of the transfer matrix defined in Eq. (20), an
iterative relation for the scattering matrix S(L,j + 1) can be
derived,35

S11(L,j + 1) = [
1 − M−1

11 (j,j + 1)S12(L,j )

× M21(j,j + 1)
]−1

× M−1
11 (j,j + 1)S11(L,j ),
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S12(L,j + 1) = [
1 − M−1

11 (j,j + 1)S12(L,j )

× M21(j,j + 1)
]−1[

M−1
11 (j,j + 1)

S12(L,j )M22(j,j + 1)

− M−1
11 (j,j + 1)M12(j,j + 1)

]
,

S21(L,j + 1) = S22(L,j )M21(j,j + 1)S11(L,j + 1)

+ S21(L,j ),

S22(L,j + 1) = S22(L,j )M21(j,j + 1)S12(L,j + 1)

+ S22(L,j )M22(j,j + 1). (25)

In the above equations, the exponentially growing factors of the
form γ −1

i , which can cause numerical instability as discussed
above, do not appear. This is seen by inserting M

′ defined
in Eq. (21) into Eq. (25) and employing matrix equations
[T 

′γ j ]−1 = γ −1

j T −1


′ and γ jγ

−1
j = 1. Here, the reduction

of γ jγ
−1
j to 1 in Eq. (25) must, of course, be done analytically

and not numerically.
The iteration is started by setting S(L,0) ≡ 1 and continued

until S(L,R) ≡ S(L,N + 1) is obtained. With the help of the
transfer matrices defined in Eqs. (20) and (21), the scattering
matrix S(j,R) for a subsystem consisting of slices j to N

and the right semi-infinite homogeneous region can also be
obtained from the iteration equations given in Eq. (25) by
setting L = j and S(j,j ) ≡ 1.

Once the scattering matrices S(L,j ) and S(j,R) are
obtained, the expansion coefficients appearing in Eqs. (12)
and (14) for the transverse components of the electric and
magnetic fields in the j th slice can be calculated from47

C+
j = [

1 − S12(L,j )S21(j,R)
]−1

×[
S11(L,j )C+

L + S12(L,j )S22(j,R)C−
R

]
, (26)

C−
j = [

1 − S21(j,R)S12(L,j )
]−1

×[
S21(j,R)S11(L,j )C+

L + S22(j,R)C−
R

]
. (27)

The corresponding z components of the fields are obtained
from

Hj
z = 1

iωμ̃j

[
∂E

j
y

∂x
− ∂E

j
x

∂y

]
, (28)

Ej
z = 1

iωε̃j

[
∂H

j
x

∂y
− ∂H

j
y

∂x

]
. (29)

C. Boundary conditions and energy flow

It is seen from Eqs. (23), (26), and (27) that the
electromagnetic waves can be uniquely determined from the
expansion coefficient vectors, C+

L and C−
R , of given incident

lights in the left and right homogeneous regions of the system.
By orthogonalizing all the eigenmodes in the homogeneous
left and right regions according to

dα
L(R) · dβ,∗

L(R) = δα,β, (30)

the expansion coefficient vectors, C+
L and C−

R , can be obtained
from

C
+,α
L =

∫ [
EL

x (x,y,z)Ẽα,∗
L,x(x,y)

+ EL
y (x,y,z)Ẽα,∗

L,y(x,y)
]
e−ikα

L(z−zL)dx dy, (31)

and

C
−,α
R =

∫ [
ER

x (x,y,z)Ẽα,∗
R,x(x,y)

+ ER
y (x,y,z)Ẽα,∗

R,y(x,y)
]
eikα

R (z−zR )dx dy, (32)

where EL
x (x,y,z) and EL

y (x,y,z) with (z < zL) are the x and y

components of the electric field of the incident light from the
left, and ER

x (x,y,z) and ER
y (x,y,z) with (z > zR) are the x and

y components of the electric field of the incident light from
the right. In a light-scattering experiment, light is often sent in
from one side. In this case, the boundary condition of the light-
scattering problem is specified by the expansion coefficient
vector of the incident light on the injection side and by setting
the expansion coefficient vector of the incident light on the
other side to zero. For example, when one considers the case
in which light is incident from the left, only the expansion coef-
ficient vector C+

L needs to be calculated as above, and the other
expansion coefficient vector C−

R can be simply set to C−
R = 0.

For the energy flow calculation, it is convenient to classify
all the eigenmodes in the left and right homogeneous regions
to the groups of transverse electric (TE), transverse magnetic
(TM), and transverse electromagnetic (TEM) modes. Here, by
a TE mode we mean a mode for which Ẽα

L(R),z(x,y) = 0 for
all x and y but H̃ α

L(R),z(x,y) �= 0 may hold in general. By a TM
mode we mean a mode for which H̃ α

L(R),z(x,y) = 0 for all x

and y but Ẽα
L(R),z(x,y) �= 0 may hold in general. Finally, by a

TEM mode we mean a mode for which both Ẽα
L(R),z(x,y) = 0

and H̃ α
L(R),z(x,y) = 0 for all x and y. We use this definition,

where a TEM mode is not considered as a TE or TM mode, to
avoid double counting in the following. The z components of
a given mode can be calculated from the x and y components
of the mode by Eqs. (28) and (29).

The time-averaged flux of energy is given by the real
Poynting vector

S(x) = 1
4 [E(x) × H∗(x) + E∗(x) × H(x)]. (33)

In the left and right homogeneous regions, the energy flow in
the positive z direction through the x-y plane can be derived,
using the normalization condition of Eq. (30), as

IL(R) =
∫

Sz(x,y,z)dx dy

=
{Re}∑
α

γ α

L(R),ML(R)
α

[∣∣C+,α
L(R)

∣∣2 − ∣∣C−,α
L(R)

∣∣2
]
, (34)

where {Re} denotes summation over only those α for which
kα
L(R) is a real number, ML(R)

α =TE, TM, or TEM denotes the
type of the αth mode, and

γ α
L(R),TE = kα

L(R)

2ωμ̃L(R)
, (35)

γ α
L(R),TM = ωε̃L(R)

2kα
L(R)

, (36)

γ α
L(R),TEM = kα

L(R)

2ωμ̃L(R)
. (37)

In deriving Eq. (34), we have employed the assumption that the
media in the left and right homogeneous regions are lossless
dielectric materials, i.e., ε̃L(R) and μ̃L(R) are real, positive
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values, and thus kα
L(R) is either a real or a purely imaginary

number.
As seen from Eq. (34), the energy flows in the left and

right homogeneous regions are, as expected, independent
of coordinate z. Furthermore, the flows in the forward and
backward directions can be distinguished and an expression
for the energy flow carried by each mode can be obtained. It
is now possible to define the transmittance and the reflectance
for the case in which light is incident onto the system from one
side only. By taking the case in which light is incident from
the left, the incident, transmitted, and reflected energy flows
are, as seen from Eq. (34), given by

II =
{Re}∑
α

γ α
L,ML

α

∣∣C+,α
L

∣∣2
, (38)

IT =
{Re}∑
α

γ α
R,MR

α

∣∣C+,α
R

∣∣2
, (39)

