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RKKY interaction in graphene from the lattice Green’s function
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We study the exchange interaction J between two magnetic impurities in undoped graphene (the Ruderman-
Kittel-Kasuya-Yosida [RKKY] interaction) by directly computing the lattice Green’s function for the tight-binding
band structure for the honeycomb lattice. The method allows us to compute J numerically for much larger
distances than can be handled by finite-lattice calculations as well as for small distances. In addition, we rederive
the analytical long-distance behavior of J for linearly dispersive bands and find corrections to the oscillatory
factor that were previously missed in the literature. The main features of the RKKY interaction in half-filled
graphene are that unlike the J oc (2kzR)~?sin(2ky R) behavior of an ordinary two-dimensional metal in the
long-distance limit, J in graphene falls off as 1/R3, shows the 1+ cos[(K — K’) - R]-type oscillations with
additional phase factors depending on the direction, and exhibits a ferromagnetic interaction for moments on
the same sublattice and an antiferromagnetic interaction for moments on the opposite sublattices as required by
particle-hole symmetry. The computed J with the full band structure agrees with our analytical results in the

long-distance limit, including the oscillatory factors with the additional phases.
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I. INTRODUCTION

Graphene has attracted considerable attention recently
due to its linear energy dispersion, where the excitations
are massless Dirac fermions, which could lead to physical
behavior different from that of the standard two-dimensional
systems. The Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction is the exchange interaction between two magnetic
impurities mediated by the conduction electrons of the host
and is a fundamental quantity of interest.”> Earlier works
on the RKKY interaction in graphene® have mostly used
a continuum model with a linearly dispersive band structure
with two Dirac cones at the corners of the Brillouin zone
(BZ) or have used exact diagonalization on a finite-size
lattice.” As pointed out by Saremi,»® for a bipartite lat-
tice with nearest-neighbor (NN) interactions, particle-hole
symmetry leads to a ferromagnetic interaction on the same
sublattice and an antiferromagnetic interaction for the opposite
sublattices.

The continuum-limit, linearly dispersive Dirac cone ap-
proximation is expected to be good in the long-distance limit
R — oo and allows an analytical solution. However, it requires
the use of a cutoff function, without which the contributions
from the higher energy states add up to produce a diverging and
oscillatory result. If a sharp energy cutoff is used, it produces a
J that oscillates with distance violating the particle-hole sym-
metry. To address this problem, a cutoff function approach?
has been used, where the higher-momentum contributions are
damped out slowly, with the length scale of damping taken
to infinity as the limiting case. While this approach yields a
reasonable result, it is not a priori obvious if some systematic
error is not introduced by such a procedure. In fact, using exact
diagonalization on finite lattices, Black-Schaffer’ extracted J
values that differed from Saremi’s results both in the prefactors
and, for J4 g, in the oscillatory factor as well. On the other hand,
the finite-lattice calculations in turn suffer from the deficiency
that the distance between the impurities can not be too large,
and extra interactions between the moments get introduced
due to the supercell geometry.
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In order to address these issues, we use a direct computation
of the lattice Green’s function at zero temperature (7' = 0)
to compute the RKKY interaction with the full tight-binding
band structure. The method allows us to numerically calculate
the RKKY interaction for very large distances, which is
impractical to obtain from the finite-lattice calculations. In
addition, we obtain analytical results for the long-distance
behavior of J by using an approach slightly different from
that of Saremi,® which allows us to obtain the proper phase
factors in the RKKY oscillations that were missed in previous
works. We note that for obtaining the proper oscillatory factors
of J, it is important to include carefully the phase factors of
the electronic wavefunctions around the Dirac points.

II. FORMULATION

We consider the tight-binding Hamiltonian for graphene
including a contact interaction with the magnetic centers,
namely,

H=Y ticlcio+He.—2) 5,5, (1)

(ij)o p
where i is the combined site-sublattice index, (ij) denotes
summation over distinct pairs of NN sites, o denotes the
electron spin, the p summation runs over the magnetic centers,
and 5, = (7/2))_,, ChuTuvepy is the itinerant electron spin
density. The results can be easily generalized if the hopping
integrals f;; are retained beyond the NN. However, direct
numerical computations showed that neglecting the higher
neighbor terms does not change J significantly, since the
magnitudes of the hopping beyond the NNs are relatively
small in graphene.’ The NN hopping parameter in graphene is
t = —2.56 eV as obtained by fitting the tight-binding bands to

the density-functional band calculations.’

