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Charge-transfer model for carbonaceous electrodes in polar environments
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A realistic treatment of metallic and semimetallic systems in polar environments requires an explicit treatment
of charges induced into the metallic surface. In classical electrostatics, a metallic surface is properly described
if the electric field perpendicular to the surface vanishes. For nanoscale materials, however, charge screening
is imperfect because the nanoscale object’s surface density of states is finite. Here, we demonstrate that from
quantum considerations a classical mean-field charge-transfer model can be extracted, which is demonstrated for
graphene and metallic single-wall carbon nanotubes. The model is easily parametrized and gives an approximate
description of the binding of point charges on these structures. Potential applications include the modeling of
charged or fully biased nanoscale systems in a polar environment, which we demonstrate by simulating a water
droplet in a biased graphene nanocapacitor at a fraction of the computational cost of a fully quantum-mechanical
treatment.
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I. INTRODUCTION

Carbonaceous materials are traditionally used for elec-
trodes. Common supercapacitors, for example, use activated
carbon as the electrode material because of its large surface
area and chemical inertness.1 Even higher capacities are
expected once the technological obstacles inhibiting the use of
the recently discovered carbon allotropes, carbon nanotubes
(CNTs),2 and graphene3 are overcome. CNTs, for example,
exhibit a huge surface area because of their one-dimensional
high aspect-ratio structure. Also graphenes have been shown
to yield extraordinary capacities.4,5

When electrodes are put into contact with an electrolyte,
the polar molecules and ions will induce image charges on
the electrode’s surface. In particular upon applying a voltage,
ions are forced into the vicinity of the electrode and the ion’s
charge is compensated by a respective charge of opposite sign
on the electrode—the electrostatic double layer is formed.6

While the formation of image charges7 and interactions
between liquids and electrodes8–10 can be modeled on
the nanoscale using quantum mechanical methods, such as
density-functional theory or tight binding, these are limited
to a couple of hundred atoms. In particular, if a large
number of electrolyte molecules is to be included in the
simulation, the number of atoms will exceed the possibilities
of quantum-chemical methods by orders of magnitude. A
proper description of electrodes hence requires an inexpensive
classical method.

Such classical models have been traditionally developed
for molecules11 and dielectrics.12 Coincidentally, these early
variable-charge models use a formulation that is only strictly
valid for metals (such as electrodes) since charge can transfer
over arbitrary distances.13 Indeed, such models have also
been used to study the structure of water in the vicinity of
charged metallic electrodes.14,15 For dielectrics, more recent
developments allow proper modeling of polarizabilities.16

Here we present a variable-charge model for metallic
electrodes, which is similar in spirit to earlier variable-charge
formulations.11,12,14,15 We derive the respective total-energy

expression from the material’s electronic structure. In short,
for CNTs and graphene—the two model materials considered
here—the surface density of states is expressed as a compact
analytical expression2 from which a mean-field model for
charge transfer is derived. Thus, whereas the Siepmann-Sprik
model,15 for instance, uses a term quadratic in the atomic
charges, fitted to reproduce the proper limit of macroscopic
electrostatics, our model allows penalizing charge trans-
fer using the exact energy expressions following from the
electronic structure. Physically, the Siepmann-Sprik model
hence contains electrostatic interaction and a Hubbard-U
term which can be regarded as contributions to the Hartree
energy. Our model additionally contains a rough estimate
of the electron kinetic, exchange, and correlation energies
within the rigid-band approximation. The model parameters
are easily extracted from these considerations without the
need for empirical parametrization schemes.12,14,15 Obviously,
such a model is only appropriate for studying double-layer
formation at inert electrodes at which no Faradaic processes
occur.