IR =
{Re}∑
α

γ α
L,ML

α

∣∣C−,α
L

∣∣2
. (40)

The total transmittance and reflectance can be found from

T ≡ IT /II , (41)
R ≡ IR/II , (42)

while the transmittance and reflectance into the αth eigenmode
are given by

Tα ≡ IT ,α/II , (43)

Rα ≡ IR,α/II , (44)

where

IT ,α ≡ γ α
R,MR

α

∣∣C+,α
R

∣∣2
, (45)

IR,α ≡ γ α
L,ML

α

∣∣C−,α
L

∣∣2
. (46)

D. Periodic system

We now apply the method formulated above to a two-
dimensional periodic scattering system with periods of Lx

and Ly in the x and y directions, respectively. The incident
light is assumed to be a plane wave incident from a direction
given by k = (kx,ky,kz). An appropriate basis for solving for
eigenmodes [Eq. (10)] for this periodic system can be chosen,
according to Bloch’s theorem, as {φm(x,y)} with φm(x,y)
given by

φm(x,y) = 1√
Lx

eikx,nx
x 1√

Ly

e
iky,ny

y
, (47)

where nx and ny are integers and

kx,nx
= 2π

Lx

nx + kx, (48)

ky,ny
= 2π

Ly

ny + ky. (49)

From the Maxwell equations, Eq. (4), it can be shown that the
plane waves given in Eq. (47) are eigensolutions to the left and
right homogeneous regions. Thus, associated with each basis

function φm(x,y), one can find, in general, one TE and one
TM eigenmode with wave vector

k2
z,L(R) = ε̃L(R)μ̃L(R)ω

2 − k2
x,nx

− k2
y,ny

. (50)

However, in the case of kx,nx
= ky,ny

= 0, the two corre-
sponding eigenmodes of the electromagnetic wave are in
fact TEM modes. We call the modes having nx = ny = 0
the zeroth-order diffracted modes, and all other modes are
higher-order diffracted modes. We further define the zeroth-
order transmittance T00 for a periodic scattering system under
illumination by a TEM plane wave as the sum of transmittances
into the two zeroth-order diffracted modes, i.e.,

T00 ≡ Ta + Tb, (51)

where a and b denote the two TEM modes having nx = ny =
0. We define similarly the zeroth-order reflectance R00 as the
sum of reflectances into the two zeroth-order diffracted modes,
i.e.,

R00 ≡ Ra + Rb. (52)

We note that in numerical calculations, the ranges of nx and
ny must be limited. We limit them by setting

−Nx � nx � Nx, (53)

−Ny � ny � Ny, (54)

where Nx and Ny are two large integer numbers, so that
T j

1 and T j

2 in Eq. (10) are two 2(2Nx + 1)(2Ny + 1) ×
2(2Nx + 1)(2Ny + 1) matrices. In the calculations, we have
let Nx and Ny be large enough so that a required numerical
accuracy is achieved. The numerical convergence rate can be
enhanced with use of the fast Fourier factorization method48

(see Appendix B for details). We also note that incident light
of arbitrary form can be decomposed into plane waves. The
scattering problem for each plane-wave component can be
solved for separately, and the total solution can be obtained
from a linear combination of the solutions for all the plane-
wave components.

III. RESULTS

We study the optical response of the nonmagnetic (μ̃ = μ0)
system described in detail in Sec. II A. The system consists of
a perforated gold film surrounded by SiO2 on the left side
and H2O on the right side, as shown in Figs. 1 and 2. We
consider the situation in which an x-polarized plane wave is
incident normally, with kx = ky = 0, toward the film either
from the left or from the right. Thus, we set EL(x,y,zL) =
êx and ER(x,y,zR) = 0 in Eqs. (31) and (32) when light is
incident from the left and EL(x,y,zL) = 0 and ER(x,y,zR) =
êx when light is incident from the right.

In the simulations, we find that the zeroth-order transmit-
tance T00, defined in Eq. (51), does not depend on the side from
which light is incident. This invariance of T00 is in agreement
with the experiments on periodically perforated silver films
reported in Ref. 3 and the analytical proof for linear and locally
responding media shown in Ref. 49. Transmission properties
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of the system are often presented in terms of the (optical)
extinction

η ≡ log10

(
1

T00

)
, (55)

which is, again, independent of the side from which light is
incident. In general, the resonances we are interested in are
present both in the extinction and the total transmittance spec-
tra. However, in many cases, the resonances occurred at long
wavelengths for which all the higher-order diffracted modes
are of evanescent type and only the zeroth-order diffracted
modes are of propagating type. At those wavelengths, T00 = T

and thus η gives the information of T .

A. Excitation spectra

We begin with the study of the extinction spectra of
perforated gold film systems. Figure 4 shows the extinction
spectra of the perforated gold film system with periodicities of
Lx = Ly = L = 333 nm and hole diameter of D = 140 nm for
different values of the film thickness t . An anomaly in the form
of an extinction peak is clearly present in each curve and shows
redshift when the film thickness is decreased. The extinction
peak is at λ ≈ 570 nm for t = 230 nm and is redshifted by
almost 250 nm when t is decreased to 15 nm. This t dependence
contradicts the common3,13–15,18,22,23 assumption that it is
the Rayleigh wavelength anomaly that causes transmission
minima (extinction peaks) in periodically perforated metal
films. A Rayleigh wavelength anomaly can occur when one
of the TE or TM eigenmodes in the superstrate or substrate
is parallel to the surface,30 i.e., when kz,L = 0 or kz,R = 0 in
Eq. (50) for some nx and ny . This condition is independent of
t . Thus, the Rayleigh wavelength anomaly cannot explain the
t dependence of the position of the extinction peak shown in
Fig. 4.
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0

0.5
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FIG. 4. Calculated extinction spectra for the system shown in
Figs. 1 and 2 with L = 333 nm, D = 140 nm, and different values
of thickness t . The incident light is an x-polarized plane wave with
k||êz. The curve with the highest extinction peak is for t = 230 nm
and subsequent curves are for t = 140, 80, 60, 50, 40, 30, 25, 20, and
15 nm. The extinction peak shows redshift as the film thickness t is
decreased.

Transmittance resonances were found in theoretical studies
of gold films perforated by a periodic array of square-shaped
holes.24 The resonances were shown to be redshifted as the
film thickness is decreased and were seen to be closely linked
to the excitation of SP’s.24 Furthermore, in the seminal work by
Hessel and Oliner30 it was shown that surface waves can cause
anomalies in an optical grating system. Inspired by these, we
investigate if a simple SP model can be used to explain the
extinction peaks in Fig. 4.