A. Hamiltonian preliminaries

We define the basis of the sublattice Bloch functions
cly =N e, @
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where o = A or B are the two sublattices, with r;, = R; + 14
being the lattice position of «-th atom in the i-th unit cell
(usually 74 = 0 and tp is a NN distance vector). In this basis,
the unperturbed Hamiltonian is given by

0 [k
= , 3
T (f*(k) 0 > ©

where f(k) =t (e'*U + %% L ohd) and dy, d,, and d3 are
the NN position vectors. The Hamiltonian expression near a
Dirac point K takes the form f(qg + Kp) = vrq ¢(q), with
different phases ¢(g) at different Dirac points as indicated
in Fig. 1, where ¢ is the momentum measured from the
neighboring Dirac point, ¢ = k — Kp. Diagonalization of
the Hamiltonian yields the familiar linear dispersion near the
Dirac points, namely, E, + = £|vr|g with the Fermi velocity
vr = 3ta/2, which is defined to be negative throughout this
paper, ¢ being negative, and a is the bond length. The = signs
denote the conduction and valence bands, respectively. The
corresponding eigenstates are

(WE) = 2712 F (/I fR)le), + ¢l p)l0). )

For physical interpretation, it is convenient to write down

the real-space wavefunctions in the central cell by using
Eq. (2). Defining the central cell to be made out of atom A
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FIG. 1. The Hamiltonian near the Dirac points in the first BZ with
B(q) = —el T30 i T/3+0p) g=iby  _ oiCT[3+0y) GiCT/3=00)  _ ity
for the first through sixth Dirac points (K; to K¢) as labeled. The
small momentum ¢ is the deviation from the corresponding Dirac
point (k = Kp + ¢), and 6, = tan"'(g,/q,) is the polar angle of g
with respect to K; — K3, chosen as the £ direction as shown. These
phase factors are important as they determine the oscillatory behavior
of J4 5. Note that the X direction could be defined by any adjacent pair
of Dirac points K'—K. These phase factors depend on the choice of
the sublattice Bloch functions as discussed in the text; those presented
in the figure and used throughout this paper correspond to the choice
of the sublattice Bloch functions given by Eq. (2).
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at the origin and atom B at the position 75 = 073 (Fig. 2), we
have the two-component central-cell wavefunctions

1 e i% ) N 1 <:|:ei9,, )
— and Vy = — , (5
V2 < 1 AV )

which have been written for momenta near the two Dirac
points. This is obtained by expanding the coefficient
f(k)/|f(k)| of the A-sublattice Bloch function in Eq. (4)
and multiplying the B-sublattice Bloch function coefficient,
which is 1, by the phase factor ¢’*% following Eq. (2). The
wave functions [Eq. (5)] can also be obtained by numerical
diagonalization of Hamiltonian [Eq. (3)]. The wavefunction
for any other atom located in the unit cell defined by R; is
obtained by multiplying the central-cell wavefunction with
the Bloch factor ¢/*Fi. A different definition of the central
cell will obviously change Eq. (5); e.g., the cell defined
by t4 =0 and tg =d; will lead to an extra phase factor
eT2™/3 in the second component in Eq. (5). Similarly, if the
sublattice Bloch functions [Eq. (2)] are defined with a —k in the
exponent on the right-hand side, the wavefunctions around K
and K’ in Eq. (5) become interchanged. Equation (5) leads to
the usual interpretation of the wavefunctions as pseudospins,
with the corresponding Hamiltonians Hg: = —|vg|o - g and
'H x = |vr|o* - g near the Dirac points with the Pauli matrices
o= (0y,0y) and 6* = (oy, — oy).