II. THEORY

We construct this charge-transfer model starting at the quan-
tum level. Specifically, in the tight-binding approximation17,18

including self-consistent charges17–19 the total energy is given
by

E(ρ) = EBS + 1

2

∑
I,J

γIJ qI qJ +
∑

I

φext
I qI (1)

with EBS = tr ρH , the band-structure energy. Here, ρ is the
density matrix, H the tight-binding Hamiltonian, qI the total
(nucleus plus electron) charge on atom I , γIJ the Coulomb
integral between atoms I and J , and φext

I the potential at atom
I from the electrolyte molecules, including a possible external
potential. The long-range tail of γIJ decays as γIJ ∼ r−1

IJ .
The short-range behavior of γIJ deviates from r−1 which
honors the fact that the electron is delocalized: the charge
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located on each atom acquires some shape that broadens
the point charge. In particular, the self-energy contribution
is contained in γ through γII = U , where the Hubbard-U is
often called the chemical hardness. In Eq. (1), we deliberately
omitted the repulsive pair potential that is required to stabilize
solid state structures since we only focus on the ground state
of the electronic system.

An electrolyte consists of solvated ions and the solvent. We
here approximate both by a set of point charges which present
a spatially varying external electrostatic potential φext

I to the
electrode. The equilibrium density matrix ρ on the electrode
can be found by minimizing Eq. (1), which yields

μ̄ = μI +
∑

J

γIJ qJ + φext
I = const., (2)

i.e., the electrochemical potential μ̄ has to be constant. This
minimization is constrained by the condition that ρ remains
idempotent, i.e., ρ2 = ρ, and that the trace of ρ gives the
number of electrons in the system. The charges qI are traces
over the subspace of ρ that is localized on the respective atom.

A full solution of Eq. (2) is numerically prohibitive for
more than around 1000 atoms, hence approximations need to
be made to the band-structure part of the energy

EBS = tr ρH =
∫ εF

−∞
dε εD(ε) (3)

in order to compute the response of the system to an external
electrostatic potential φext

I . Here, μ is the chemical potential
and D(ε) the electron density of states. In particular, we want
the approximate energy expression to only depend on the
charges qI and the solution of the unperturbed system (where
φext

I = 0), and not on the full density matrix ρ. Numerically,
this reduces the dimensionality of the problem to linear order.

The band-structure energy of the unperturbed solution is
fully determined by the knowledge of the density of states
D(ε). For graphene and CNTs, which we are treating here, we
know that due to symmetry the local density of states gI (ε) has
to be equal for each atom I , and hence equal to the unperturbed
total density of states D(ε) (with appropriate normalization).

We may hence write trivially

D(ε) =
∑

I

gI (ε) =
∑

I

g(ε), (4)

with g(ε) = N−1D(ε), where N is the total number of atoms
in the crystal. We now assume that the local density of states is
rigid: An external potential will only shift the local density of
states by the value μI of the local chemical potential. Hence,

D(ε) =
∑

I

g(ε − μI ) (5)

and

EBS =
∑

I

∫ εF +μI

−∞
dε g(ε) =

∑
I

eBS(μI ), (6)

where eBS is a per-atom contribution to the band-structure
energy. This rigid-band approximation20 is the central assump-
tion in our charge-transfer model.

In order to determine the density of states g(ε) we need
a specific material model. A spin-paired π -orbital tight-
binding Hamiltonian with a single electron per carbon atom
is sufficient to describe the electron dispersion around the
Fermi level for infinite CNTs and graphene.2 In particular, we
can additionally linearize the dispersion relation around the
Fermi level which leads to the famous k · p Hamiltonian21

that describes the idealized spherically symmetric Dirac-cone
centered at the K points in the two-dimensional band structure
of graphene. Similarly, for metallic CNTs in the zone-folding
approximation the band structure becomes linear and the slope
is identical to that of the graphene Dirac cone.2