The dispersion relation ksp(λ) of the SP k vector is known
for continuous metal films (see Appendix A for details). We
will use this dispersion relation to obtain estimations for the
wavelengths for which incident light can excite SP’s in the
perforated gold film system. The validity of these predictions
depends on how much the holes perturb the SP dispersion
relation of a continuous film. Assume that a metal film is
periodic in the x and y directions with periodicities Lx and Ly ,
respectively, and that the metal film is illuminated by a plane
wave from a direction given by k = (kx,ky,kz). The allowed k
vectors in the x-y plane are then constrained to a discrete set
given by

knx,ny
=

(
kx + 2πnx

Lx

)
êx +

(
ky + 2πny

Ly

)
êy, (56)

where nx and ny are integers. The real part of the SP k vector
must equal one of the allowed k vectors in the x-y plane, i.e.,
one of knx,ny

. Because of this, SP’s cannot be excited for any
arbitrary (free-space) wavelength, but only for a discrete set of
wavelengths, denoted by λnx,ny

, for which the matching∣∣Reksp
(
λnx,ny

)∣∣= |knx,ny

∣∣ (57)

holds. For the systems we consider in this work, Lx = Ly = L,
k||êz and Eq. (57) can be simplified to

∣∣Reksp
(
λnx,ny

)∣∣ = 2π

L

√
n2

x + n2
y. (58)

We call this the simple SP model when we use the SP
dispersion of a continuous film to give estimations for the
wavelength for which SP’s are expected to be excited in a
perforated system.

The SP’s in a continuous film belong to one of two branches,
i.e., either the short- or the long-wavelength branch (see
Appendix A for details). In the following, we use λshort

(nx,ny )

and λ
long
(nx,ny ), where λ

long
(nx,ny ) � λshort

(nx,ny ) denote the predicted
wavelengths of the long- and the short-wavelength branches,
respectively. In the limit t → ∞, an SP is localized to either
the SiO2/Au or the H2O/Au interface. In this limit, λshort →
λH2O/Au, where λH2O/Au is the wavelength for which an SP
is allowed at an H2O/Au interface. Similarly, when t → ∞,
λlong → λSiO2/Au, where λSiO2/Au is the wavelength for which
an SP is allowed at an SiO2/Au interface. To simplify the
discussion, we call the SP that can be excited at λshort

(nx,ny ) the
(nx,ny) SP of the short-wavelength branch. Similarly, we call
the SP that can be excited at λ

long
(nx,ny ) the (nx,ny) SP of the

long-wavelength branch. Note that, as seen from Eq. (58),
the (±nx,ny), (±nx, − ny), (±ny,nx), and (±ny, − nx) SP’s
of a given branch are degenerate and propagate in different
directions given by Eqs. (56)–(58).
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TABLE I. Wavelengths λ
long
(1,0) for which SP’s in a periodically

perforated gold film system could be excited according to the
matching in Eq. (58). Here, the SP dispersion of a continuous film
of gold of thickness t sandwiched between H2O and SiO2 is used.
The period of the structure is Lx = Ly = 333 nm. The incident light
is a plane wave with k||êz. Only the longest wavelength solution (a
long-wavelength branch) is shown for each thickness. The extinction
peak positions λpeak extracted from Fig. 4 are also shown.

t (nm) λ
long
(1,0) (nm) λpeak (nm)

230 569 569
140 569 571
80 572 590
60 580 614
50 588 631
40 603 655
30 628 692
25 648 720
20 679 758
15 727 816

We show in Table I λ
long
(1,0) and the extinction peak positions

extracted from Fig. 4. The extracted extinction peak positions
for the two thickest films of t = 230 and 140 nm are very close
to the corresponding values of λ

long
(1,0). This indicates that SP’s

might be the cause of the extinction peaks in thick films and that
the peak positions can be estimated from the simple SP model.
We vary now D to make sure that this good agreement for
thick films is not caused by a lucky choice of D. The extinction
spectra for t = 230 nm are shown in Fig. 5 for D = 40, 65, 90,
140, and 170 nm. The extinction peak position does not move
noticeably when D is changed, indicating that the extinction
peaks for the thick films shown in Fig. 5 are not caused by
localized resonances at the holes. We notice further from Fig. 5
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FIG. 5. Calculated extinction spectra for the system shown in
Figs. 1 and 2 with L = 333 nm, t = 230 nm, and different values of
D. The incident light is an x-polarized plane wave with k||êz. The
top curve is for D = 40 nm and subsequent curves are for D = 65,
90, 140, and 170 nm.
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FIG. 6. Calculated extinction spectra for the system shown in
Figs. 1 and 2 with L = 333 nm and t = 15 nm, and with D = 170 nm
(thicker solid line), 140 nm (dashed-dotted line), 90 nm (dashed line),
65 nm (dotted line), and 40 nm (thinner solid line). The incident light
is an x-polarized plane wave with k||êz.

that the peak weakens as D is decreased. For D = 40 nm, the
peak is no longer visible. This is expected since normally
incident light cannot couple to SP’s in continuous films. It is
the holes that enable the excitation of SP’s. When the holes
are made smaller, their ability to excite SP’s is expected to be
weakened.

When t decreases, both the extinction peak seen in Fig. 4
and λ

long
(1,0) given in Table I show redshifts. However, the

extinction peak in Fig. 4 shows a much larger redshift than
the corresponding λ

long
(1,0). For t = 15 nm, λ

long
(1,0) = 727 nm and

the extinction peak is at λ = 816 nm. As explained above, λlong
(1,0)

is obtained using the continuous film SP dispersion. This is the
exact SP dispersion of the perforated film in the limit D → 0. It
is, therefore, of interest to investigate how the extinction peak
position for thin films depends on D. The effect of varying
D is shown in Fig. 6 for t = 15 nm. The peak moves toward
λ

long
(1,0) as D decreases. For the smallest considered diameter of

D = 40 nm, the peak is at λ = 741 nm, which is only 14 nm
away from λ

long
(1,0) = 727 nm. This indicates that SP’s can cause

extinction peaks in thin perforated films.
To explore further how SP’s cause extinction peaks, we now

vary the parameters that affect the wavelengths of extinction
peaks in our perforated gold film systems and compare the
results with the wavelengths for which the excitation of SP’s
is predicted based on our simple continuous film SP model.
These parameters are L, t , and the refractive indices of the
dielectric materials surrounding the metal plate.

We start by varying L for a thick plate. The extinction
spectra for t = 230 nm and D = 140 nm are shown in Fig. 7
for L = 333,360,400, and 450 nm. The number of peaks
and the peak positions have strong dependencies on L. For
L = 333 nm shown in Fig. 7(a), one peak exists. The same
is true for L = 360 nm in Fig. 7(b). For L = 400 nm in
Fig. 7(c) two peaks exist, while for L = 450 nm in Fig. 7(d)
three peaks exist. In Table II, the wavelengths, for which
SP’s can be excited in an unperforated film, are shown for
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FIG. 7. Calculated extinction spectra for the system shown in
Figs. 1 and 2 with t = 230 nm and D = 140 nm, and with L = 333 nm
(a), 360 nm (b), 400 nm (c), and 450 nm (d). The incident light is an
x-polarized plane wave with k||êz. The arrows in the figures indicate
the predicted positions of the wavelengths, given in Table II, by the
simple SP model, at which the SP’s could be excited.

the different L. These wavelengths are indicated by arrows in
Fig. 7. When these wavelengths are compared to the positions
of the extinction peaks of our perforated gold film system for
the varying L shown in Fig. 7, a good matching is found.
For L = 333 nm, the (1,0) SP of the long-wavelength branch
is expected to be excited at λ

long
(1,0) = 569 nm. The extinction

spectrum for L = 333 nm in Fig. 7(a) shows a peak close to this
wavelength. For L = 360 nm, the wavelengths, for which the
excitation of SP’s is expected, are λshort

(1,0) = 555 nm and λ
long
(1,0) =

596 nm. The extinction spectrum for L = 360 nm in Fig. 7(b)
shows a broadened peak at this wavelength range. We believe
that this broadened peak is caused by two close-lying peaks at
the estimated wavelengths. For L = 400 nm, SP’s are expected
to be excited at λshort

(1,0) = 593 nm and λ
long
(1,0) = 640 nm and the

extinction spectrum in Fig. 7(c) shows peaks at wavelengths
very close to these wavelengths. Finally, for L = 450 nm, the
wavelengths, for which SP’s are expected to be excited, are
λ

long
(1,0) = 701 nm, λshort

(1,0) = 646 nm, and λ
long
(1,1) = 554 nm. The

extinction spectrum for L = 450 nm in Fig. 7(d) shows peaks
at wavelengths close to these wavelengths.