An alternative expression for the sublattice Bloch functions
is sometimes used in the literature, where they are defined
without the phase factor etk on the individual sites,'0 so
that instead of Eq. (2), we have c =N~ 1/22 etk R"CL.
The matrix elements in the Hamlltoman (3) then change to
fl(k) = fk)e b =1 (T 4 ¢*T> 1 1). The low-energy
expression near Dirac points is given by f'(g + Kp) =
vrq ¢'(q), where ¢'(q) = e~"% near K’ and —e'% near K.
The benefit of this choice is that contrary to ¢(g), the phase
¢’'(g) is the same for all Dirac points K or K’, irrespective of
their locations in the hexagonal BZ. However, with this choice,
care must be taken to use the cell positions R; rather than the
actual atom positions r;, in obtaining the wavefunction on a
particular atom from the central-cell wavefunction, an error not
uncommon to find in the literature. The wavefunctions [Eq. (5)]
as well as its interpretation in terms of the pseudospins remain
unchanged, irrespective of the choice of the sublattice Bloch
functions.

The exchange integral J, or any other physical quantity for
that matter, is independent of the choice of the basis functions,
but care must be taken to incorporate the appropriate phase
factors in the calculations. We work with the first choice of the
sublattice Bloch functions [Eq. (2)] throughout this paper.

+
i =

B. Expression for the exchange interaction

In the linear response theory, the exchange interaction may
be obtained by first computing the perturbed wavefunctions
due to the magnetic impurity located at the origin from the
Lippmann-Schwinger equation |¥) = |W°) + GV |W¥), from
which the energy due to the second magnetic impurity located
at R is computed from the first-order perturbation theory, so
that E(R) = (V| V(R)|¥). Note that R is the actual position of
the atom, in contact with the impurity, and not just the position
of the unit cell, in which it is located. For a contact interaction
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between the magnetic impurity and the conduction electrons,
V =—A §-5 8(F), E(R) may be written in the Heisenberg
form

E(R)=1JS, -5, (6)

where the exchange integral J = (A*4?/4) x(0,R) and x is
the spin-independent susceptibility.

For a spin-independent perturbation, the standard sus-
ceptibility x (r,r’) = én(r)/8V (') is written in terms of the
unperturbed retarded Green’s functions

Er
X(r,r’):—; / dE Im[G°(r,r',E)G°(+',r,E)], (7)

o]

where the integration is over the occupied states. Here G°
is the Green’s function for a single spin channel and is
spin-independent, while in the definition of the susceptibility,
3V (') is a spin-independent perturbation, and §n(r) is the
change in the total charge density including both spins.

This result can be easily extended to the case of graphene
to yield

2 [Er
Xep(rir) = — = / dE Im[Go,(r.r' . E)G},(r'.r.E)],  (8)
TJ-c

where «, 8 are the sublattice indices, A or B, r,7’ denote the
lattice positions of the two magnetic centers located on the sub-
lattice @ and B, respectively, and the sublattice susceptibility
is as usual xqp(r, ") = 8ny(r)/8Vg(r'). The expression for the
susceptibility is obtained by noting that the charge density is
given by n,(r) = —% f_EOFO dE Im Ggq(r,r,E) and obtaining
the charge difference §n,(r) induced by the perturbation
8V (r') from the Dyson equation G = G° + G°VG.

Now, for a spin-dependent perturbation, the exchange
interaction J,g(R) between impurities located at the sites
(2,0) and (B,R) may be written in terms of the above
spin-independent susceptibility

)\’2 2
Jup(R) = TXa,s(O,R) )

The calculation of the exchange interaction thus boils down
to the computation of the lattice Green’s functions and a
quadrature over the energy following Eq. (8).

III. CALCULATION OF THE GREEN’S FUNCTIONS

We compute the real-space Green’s function by two
different approaches, namely, the direct integration method
and the recursive technique of Horiguchi.!! In the first method,
the real-space Green’s functions are calculated by numerically
integrating the momentum-space Green’s functions

1 o
Gy(r.r \E) = Q—/dzke’k'(’_”Ggﬂ(k,E). (10)
BZ

Here G° = (E +in — Hy)~! and the matrix elements are
taken in the same basis of the sublattice Bloch functions
|ka) corresponding to the operator cza defined in Eq. (2); the
subscripts of r;, have been dropped for simplicity of notation.
So the positions r and r’ refer to the actual positions of the
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atoms and not just to the positions of the cells that they belong
to. The matrix elements are then