Figure 1 shows a comparison of these approximate solu-
tions to the solution obtained using density-functional theory
(DFT).22 In particular, Fig. 1(c) shows that the band-structure
energy is faithfully reproduced close to the Fermi level. For
CNTs, moving away from the Fermi-level reveals the sub-band
quantization in the fully nonlinearized model (see kinks in the
blue curve of Fig. 1(c)). While it is easy to also include this
in the linearized model (see Ref. 23), we refrain here from
doing so for the sake of simplicity. For large diameter CNTs,
the graphene model again gives a reasonable approximation
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FIG. 1. (Color online) Band structure and density of states for (a) graphene and (b) a (10,10) CNT. (c) Band-structure energy EBS as a
function of chemical potential, where dotted lines are graphene results while solid lines give the results for a (10,10) CNT. In all graphs, the
DFT-LDA solution is shown with thin (black) lines, while thick lines show the nearest-neighbor π -orbital tight-binding model with t0 = 2.5 eV.
Here, the dashed (blue) is the full and solid (red) the linearized solution. The kinks in the dashed lines are due to the subband quantization in
the full solution. The Fermi-level is located at zero energy.
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and an explicit inclusion of sub-band quantization becomes
unnecessary.

The linearized band structures lead to an approximate
analytical expression for the density of states, g(ε) = G|ε|α ,
with α = 0 for metallic CNTs23 and α = 1 for graphene.24

This approximation is valid close to the Fermi level which is
located at εF = 0. By normalizing the density of states to the
number of carbon atoms, we obtain23,24

GCNT = 4

π

√
n2

1 + n2
2 + n1n2 t0

, (7)

Ggraphene = 2√
3 π t2

0

. (8)

Here t0 is the next-neighbor hopping matrix element and
(n1,n2) the tube’s chirality. Using t0 = 2.5 eV (see, e.g.,
Refs. 2, 20, and 23) this gives G−1 = 17.0 eV2 for graphene.
For (5,5) and (10,10) CNTs the values are 17.0 eV and 34.0 eV,
respectively.

The corresponding expression for the band-structure energy
per atom becomes

eBS(μ) = e0 + G

α + 2
|μ|α+2, (9)

where e0 = eBS(εF ) will be omitted in the following.25 This
energy can be expressed in terms of the total net charge per
atom element

q(μ) = −|e|
∫ μ

εF

dε g(ε) (10)

leading to

eBS(q) = G

α + 2

(
α + 1

G

|q|
|e|

) α+2
α+1

. (11)

The total band-structure energy is then given by

EBS = (α + 1)
α+2
α+1

α + 2
G− 1

α+1

∑
I

( |qI |
|e|

) α+2
α+1

(12)

which is now a function of the charges qI .
To obtain the equilibrium charge distribution qI we min-

imize Eq. (1) [with the approximate expression Eq. (12) for
the band-structure energy] under the constraint that the total
charge on the electrode is Q. Hence we need to minimize

�(q) = E(q) − μ̄

( ∑
I

qI − Q

)
, (13)

where �(q) is the grand-canonical potential, and the elec-
trochemical potential μ̄ is introduced here as a Lagrange
multiplier. This gives a set of equations

g

( |qI |
|e|

)p

+ φI − μ̄ = 0 (14)

with φI = ∑
J γIJ qJ + φext

I and

g = (pG)−p and p = 1

α + 1
. (15)

Note that Eq. (14) is the equilibrium condition Eq. (2). We
rewrite Eq. (14) as

qI

|e| = −
∣∣∣∣φI − μ̄

g

∣∣∣∣
1
p

sgn(φI − μ̄). (16)

In the spirit of tight-binding models, Eq. (16) is solved
self-consistently for the qI ’s using Anderson mixing.26,27 In
each step, we solve for the electrochemical potential μ̄ which
gives total charge Q using a Newton iteration. Note that for
nanotubes p = 1 and μ̄ can be computed directly.