TABLE II. Wavelengths λ
long
(1,0), λshort

(1,0), and λ
long
(1,1) for which SP’s in

a periodically perforated gold film system could be excited according
to the matching in Eq. (58). Here, again, the SP dispersion of a
continuous film of gold of thickness t = 230 nm sandwiched between
H2O and SiO2 is used. The period of the structure is Lx = Ly = L.
The incident light is a plane wave with k||êz.

L (nm) λ
long
(1,0) (nm) λshort

(1,0) (nm) λ
long
(1,1) (nm)

333 569
360 596 555
400 640 593
450 701 646 554
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FIG. 8. Calculated extinction spectra for the system shown in
Figs. 1 and 2 with L = 450 nm, t = 230 nm, and D = 140 nm.
The incident light is an x-polarized plane wave with k||êz. The case
in which the refractive index of the SiO2 is artificially increased to
n = 1.55 is shown in (a), while (b) shows the case of the increase
to n = 1.65. The case in which the refractive index of the H2O is
artificially decreased to n = 1.2 is shown in (c), while (d) shows the
case of the decrease to n = 1.1. The arrows in the figures indicate the
predicted positions of the wavelengths, by the simple SP model, at
which the SP’s could be excited.

The metal film of t = 230 nm studied above is so thick
that the SP’s in a continuous film are localized either to
the left or to the right interface with a negligible coupling
between the SP’s localized at the two different interfaces.
Thus, as discussed above, the short- (long-) wavelength branch
corresponds to SP’s at the H2O/Au (SiO2/Au) interface. It
is then expected that the extinction peak position is more
sensitive to a change in the refractive index of the dielectric
closest to the interface where the SP is localized than to
a change in the refractive index of the dielectric on the
opposite side. To test this, we study the systems with artificially
increased values of the refractive index of SiO2 to 1.55 and
1.65 or artificially decreased values of the refractive index of
H2O to 1.1 and 1.2 for L = 450 nm. The extinction spectra
are shown in Fig. 8 for these four cases together with arrows
that show the wavelengths, given below, for which the simple
SP model predicts possible excitation of SP’s. When the
refractive index of SiO2 is increased, the wavelengths for
which SP’s are expected to be excited at the SiO2/Au interface
are λ

long
(1,1) = 582 nm and λ

long
(1,0) = 744 nm for n = 1.55, while

for n = 1.65 they are λ
long
(1,1) = 611 nm and λ

long
(1,0) = 790 nm. The

wavelengths for which SP’s are expected to be excited at the
H2O/Au interface are λshort

(1,0) = 646 nm for both cases. Both the
extinction spectrum in Fig. 8(a) corresponding to an increase
of the refractive index of SiO2 to n = 1.55 and the spectrum
in Fig. 8(b) corresponding to an increase to n = 1.65 show
three peaks each. When these peak positions are compared
to the corresponding estimated wavelengths above, a very
good agreement is found. When the refractive index of H2O
is decreased, the wavelengths for which SP’s are expected to
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FIG. 9. Calculated extinction spectra for the system shown in
Figs. 1 and 2 with L = 450 nm, D = 65 nm, and different values
of t . The incident light is an x-polarized plane wave with k||êz.
The top curve is for t = 60 nm and subsequent curves are for t =
50, 40, 30, 25, 20, and 15 nm. The dashed lines are placed to guide
the eyes.

be excited at the H2O/Au interface are λshort
(1,0) = 589 nm for

n = 1.2 and λshort
(1,0) = 547 nm for n = 1.1. The predictions for

the SP’s at the SiO2/Au interface are λ
long
(1,1) = 554 nm and

λ
long
(1,0) = 701 nm for both cases. Both the extinction spectrum

in Fig. 8(c) corresponding to a decrease of the refractive index
of H2O to n = 1.2 and the spectrum in Fig. 8(d) corresponding
to a decrease to n = 1.1 show a peak close to λ

long
(1,0) = 701 nm.

For the case of n = 1.2 in Fig. 8(c) there is also a broad
peak at λ ≈ 550 − 600 nm. The position and the broadening
of this peak agrees well with the estimated positions of
λshort

(1,0) = 589 nm and λ
long
(1,1) = 554 nm. For n = 1.1 in Fig. 8(d),

there is, in addition to the peak close to λ
long
(1,0) = 701 nm, a

peak at λ ≈ 550 nm. This position agrees with the expected
positions of the two close-lying SP’s at λshort

(1,0) = 549 nm and

λ
long
(1,1) = 554 nm.

As the final step in the study of the parameters that affect
the SP excitations and thus the extinction spectra, we consider
a system exhibiting extinction peaks of both the long- and
the short-wavelength SP branch in a thick film and study
the effect of decreasing thickness t . For this, we choose
the system of L = 450 nm and D = 65 nm. The extinction
spectra are shown in Fig. 9 for t = 15–60 nm. The positions
of two of the extinction peaks, one at λ ≈ 710 nm and the
other at λ ≈ 580 nm, for t = 60 nm agree well with the
estimated values of λ

long
(1,0) = 706 nm and λ

long
(1,1) = 566 nm

given in Table III. As t decreases, these two extinction peaks
show larger redshifts than the corresponding values of λ

long
(1,0)

and λ
long
(1,1), but the deviations are less than 30 nm for all

considered values of t . The peaks located close to λ = 610 nm
at t = 20 nm and close to λ = 650 nm at t = 15 nm agree
reasonably well with the estimated values of λ

long
(2,0) = 587 nm

for t = 20 nm and λ
long
(2,0) = 622 nm for t = 15 nm for the (2,0)

SP’s of the long-wavelength branch. The peak at λ ≈ 645 nm

TABLE III. Wavelengths λ
long
(1,0), λshort

(1,0), and λ
long
(1,1) for which SP’s in

a periodically perforated gold film system could be excited according
to the matching in Eq. (58). The SP dispersion of a continuous film of
gold of thickness t sandwiched between H2O and SiO2 is used here.
The period of the structure is Lx = Ly = 450 nm. The incident light
is a plane wave with k||êz.

t (nm) λ
long
(1,0) (nm) λshort

(1,0) (nm) λ
long
(1,1) (nm)