0 0
Gap(k,E) = (k| GU(E)kp) = (GAA GAB)

Gha Gy
. B E+in+ Hr
=(E+in—H) '= - .
Edin =T = = fiof®

L

The BZ integral in Eq. (10) was evaluated by taking
up to Ny = 10% k-points in the full BZ, and a small value
for the infinitesimal parameter n = 0.005 is used. To ensure
convergence, we must have Ak <« 1/R, where Ak is the size
of the interval in the grid of k mesh points. This method is
straightforward and computationally robust but slow, while
the Horiguchi recursive technique, discussed below, is fast,
but it has stability problems'? for larger distances. We found
that the Horiguchi method becomes unstable for distances
|[r —r'| = R 2 7a. While both methods gave nearly identical
results for the distances where the Horiguchi method is stable,
because of this stability problem, all computed values of J
were obtained from the Green’s functions calculated from the
direct integration method following Eq. (10).

It is worth noting the symmetry properties of the Green’s
functions, which immediately follow from the above equations
and the expression for Hj, namely, that G(j\ A(R,0,E) =
GY%3(R,0,E)and G%5(0,R,E) = G%,(R,0,E), leading to the
results, which is also obvious on physical grounds:

Jaa(R) = Jpp(R) and J4p(R) = Jpa(—R). (12)

In the second method, the Horiguchi recursive technique,“
the Green’s functions for the honeycomb lattice are expressed
in terms of those for the triangular lattice, which in turn are

FIG. 2. The graphene honeycomb lattice with two different
sublattices, shown as full and open circles. The figure also shows the
orientation of the BZ and two common directions in the direct lattice
(zigzag and armchair). 7} and 7, are the two primitive translation
vectors of the direct lattice, and the three NN distance vectors are
indicated by d, d», and d;.
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FIG. 3. On-site Green’s function Re G% 4(0,0,E) (dashed line)
and —Im G%A(O,O,E) (full line) computed from Eq. (13).

expressed in terms of the elliptic integrals. For example, the
expression for the on-site Green’s function is given by

G ,(0,0,2) = ﬁg(z’)k[km], (13)

where z = E +in, 7/ = (z> — 3)/2, g(z') = 8[(27 + 3)!/? —
1732027+ 3)12 + 31712, k() = 27" g(2) (27 + 3)'/4,

R(k(z)))
K(k(z')) for Imk-Imz <0

= {K(k(z))+2i K(/1=k>(z')) for Im k > 0 and Imz'>0
K (k(z')) —2i K(/1=k?(z")) for Im k < 0 and Im z'<0

and K (k) is the elliptic integral

/2 1
K(k) = /o 1 —k2sn2 )72 do. 14)
The elliptic integral with complex modulus was evaluated fol-
lowing established procedures and the Arithmetic-Geometric
Mean Method,'>!* and n = 1076 was used.

The computed result for the on-site Green’s function
obtained from Eq. (13) is shown in Fig. 3, and one sees
the familiar density of states, which is proportional to the
imaginary part: po(E) = —n~'Im G%A(O,O,E), where po(E)
is the density of states per atom per spin. For low energy
E — 0, Eq. (13) yields the well-known linear density of states

() = 2e IE] (15)
p(] - 27_[ ‘U% )

where A, is the area of the unit cell. Similarly, one can compute
the Green’s functions for a few lattice vectors R [specifically,
R = (I,m) = (0,0),(2,0),and (4,0), for the triangular lattice
using Horiguchi’s notation], from which the remaining Green’s
functions for both the triangular as well as the honeycomb
lattice can be computed using the recursion relations.

InFig. 4, we have plotted the Green’s function G% A(R,0,E)
with a specific R = 74/3a(1,0) along the zigzag direction and
also the product of the real and the imaginary parts, which
enters as the integrand in the calculation of J [Eq. (8)] , to
be integrated over the occupied states between E = —oo and
zero (Er = 0 for the undoped graphene). As seen in the figure,
the integrand is a rapidly oscillating function, with a small net
result for J.
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FIG. 4. (Color online) Real (dashed line) and imaginary (full
line) parts of the Green’s function G%A(R,O, E) with R = 7+/3a(1,0)
obtained from the Horiguchi recursive method. Red (thin) line shows
the product of the real and imaginary parts, which is displaced by
+0.25 along the y axis.

IV. EXCHANGE INTERACTION

Before we present the results of the full calculations, we
derive the long-distance behavior of J with the linearly-
dispersive band structure. This is reasonable as the long-
distance behavior is necessarily determined by the small
momentum states, for which the linear-band approximation
is excellent. As has been pointed out in the literature,>’ the
RKKY interaction shows oscillations as a function of distance
because of the interference between spin densities originating
from the two Dirac points in the BZ. However, there is no
consensus regarding the form of the oscillation, and we find
important differences from the earlier results.

A. Magnetic impurities on the same sublattice

To derive the long-distance oscillatory behavior of the
RKKY interaction, we first obtain the Green’s functions
for small energies (which necessarily determine the long-
distance behavior) and use these to evaluate the integral in the
expression [Eq. (8)] for the susceptibility. For small energies,
the contribution to the integral in Eq. (10) comes from the two
Dirac points in the BZ, so that the equation becomes

1 R
Goy(R.0.E) = Q—fdzq TR KR Goy(q + K E)
BZ
+e KRG (g + K. E)], (16)

where K and K’ are the two Dirac points and R is the distance
between the two magnetic centers.

For o = B, i.e., if the two sublattices are the same,
these two Green’s functions in the kernel become the same,
namely, G%A(q,E) =(E+inl(E+in)? - vquz]’1 as seen
from Eq. (11). The exponential factor may be expanded
(Jacobi-Anger expansion'”) in terms of the Bessel functions
as

oo
e'® = Jo(qR) +22i”1n(qR)COS[n(9q —op)l, (7
n=1
where 6, andﬁ@R =tan"!(y/x) are the polar angles of the

vectors g and R with respect to the chosen x axis, respectively,
as explained in Fig. 1; for example, along the armchair
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direction, shown in Fig. 2, we have 0 = % for the distance R
of atoms A or B from the origin.
Then integration over 6, yields

GoYA(R,0.E) = (KR 4 K" Byg) (R,E),  (18)

where
2r [ 0
gaa(R,E) = — qdqJo(qR)G 4 ,(q,.E), (19)
Qgz Jo

and a momentum cutoff g, has been introduced. Because the
phase factor sum in Eq. (18) turns out to be real, we get a
similar expression for G4 ,(0,R,E), and plugging these in
Eq. (8), we immediately get

x4a(0,R) = I4a(R) x {1 +cos[(K — K')- R]}  (20)

with the prefactor

Er
Iaa(R) = 2 f dEIm[gaa(R.E)P. (2D
T J-oo
The large distance behavior of J is controlled by small
momentum states, and one may try to evaluate this by
taking the cutoff g, — oo for the ease of performing the
integrals. In this case the integral in Eq. (19) can be expressed
in terms of the modified Bessel function of the second
kind, namely, gaa = —27 Q5. (E /v2)Ko(i ER/vr).'%7 This
in turn may be expressed in terms of Bessel and Neu-
mann functions'® with real arguments to yield the ker-
nelIm [g4a(R,E)]> = Qn")Qp7v,°R72y*Jo(y)Yo(y), where
y= ERv;l. Thus Eq. (21) becomes
83

Ija(R) =
QZBZUF

R /0 dyy? JoYo(y).  (22)

The R~ dependence clearly emerges; however, the in-
tegral does not converge. Following Saremi,> we multiply
the integrand by a cutoff function f(y,yy), perform the
integral, and take the limit yy — oco. In this limit, the
cutoff function f(y,yo) — 1, so that the integral in Eq. (22)
is recovered. We have tried three different cutoff func-
tions, namely, f(y,y0) =exp (—=y/yo), exp (=y*/y;), or
yg(yg +y?)7!, and in each case we find the same limit:
limy _, fooo dyszo(y)YO(y)f(y,yO) = 1/16. Thus we imme-
diately get IxA(R) = 9(64mt)~'a®/R3, which leads to the
exchange interaction for the same sublattice

1+ cos[(K — K') - R]
(R/a)}

where C = —912h?/(25671) is a positive quantity, since f < 0
in graphene. We note that the oscillatory factor is identical
to the expression derived by Saremi;? however, we have an
additional scaling factor of 3/2 for the magnitude of J4 4. From
finite-size calculations, Black-Schaffer’ extracted a scaling
factor different from ours or that of Saremi; however, we note
that such factors are difficult to extract from numerical results,
especially from finite-size calculations.