230 701 646 554
140 701 646 554
80 702 646 557
60 706 645 566
50 711 644 576
40 726 591
30 746 615
25 767 635
20 799 665
15 851 712

for t = 60 nm is close to λshort
(1,0) = 645 nm. This peak shows a

completely different behavior compared to the peaks caused
by the long-wavelength SP’s discussed above. This peak does
not move considerably, but dampens as t decreases and has
disappeared when t � 25 nm. The reason for the negligibly
small shift in the peak position with decreasing t is that the
peak is caused by the excitation of the (1,0) SP mode of the
short-wavelength branch, which is strongly localized at the
Au/H2O interface. Thus, the influence on the peak position
by the dielectric SiO2 on the other side of the gold film is
negligible before the peak disappears. The disappearance of
the peak can be understood with the help of our simple SP
model as follows. As t decreases, if the dielectrics on the left
and right sides of the film are not equal, the SP mode of the
short-wavelength branch changes character at a certain critical
thickness (see Appendix A and Ref. 50). For t smaller than
this critical thickness, the SP field grows exponentially away
from the film in one of the dielectrics.50 Such a growing mode
cannot physically exist and thus cannot be excited by incident
light. From Table III, it is seen that λshort

(1,0) exhibits a blueshift
only by 2 nm when t is decreased from 230 to 50 nm. At
t � 40 nm, the (1,0) SP of the short-wavelength branch does
not exist or has changed its characteristics to a growing mode.
It is therefore expected that the extinction peak disappears at
t � 40 nm since the SP causing the peak does not exist or
cannot be excited.

Finally, we complete this subsection by presenting the
results of calculations for the reflectance spectra, together
with the extinction spectra, for a thick and a thin gold film
system. First, we present the results of the calculations for
a thick gold film system with L = 450 nm, D = 65 nm,
and t = 230 nm (cf. Figs. 1 and 2). Figure 10 shows the
extinction spectrum and the reflectance spectra of the system
for x-polarized light incident normally from the SiO2 side
and from the H2O side. The extinction spectrum shows two
peaks at λ = 701 and 646 nm and two dips at λ = 707
and 654 nm. These characteristic wavelengths again coincide
with or are very close to the values of λ

long
(1,0) = 701 nm and

λshort
(1,0) = 646 nm given in Tables II and III. We now discuss the
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FIG. 10. Reflectance of the system shown in Figs. 1 and 2 with
L = 450 nm, D = 65 nm, and t = 230 nm for light incident from
the left (solid line) and from the right (dashed line), and extinction
(dashed-dotted line) of the system. The vertical lines are placed at
λ = 646, 654, 701, and 707 nm to guide the eyes. The incident light
is an x-polarized plane wave with k||êz.

reflectance spectra of the system. Here, we note that when we
consider the reflectance, in contrast to the extinction, we need
to discriminate from which side the light is incident. When
the light is incident from the SiO2 side, there is a dip in the
reflectance at λ = 705 nm. This is close to λ

long
(1,0) = 701 nm,

where an SP is expected to be excited at the SiO2/Au interface.
When the light is incident from the H2O side, there is a dip in
the reflectance at λ = 651 nm. This is close to λshort

(1,0) = 646 nm,
where an SP is expected to be excited at the H2O/Au interface.
Here, it is interesting to note that the reflectance shows one dip
between each pair of extinction peak and dip for light incident
from the left or from the right.

The second system considered here is a thin gold film
with t = 15 nm, L = 450 nm, and D = 65 nm. When the
film thickness is decreased, two factors need to be taken into
consideration. First, the SP’s on both interfaces of the thin
film start to couple and a significant field intensity of the SP’s
could be found inside the film. Second, the transmission is
not necessarily dominated by passing through the holes any
longer. For instance, in a continuous (unperforated) gold film
of t = 15 nm sandwiched between SiO2 and H2O, 34% of the
incident intensity of normally incident light at λ = 871 nm can
be transmitted. Figure 11 shows the reflectance spectra of the
perforated gold film system of t = 15 nm with L = 450 nm
and D = 65 nm for light incident from the left and from
the right, as well as the extinction spectrum. The extinction
spectrum shows a peak at λ = 871 nm and a dip at λ = 895 nm.
We have identified this extinction peak, from Fig. 9, as
being caused by the SP of the (1,0) long-wavelength branch.
Between these two wavelengths, the reflectance shows a dip at
λ = 882 nm both for light incident from the left and for light
incident from the right. This is in contrast to the reflectance
of the thicker film of t = 230 nm shown in Fig. 10, where
the reflectance shows a dip only when the SP’s are expected
to be excited at the incidence side of the gold film. This
is an indication that in the thinner film of t = 15 nm, the
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FIG. 11. Reflectance of the system shown in Figs. 1 and 2 with
L = 450 nm, D = 65 nm, and t = 15 nm for light incident from
the left (solid line) and from the right (dashed line), and extinction
(dashed-dotted line) of the system. The vertical lines are placed at
λ = 871, 882, and 895 nm to guide the eyes. The incident light is an
x-polarized plane wave with k||êz.

SP’s can affect the reflectance regardless of which side the
light is incident. The extinction spectrum shown in Fig. 11
exhibits peaks also at λ = 732 and 650 nm, with accompanying
extinction dips at slightly longer wavelengths. These two
extinction peaks have been identified, from Fig. 9, as being
caused by the (1,1) and (2,0) SP’s of the long-wavelength
branch, respectively. It is also clearly seen again that the
reflectance shows one dip between each pair of extinction
peak and dip.

Thus, we have found that an extinction peak is accompanied
by an extinction dip in both the thick (Fig. 10) and the thin
(Fig. 11) film, and that a reflectance dip is located between
the extinction peak and dip. This arrangement of an extinction
peak, a reflectance dip, and an extinction dip seems to be a
general property of the SP excitation.

B. Electromagnetic fields at SP resonances

In the above investigation, we concentrated on the excitation
spectra. In the following, we will study the electromagnetic
field distributions at the SP resonances to obtain a deeper
understanding of the excitation spectra of the perforated gold
film structures. We will consider the thick-film system studied
in Fig. 10 and the thin-film system studied in Fig. 11. Figure 12
shows the electric-field distributions, |Ez|, |Ex |, and |E|2, of
the system with t = 230 nm, D = 65 nm, and L = 450 nm,
whose spectra were shown in Fig. 10. These field distributions
are shown in the SiO2/Au interface and a vertical cross section
perpendicular to the interface for the x-polarized light incident
normally from the SiO2 side at wavelengths of λ = 701, 705,
and 707 nm. At these wavelengths, only the zeroth-order
diffracted modes are of a propagating kind in the SiO2. These
modes have no z component in the electric field. Ez in the
near-field region on the SiO2 side is thus caused by localized
SP modes. This makes Ez well suited for the study of SP’s. The
strength distribution of |Ez| in the SiO2/Au interface shown in
Figs. 12(a), 12(e), and 12(i) is dominated by a standing wave
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FIG. 12. (Color online) Calculated electric-field distributions for
the system shown in Figs. 1 and 2 with L = 450 nm, t = 230 nm,
and D = 65 nm at three different wavelengths. (a)–(d) are for λ =
701 nm, (e)–(h) are for λ = 705 nm, and (i)–(l) are for λ = 707 nm.
|Ez| in (a), (e), and (i), |Ex | in (b), (f), and (j), and |E|2 in (c), (g),
and (k) are the results at z = 0 nm on the SiO2 side of the SiO2/Au
interface. |E|2 in (d), (h), and (l) shows the results at a vertical cross
section that cuts through the y = 225 nm line and thus the middle of
a hole. The gold film is placed at t = 0–230 nm. The incident light is
a plane wave incident from the SiO2 side with EL||êx , |EL| = 1, and
k||êz.

of the form | sin(2πx/L)| in the x direction with a noticeable
deviation from this form in the vicinity of the hole. The decay
of this standing wave away from the SiO2/Au interface is
of the form e−α|z| with α ≈ 5.0 × 106 m−1 on the SiO2 side
and α ≈ 3.9 × 107 m−1 in the gold film. For comparison,
we note that the decay constants of an SP at λ = 701 nm
near the SiO2/Au interface of a corresponding continuous
film system are given by α = 4.98 × 106 m−1 on the SiO2

side and α = 3.91 × 107 m−1 on the Au side. Thus, here we
are observing the excitations of two counterpropagating SP’s,
the (1,0) and the (−1,0) modes, which cause the observed
standing wave in Figs. 12(a), 12(e), and 12(i). It is also seen
in Figs. 12(a), 12(e), and 12(i) that the excitation of the SP’s
is weakest, among these three considered wavelengths, at the
extinction peak (λ = 701 nm) and strongest at the reflectance
dip (λ = 705 nm). Figures 12(b), 12(f), and 12(j) show the
calculated distribution of |Ex | in the SiO2/Au interface. Here,
the excitation of the SP’s is not seen as easily as in the plots
for |Ez|, since |Ex | has contributions from the incident and

the reflected zeroth-order diffracted modes. It is, however,
seen that the Ex field is strongly localized to the hole region
at the extinction dip (λ = 707 nm) and the reflectance dip
(λ = 705 nm). Figures 12(c), 12(g), and 12(k) and Figs. 12(d),
12(h), and 12(l) show the distributions of the total field strength
|E|2 in the SiO2/Au interface and in the vertical cross section
cutting through the hole, respectively, at the three considered
wavelengths. It is found that |E|2 has similar strengths in the
hole region at the extinction dip and the reflectance dip. It
is also found that at the extinction peak, the field is much
weaker over the hole region than at the extinction dip and the
reflectance dip. The penetration of |E|2 into the hole is also
much smaller at the extinction peak than at the extinction dip
and the reflectance dip.

When the wavelength is shifted from λ = 701 nm (at the
extinction peak) to the shorter λ, the following is observed
in the calculated electric-field distributions (not shown here).
The SP’s become less excited, |E|2 becomes stronger over
the holes, and the penetration of the electric field into the
holes becomes stronger. In comparison, when the wavelength
is shifted from λ = 707 nm (at the extinction dip) to the
longer λ, the following is observed in the calculated electric-
field distributions (again not shown here). The SP’s become
less excited, |E|2 becomes weaker over the holes, and the
penetration of the electric field into the holes also becomes
weaker. These results are consistent with the observation of the
extinction peak and dip, since the holes are the most effective
transport path through a thick metal film. Furthermore, the
estimations for the wavelength position of the extinction peak
using the simple SP model are, as discussed above, expected
to apply better for the perforated system when the field
distribution in the hole regions is weaker. This is because at
the extinction peak, |E|2 is weak in the vicinity of the holes
[see Fig. 12(c)] and thus the field distribution of the SP in the
periodically perforated metal film closely resembles the field
distribution of the corresponding SP mode in the unperforated
metal film.

The transmittance is negligible when the energy balance is
considered at the SP resonance since T < 10−6. Thus, the
cause of the reflectance dip close to λ = 705 nm can be
understood as a result of energy loss to Ohmic heat at the
SP resonance. Since more energy is lost to Ohmic heat by the
SP’s, there is less energy available for the reflected light, and
the reflectance dip occurs.

Figure 13 shows the |Ez|, |Ex |, and |E|2 field distributions
of this system at the H2O/Au interface when x-polarized
light at wavelengths of λ = 646, 651, and 654 nm is incident
from the SiO2 side. The x and y dependencies of |Ez| at
the interface are also dominated here by a standing wave in
the x direction. The decay of the standing wave away from
the interface is again of the form e−α|z−t |. For λ = 646 nm,
the decay constants are given by α ≈ 5.2 × 106 m−1 and
α ≈ 3.8 × 107 m−1 in H2O and the gold film, respectively. The
decay constants of the SP mode at the H2O/Au interface of
the corresponding continuous film at λ = 646 nm are given by
α = 5.21 × 106 m−1 on the H2O side of the H2O/Au interface
and α = 3.74 × 107 m−1 on the Au side of the interface. This
indicates that here we are observing the excitation of the (1,0)
and (−1,0) SP’s of the short-wavelength branch. As seen from
Figs. 13(a), 13(e), and 13(i), the SP’s are excited stronger at
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FIG. 13. (Color online) The same as in Fig. 12 but now for λ =
646, 651, and 654 nm. Furthermore, (a)–(c), (e)–(g), and (i)–(k) show
the results of the calculations at z = 230 nm on the H2O side of the
H2O/Au interface.

λ = 651 nm than at the extinction peak or the extinction dip.
A standing wave is seen also in |Ex | in Figs. 13(b), 13(f), and
13(j). When Figs. 13(c), 13(g), and 13(k) are examined, it is
found that |E|2 is much weaker in the vicinity of the holes at
λ = 646 nm (extinction peak) than at λ = 654 nm (extinction
dip) and λ = 651 nm. Figures 13(d), 13(h), and 13(l) show
the distributions of the total field strength |E|2 in the vertical
cross section cutting through the center of the hole in a unit
cell. Here, we see that the field |E|2 has similar penetration
strengths in the hole region at the three wavelengths of incident
light, in strong contrast to the results shown in Figs 12(d),
12(h), and 12(l), where an SP very localized at the incident
side SiO2/Au interface is excited.