The expression for J44, Eq. (23), is valid for all directions
including the zigzag and the armchair directions, and K and
K’ are any two adjacent Dirac points in the BZ. It is easy to see
that while the oscillatory factor 1 + cos[(K — K') - R] repeats

Jaa(R) = —C x

; (23)

PHYSICAL REVIEW B 83, 165425 (2011)

>
T
N
qla
NN
D
Q

1074 g e
N 107° \E—G \
& 10°° g
2 1077 0 05 1 15 2
= 1078 Log(R/a)
107° ‘
0 50 100 150 200 250

R/a

FIG. 5. (Color online) Exchange interaction J4, between two
impurities on the same sublattice. Black solid lines are the results
with the full tight-binding band structure, and the red dashed lines
indicate the long-distance behavior as obtained from Eq. (23) using
linear dispersion. The inset shows the log plot showing the long-
distance R~ behavior, while there are noticeable differences for
small R, especially visible in the inset. Note that since ¢ is negative for
graphene, J 4,4 is also negative, indicating a ferromagnetic interaction.

in triplets as 2, 1/2, 1/2, . . . with distance R along the zigzag
direction, it is always two for the armchair direction. Because
of this, the magnitude of J4 4 oscillates for the zigzag direction
but not for the armchair direction, always, however, remaining
ferromagnetic as required by the particle-hole symmetry.

The calculated results for J44 using the full band structure
following the methods of Secs. II and III are shown in Fig. 5
for the zigzag direction and in Fig. 6 for the armchair direction.
Both follow the long-distance behavior of Eq. (23) quite well
beginning with surprisingly small distances.

B. Magnetic impurities on two different sublattices

We now turn to J4p, where the two impurities are located
on different sublattices. The needed Green’s functions, in the
small ¢ limit, are obtained from Eq. (11) to yield
vpq e~ 1/3E0)

GY%.(q+Kp.E)==+ :
pald T RD (E +in)? — 124>

(24)

1 AA-Armchair
107 . — s
o \‘\

1079 | 3( 5
= g
< -5 | = -
\25 10 0 05 1 15 2
2 10—7 L Log(R/a)

1079 L : ‘ ‘

0 50 100 150 200 250

R/a

FIG. 6. (Color online) Same as Fig. 5 for the armchair direction.
For this direction, consistent with Eq. (23), there are no oscillations
in J unlike the zigzag direction (Fig. 5).

165425-5



M. SHERAFATI AND S. SATPATHY

10°2 AB-Zigzag
104 Ll
5
< 1078
&
= 1078
| 10710
10—12 . . ' H?i pitggbatihARAANE
0 50 100 150 200 250
R/a

FIG. 7. (Color online) Jg, for the zigzag direction. Black solid
line is the result of the full calculation, and the red dashed line is
obtained from Eq. (30).

where + signs are for the two Dirac points Kp = K and
K’, respectively. Here we have chosen a BZ that includes
the K; and K, points, and the corresponding phase factors
in the Hamiltonian have been retained (see Fig. 1). The
next step is to obtain G% ,(R,0,E) by the momentum space
integration using Eq. (16). The same Jacobi-Anger expansion
for ¢'4'® [Eq. (17)] may be used as before except that now
the extra phase factor e*'% appears in the angle integral while
performing the integration in Eq. (16). Using the result

2 . 0 if n#l,
/ df,e*"% cos[n(0, — Or)] = { (25)
0

weT% if p=1,

we get after some algebra, the result G% 4(R,0,E) =
o gpa(R.E), where o = efin/S(ei(K-Rfﬁg) _ ei(K/-R+9R)),
which turns out to be pure imaginary, and

2miv 9e
gsa(R.E) = Fi/‘ dq
Qsz Jo

q*Ji(gR)
(E+in? —vig?