We now turn to study the electric-field distributions of the
optically thin system with L = 450 nm, D = 65 nm, and
t = 15 nm. Figure 14 shows the field distributions for an
x-polarized incident light at λ = 871 nm, i.e., at one of the
extinction peaks seen in Fig. 11. The field distributions |Ez|,
|Ex |, and |E|2 at three x-y planes, i.e., the SiO2/Au interface,
central cross section, and H2O/Au interface of the film, are
shown in Fig. 14. Figures 14(a), 14(d), and 14(g) show |Ez|
at the three considered planes. It is seen that a standing wave
is excited through the film (see also Fig. 15 for a line cut, at
y = 0, that shows this more clearly). The standing wave has
a low strength in the middle of the film. The decay constants
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FIG. 14. (Color online) Calculated electric-field distributions for
the system shown in Figs. 1 and 2 with L = 450 nm, t = 15 nm,
and D = 65 nm at λ = 871 nm. (a)–(c) Results of the calculations at
z = 0 nm on the Au side of the SiO2/Au interface. (d)–(f) Results of
the calculations at z = 7.5 nm. (g)–(i) Results of the calculations at
z = 15 nm on the Au side of the H2O/Au interface. |Ez| is shown in
(a), (d), and (g), |Ex | in (b), (e), and (h), and |E|2 in (c), (f), and (i).
The incident light is a plane wave incident from the SiO2 side with
EL||êx , |EL| = 1, and k||êz.

of the standing wave into surrounding materials of the SiO2

and the H2O are found to be α = (9.1 ± 0.5) × 106 m−1 and
α = (10.1 ± 0.5) × 106 m−1, respectively. For comparison,
we note that the SP of the long-wavelength branch in the
corresponding continuous film at the wavelength of λ

long
(1,0) =

851 nm has a decay constant α = 8.96 × 106 m−1 on the
SiO2 side of the SiO2/Au interface and a decay constant
α = 9.96 × 106 m−1 on the H2O side of the H2O/Au interface.
Thus, we can attribute the standing wave to the excitation of
the (1,0) and (−1,0) SP’s of the long-wavelength branch in
the thin film. Figures 14(b), 14(e), and 14(h) show |Ex | at
the three considered planes, where a standing-wave pattern is
again seen. In comparison with the |Ez| field distribution, the
strength of |Ex | does not show a strong z dependence inside the
metal film. Furthermore, the standing-wave pattern of |Ex | is
out of phase to the standing-wave pattern of |Ez|. Figures 14(c),
14(f), and 14(i) show the distribution of |E|2. Here, a strong
excitation of the electromagnetic wave localized in the hole
region can be identified, in contrast to the distribution of
|E|2 at the extinction peak in the thick film studied above.
Thus, a significant deviation of the estimated wavelength
λ

long
(1,0) = 851 nm for the excited SP’s using the simple SP model

from the actual value of λ ∼ 871 nm is expected.

IV. CONCLUSIONS

In conclusion, we have formulated a scattering matrix
method for the study of the response of a dissipative, metallic
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FIG. 15. Line plots of |Ez| at y = 0 nm for the system shown
in Figs. 1 and 2 with L = 450 nm, t = 15 nm, and D = 65 nm, at
λ = 871 nm and z = 0 nm on the Au side of the SiO2/Au interface
(solid line), and z = 7.5 nm (dashed line) and z = 15 nm on the Au
side of the H2O/Au interface (dashed-dotted line). The incident light
is a plane wave incident from the SiO2 side with EL||êx , |EL| = 1,
and k||êz.

film system under the illumination of light. The method is
general in the sense that it can be exploited to treat a metallic
system patterned with an arbitrary subwavelength structure in
arbitrary surrounding dielectric materials. The transmittance,
reflectance, absorption, and extinction spectra of the system
can be accurately calculated with the method. In addition,
it is straightforward to employ the method to calculate the
electromagnetic field distribution in the metallic system in
both near-field and far-field regions. It is also straightforward
to apply the method to a semiconductor system51 as well as to
a nondissipative dielectric system.

The formulated scattering matrix method has been applied
to a system that consists of a gold film perforated by a
periodic subwavelength hole array and two dielectric materials
attached to the two sides of the film. The optical spectra of
the system have been studied in great detail. In particular,
the extinction spectra have been calculated for the gold film,
with different hole diameters, hole periodicities, and film
thicknesses, sandwiched between H2O and SiO2. In a thick
film there exist extinction peaks at the wavelengths for which
SP’s are excited at either the SiO2/Au or the H2O/Au interface.
When the thickness of the film is decreased, these peaks
showed very different behaviors. The peaks caused by SP’s
at the SiO2/Au interface in thick films shift toward longer
wavelength with decreasing film thickness. The peaks caused
by SP’s at the H2O/Au interface in thick films, however, do
not shift noticeably. Instead, they are weakened as the film
thickness is decreased and disappear eventually when the
thickness of the film becomes smaller than a critical thickness.
The extinction peak positions in thick films can be accurately
predicted from the SP dispersion relation of a continuous gold
film. For thin films with holes of small diameter, the peak
positions can also be well estimated using the SP dispersion
relation of a continuous gold film. We also find that for a thick
film studied in this work, the positions of the extinction peaks
do not move noticeably with a change in the diameter of holes.

However, for thin films, when the diameter of the holes is
increased, the peak positions show redshifts.

We have also calculated the electromagnetic field distribu-
tions in the perforated gold films at selected wavelengths. The
electromagnetic field distributions in both the thick and the
thin perforated films showed clearly the excitation of SP’s
at the extinction peaks, supporting our assignment of the
transmission minima to the excitation of SP’s in the systems.
We have also found that in thick films with small holes, the
electric-field strengths in the vicinity of the holes are weak at
wavelengths for which extinction peaks occur. In contrast, it
has been shown that for thin films at the extinction peak, a
strong electric field can remain in the vicinity of the holes.
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APPENDIX A: SURFACE-PLASMON DISPERSION IN
CONTINUOUS FILMS

A summary of the SP dispersion in a continuous, nonmag-
netic metal film is given here. The electric field of an SP in a
system consisting of a continuous metal film of thickness t and
permittivity ε̃2 and two surrounding materials of permittivities
ε̃1 and ε̃3 is50,52

Esp(x) =

⎧⎪⎪⎨
⎪⎪⎩

(E1,ρ êρ +E1,z êz)ei(kspρ−k1,zz), z < 0
(E3,ρ êρ +E3,z êz)ei[kspρ+k3,z(z−t)], z > t

(EL,ρ êρ +EL,z êz)ei(kspρ+k2,zz)

+(ER,ρ êρ +ER,z êz)ei[kspρ−k2,z(z−t)], 0 < z < t,

(A1)

where êρ (êz) is the unit vector parallel (perpendicular) to
the film surface, ksp is the in-plane k vector of the SP, and
{ki,z} are the k vectors in the three material regions along the
perpendicular z direction. To simplify notation, we call the
interface between the dielectric of ε̃1 (ε̃3) and the metal film
the interface 1/2 (2/3). The coordinate system is chosen so
that z = 0 (z = t) corresponds to the interface 1/2 (2/3).

From the Maxwell equations, i.e., Eq. (4), ksp(λ) must
fulfill29,52

e2ik2,zt

[
ε̃1

k1,z

− ε̃2

k2,z

] [
ε̃2

k2,z

− ε̃3

k3,z

]
(A2)

+
[

ε̃3

k3,z

+ ε̃2

k2,z

] [
ε̃1

k1,z

+ ε̃2

k2,z

]
= 0,

where

ki,z(λ) =
[

ε̃i(λ)

ε0

(
2π

λ

)2

− ksp(λ)2

]1/2

. (A3)

We require that Im(ki,z) � 0 and Im(ksp) � 0. In the case of
Im(ksp) = 0, we require also Re(ksp) � 0. The surface mode in
Eq. (A2) is therefore fixed to be, for our system, a physically
relevant bound SP which we choose to decay and/or propagate
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in the positive ρ direction. When t → ∞, Eq. (A2) reduces to
the more familiar single interface dispersion relation29

ksp(λ) = 2π

λ

(
ε̃j (λ)ε̃2(λ)

ε0[ε̃j (λ) + ε̃2(λ)]

)1/2

, (A4)

where j = 1 (3) when interface 1/2 (2/3) is considered.
The dispersion of ksp(λ) from Eq. (A2) in the interval of

[λinitial,λfinal] is calculated using the Newton-Raphson method
as follows. We start our calculation of ksp(λ) from wavelength
λinitial and a large value of t using a solution from Eq. (A4)
corresponding to an SP on either the 1/2 or the 2/3 interface
as an initial guess. Clearly, this gives two possible solution
branches. After an actual solution to Eq. (A2) is found, t is
decreased and λ is kept at the value of λinitial. The solution
to Eq. (A2) for the decreased value of t is then sought with
the solution for the previously considered value of t as an
initial guess. When the solution ksp for λinitial and a considered
value of t is found, t is kept fixed at the value and a sweep
in λ is made. In this way, the dispersion ksp(λ) for the chosen
branch and a considered value of t in the wavelength interval
[λinitial,λfinal] is constructed.

We consider now the specific case of a gold film sandwiched
between SiO2 and H2O. This corresponds to the system shown
in Figs. 1 and 2 in the limit of D → 0. For a fixed Re(ksp)
and large t , two wavelengths λ1 and λ2, with λ1 > λ2, which
satisfy Eq. (A2), are obtained. SP’s at λ1 (λ2) originate from
the branch that corresponds to an SP at the SiO2/Au (H2O/Au)
interface in the limit of t → ∞. We therefore call the branch
that stems from the SP at the SiO2/Au (H2O/Au) interface in
the limit of t → ∞ the long-wavelength (short-wavelength)
branch. For the short-wavelength branch, a critical thickness
tc(λ) exists. When t < tc(λ), no solution for a bound SP of the
short-wavelength branch could be found at the wavelength λ.
For example, for 615 < λ < 1000 nm, t = 40 nm is already
below the critical thickness. It is also found that the shift in
Re[ksp(λ)] with varying t for the short-wavelength branch is
small. The reason why no solution could be found below the
critical thickness is that the solution of the short-wavelength
branch changes character at t = tc. For t < tc, the solution is no
longer bound to the gold film.50 Instead, it grows exponentially
away from the gold film into one of the dielectrics.50 We do not
consider a surface mode of this kind as a physically relevant
SP mode for our system.

It is found that the deviation between results for ksp from the
thin-film equation, Eq. (A2), and the single interface equation,
Eq. (A4), is negligible for t > 100 nm. This means that for t >

100 nm, SP’s on opposite surfaces should be almost completely
decoupled. The calculated dispersion curves of Re[ksp(λ)] for
both the long-wavelength and the short-wavelength branches
are shown in Fig. 16 for varying t . For the short-wavelength
branch, only the curve for t = 230 nm is shown since the shift
in this branch is small before the branch disappears. For a fixed
Re(ksp), the long-wavelength branch shows a clear redshift as
t is decreased.

APPENDIX B: FAST FOURIER FACTORIZATION

In the simulated periodic and nonmagnetic (μ̃ = μ0)
system presented in Figs. 1 and 2, the media changes from
gold to water at the rim of a hole. This makes ε̃j (x,y)
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FIG. 16. Re[ksp(λ)] for a continuous Au film of thickness t

sandwiched between SiO2 and H2O. The solid curves are for the
long-wavelength branch. In large thickness values of t , this branch
converges to SP’s at the SiO2/Au interface with an infinitely thick
gold film. The lowest solid curve is for t = 230 nm and subsequent
curves are for t = 60,50,40,30,25,20, and 15 nm. The dashed curve is
for the short-wavelength branch. Here, only the curve for t = 230 nm
is shown. This is because no solutions exist for this branch when t

becomes smaller than certain critical values and the shift in Re[ksp(λ)]
with varying t is small. In large thickness values of t , this branch
converges to SP’s at the H2O/Au interface with an infinitely thick
gold film.

in Eqs. (7) and (8) discontinuous in the x-y plane in the
j = 1 slice. In that case, the numerical convergence rate can
be improved if the remarks made by Li in Ref. 53 on the
Fourier factorization of products of pairwise discontinuous
functions are taken into account. We take these remarks into
account by the use of the fast Fourier factorization method
in Ref. 48. This requires the introduction of the vector
field Nj (x,y) = Nj,x(x,y)êx + Nj,y(x,y)êy that describes the
discontinuity of ε̃j (x,y) in slice j . The requirement on Nj is
that it is normal to the discontinuity of ε̃j and that |Nj | = 1.
Furthermore, Nj should be continuous along the discontinuity
of ε̃j and an extension of Nj should be made outside the
discontinuity of ε̃j . The remarks made by Li53 are taken into
account by modifying T j

1 and T j

2 in Eqs. (7) and (8) slightly,
giving48

T j

1,xx = 1

iω
Dx Q̃−1

j,ε,zz Dy,

T j

1,xy = − 1

iω
Dx Q̃−1

j,ε,zz Dx + iωμ01,

T j

1,yx = −iωμ01 + 1

iω
Dy Q̃−1

j,ε,zz Dy,

T j

1,yy = − 1

iω
Dy Q̃−1

j,ε,zz Dx,

(B1)

T j

2,xx = − 1

iωμ0
Dx Dy − iω Q̃j,ε,xy,

T j

2,xy = 1

iωμ0
Dx Dx − iω Q̃j,ε,yy,
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T j

2,yx = − 1

iωμ0
Dy Dy + iω Q̃j,ε,xx,

T j

2,yy = 1

iωμ0
Dy Dx + iω Q̃j,ε,xy,

where

Q̃j,ε,xx = Aj − (
Aj − B−1

j

)
Ñj,2x,

Q̃j,ε,yy = Aj − (
Aj − B−1

j

)
Ñj,2y,

(B2)
Q̃j,ε,zz = Aj ,

Q̃j,ε,xy = −(
Aj − B−1

j

)
Ñj,xy,

and

(Dx)mn = 〈φm| ∂

∂x
|φn〉,

(Dy)mn = 〈φm| ∂

∂y
|φn〉,

(Aj )mn = 〈φm|ε̃j (x,y)|φn〉,
(Bj )mn = 〈φm|ε̃j (x,y)−1|φn〉, (B3)

(Ñj,2x)mn = 〈φm|N2
j,x(x,y)|φn〉,

(Ñj,2y)mn = 〈φm|N2
j,y(x,y)|φn〉,

(Ñj,xy)mn = 〈φm|Nj,x(x,y)Nj,y(x,y)|φn〉.

For the system presented in Figs. 1 and 2,
we chose, for j = 1 in the unit cell defined by
0 < x � L and 0 < y � L, Nj,x(x,y) = 1 and
Nj,y(x,y) = 0 when x = L/2 and y = L/2, and
otherwise Nj,x(x,y) = (x − L/2)/r and Nj,y(x,y) =
(y − L/2)/r with r =

√
(x − L/2)2 + (y − L/2)2.

The values in the whole x-y plane are defined by
Nj,x(y)(x + mL,y + nL) = Nj,x(y)(x,y), with m and n being
integers.
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