(26)

Similarly we find G%B(O,R,E) = —a* gpa(R,E). Finally,
using Eq. (8), the susceptibility becomes

x5a(R,0)=1Ipa(R)x{1+cos[(K — K')R+m —20g]}  (27)

with the prefactor

4 [Er
Im®=;/ dE Tm [gga(R,E)]. (28)

[e¢]

We can now proceed to evaluate Jp, in the long-distance
limit in a fashion similar to the previous subsection. We find
that gga = 27 Q5. (E /v2)K (i ER /vr), where K| is the first-
order modified Bessel function of the second kind. Expressing
this in terms of Bessel and Neumann functions and using a
cutoff function as before, we finally get

870 5 . * o2
Iga(R) = ———R™" lim dyy” JiMY1(y) f(y.y0).
QBZUF YYo= Jo

(29)
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FIG. 8. (Color online) Same as Fig. 7 for the armchair direction.

The result for this integral is —3/16, so that collecting all

terms, the exchange interaction becomes

14+ cos[(K—K')-R+m —20g]
(R/a)’

Note that the equation is valid for any direction of R and
for any choice of the two Dirac points K and K’ (they have to
be adjacent to each other, of course, so that they are within
a single unit cell in the reciprocal lattice), so long as we
define the angle O to be with respect to the chosen K'-K
vector. One can check that these equations yield the same
results for J for different equivalent directions R as expected
from symmetry. Note that Jp4 has the extra factor w — 20
in the argument of the cosine as compared to J44, which
comes from the interference of the contributions to the Green’s
functions [Eq. (16)] from the two Dirac points. For the zigzag
direction along K'-K, the oscillatory part of Eq. (30) agrees
with the Black-Schaffer result,” since the angle 6 vanishes
for large R. However, our result is valid for all directions,
and furthermore for the armchair directions, the angle 6Og
is never zero (see Fig. 2), so that this phase factor must be
retained in Eq. (30).

The oscillatory behaviors seen in the full calculations for
Jpa presented in Figs. 7 and 8 are contained in Eq. (30).
For the zigzag direction, taking K—-K' = 47 (34/3a)"1(~1,0)
and R = a?l + +/3an%, where n is an integer, the oscillatory
factor in Eq. (27) becomes 1 + cos[(4n — 1)7/3 4 26g]. In
the limit R — oo, O — 0, so that this factor repeats in the
sequence of the triplet numbers: 0, 3/2, 3/2 as R is increased.
For a finite R, O # 0, so that we never get exactly the zero
in the triplet, but rather a small number, which is faithfully
reproduced in the full calculations shown in Fig. 7, where
two values of J are close in magnitude, while the next one is
lower by about three orders of magnitude. For the armchair
direction, R =2"'a(3n + 1)(\/5,1), n being an integer and
Or = 1/6, so that the oscillatory factor in Eq. (27) is always 2.
The exchange interaction thus changes smoothly with distance
without any oscillations, as seen from Fig. 8.

JBA(R) =3C x (30)

C. Interaction between impurities on plaquettes

The plaquette impurities, where the magnetic impurities
are located at high-symmetry points rather than at single
lattice sites, are of interest because a number of atoms and
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FIG. 9. (Color online) Magnetic interaction J for the hexagonal
plaquette along the armchair direction. Black solid line is the result
of the full-band calculation, and the red dashed line is obtained from
Eq. (32).

small molecules may be favored to occupy such positions.
For instance, the impurity may be located midway at a bond
center and may interact with the two neighboring sites on the
bond. In these situations, the interaction term in Eq. (1) may
be replaced by

Hine = =281+ Y 5p — 25 Y 5. (1)
P P

where the summations are performed over the lattice sites with
which the impurity spins S; interact (six sites if the impurity is
located at the hexagon center, and two if it is on the bond cen-
ter). Assuming that the interaction strength is small (A < []),
the interaction J for these plaquette impurities may be obtained
by simply summing over the individual site-site interactions
already obtained in Sec. III, so that J = ) oy Iov-

These results are shown in Figs. 9 and 10 for the hexagonal
plaquettes and in Fig. 11 for impurities located on the bond
centers. For the hexagonal plaquettes, as has been pointed
out earlier,’ the oscillating cosine factors present in the site
interactions, J44 and Jp4, cancel out both for the armchair
and for the zigzag hexagonal plaquette, leading to the single
result valid for both cases:

Jpiag(R) = 36C x (R/a)~, (32)

which is a net antiferromagnetic interaction.

Plaquette—Zigzag

L L
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FIG. 10. (Color online) Same as Fig. 9 for the zigzag direction.
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FIG. 11. (Color online) Magnetic interaction Jyoq between
two impurities located on bond centers obtained from the full
calculation (solid line) and the linear-band long-distance limit
Eq. (33) (red dots).

For impurities located midway between the bond centers
along the zigzag direction, we find an oscillating interaction,
in the long-distance limit,

1—2cos[(K — K')-R]

(R/a)? '
As distance R is increased, the numerator changes with the
repeat sequence of —1, 2, and 2, leading to an interaction
that is antiferromagnetic every third site and ferromagnetic

otherwise. The results from the full calculation is compared to
the long-distance limit result, Eq. (33), in Fig. 11.

Jbond(R) =4C x

(33)

V. SUMMARY AND DISCUSSION

In summary, we studied the RKKY interaction between the
magnetic impurities in the honeycomb lattice by evaluating
the Green’s function for the tight-binding Hamiltonian using
the direct summation method, which worked well for all
distances but is computationally slow, or the Horiguchi
recursive technique, which is a fast method but has stability
problem for large R 2 7a or so. For distances, where both
methods worked, the results agreed with each other with no
noticeable difference. These methods are complementary to
the finite-lattice calculations;’ however, the direct summation
method allows the calculation of J for much larger distances
with modest computational efforts. By carefully considering
the phase factors of the wavefunctions around the Dirac cones,
we have also obtained the analytical long-distance limits of J,
Egs. (23) and (30), which, although similar in form to previous
results,>’ have important corrections in terms of additional
phase factors in the oscillating term. All such phase factors
were faithfully reproduced in our numerical calculations of J
using the full tight-binding band structure. We found that the
long-distance limit is reached for quite small distances, of the
order of a few lattice constants.

In addition to the NN model, we have also studied the
effect of the further-neighbor electron hopping, but these
produced negligible differences as might be expected, since
the strengths of the higher-neighbor hoppings are quite small
in graphene.” For the hexagonal plaquette impurities, J is
always antiferromagnetic, while for the bond impurities, the
sign oscillates. Given that the magnitude of J falls off quite
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rapidly with distance, NN J would dominate, so that spin
chains based on hexagonal plaquette sites are predicted to be
antiferromagnetic, while those based on the bond sites would
be ferromagnetic.

In trying to design an experimental system to observe the
RKKY interaction, one must carefully select a proper system.
At first sight, it might appear that a magnetic adatom such as
Co or Fe deposited on top of the graphene sheet would interact
via the RKKY interaction. However, in addition to introducing
the needed localized magnetic moments from the d electrons,
the outermost s electrons of the adatom are transferred to the
host, where either they are added to the conduction band or
they may form weakly localized states around the adatom site.
These extra electrons will modify the RKKY interaction. The
challenge is therefore to come up with a system, perhaps a
simple molecule, that has a magnetic moment interacting with
the graphene lattice, but one that does not alter the electronic
structure by contributing extra electrons to the graphene sheet.
Because of this reason, there has been no proper study of

PHYSICAL REVIEW B 83, 165425 (2011)

the RKKY interaction using density-functional methods, even
though interaction between magnetic impurities in graphene
have been studied in several cases.!*2! Also, because the
density-functional methods involve supercell calculations, it
is computationally difficult to study RKKY interaction for
anything but small distances. As to the question whether
one should have the Kondo moment formation or the RKKY
interaction in graphene, one expects the RKKY interaction to
dominate, since scaling arguments>? as well as renormalization
group calculations® indicate that an energy-linear density of
states at the Fermi energy in graphene suppresses the Kondo
effect below the critical coupling J,. ~ 3.5 eV, which is quite
strong.
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