At this point, we would like to emphasize a connection
to the theory of interatomic bonding: Our charge-transfer
model is solely based on the functional form of the local
density of states. Second-moment tight-binding bond models
are successful in describing bonding in d metals. Also here,
the local density of states is the central quantity from which the
bonding characteristics of the material can be derived.18 While
we know the exact local density of states in the unperturbed
case, for these interatomic potentials Gaussians or constant
values (over a range of energies) are typically assumed for g(ε).
These functions could be easily used to derive charge-transfer
models for d metals. A constant local density of states then
leads to a quadratic dependence of the band-structure energy
on qI , identical to the CNT model derived here.

III. MODEL VALIDATION

Equation (12) holds only for slowly varying fields in the
sense of a local-density approximation. This model hence ex-
cludes interferences due to electrons scattering at the impurity
potential caused by the ion’s charge which typically lead to
Friedel-type charge oscillations. Equation (12) is a mean-field
theory for the response of the respective carbon nanostructure
which, however, gives the correct quantum capacity28 of the
device since the integral response to homogeneous charging is
correct.

It is less obvious that the model should reproduce the limit
opposite to homogeneous charging, i.e., the response to a point
charge. We hence calculate the response of different systems
in the vicinity of a point charge and compare to nonorthogonal
tight-binding calculations (NOTB) using the parametrization
of Ref. 29. In both cases, a Hubbard-U of 9.9 eV and Gaussian
charges17 are used.

Figure 2 shows the energy as a function of distance, as
the point charge q = 1|e| is moved from the middle of a
hexagon outwards on graphene, a (10,10) and a (5,5) CNT,
while the whole system is kept charge neutral. We use 2D and
1D periodicity for the graphene and the CNTs, respectively,
where the repeat unit is constructed out of 8 × 12 rectangular
graphene unit cells, and 20 CNT unit cells. For comparison, we
also show the classical results that are expected in the limit of
infinite separation. Because of the periodicity, the interaction
energy E per surface area A approaches the interaction energy
of two charged parallel plates at distance d

E

A
= 1

2ε0

(
q

A

)2

d (17)
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FIG. 2. (Color online) (a) Energy as a function of distance, as a point charge (+|e|) moves outwards from a surface hexagon of graphene,
a (10,10) CNT and a (5,5) CNT (left to right). (b) Average charge on the central hexagon (thick, red) and the second-nearest neighbors (thin,
green). The results are displayed for NOTB (open circles) and the charge-transfer model without the Coulomb integral (solid lines). In the top
panel, the thick (red) lines give the result of the charge-transfer model including the Coulomb integral, and the dotted lines give the classical
limit at large separations (see text).

for graphene, and the energy E per length L of two line charges
at distance d

E

L
= 1

4πε0

( q

L

)2
ln d (18)

in the case of CNTs.
In particular, the results of the charge-transfer model and

NOTB agree for large distances, typically starting at around
4 Å where the error with respect to NOTB calculations drops
below 0.1 eV. Remarkably, the charge-transfer results move
closer to NOTB results for small separations if we only
consider the self-energy contribution of the Hubbard-U and
let the Coulomb integral γIJ = r−1

IJ . The full Coulomb integral
γIJ provides some smoothing of the charge oscillations in the
vicinity of the impurity. With γIJ = r−1

IJ this smoothening is
switched off, leading to more pronounced charge oscillations,
a behavior closer to the Friedel oscillations observed in the
NOTB model.

The agreement between NOTB and charge transfer is
worst in the case of the (10,10) CNT shown in Fig. 2(b).
In particular at small distances the error in binding energy
is around 2.5 eV while at larger distances the proper limiting
behavior is obtained. For a (10,10) CNT, the first sub-band
starts around 1 eV above and below the Fermi level (see Fig. 1).
The inhomogeneous response to an inducing charge closer than
4 Å will shift the local chemical potential into the sub-band
region, hence explaining the observed difference. For the (5,5)
tube, where the first sub-band is located around 2 eV from the
Fermi level, the agreement between the charge-transfer model
and NOTB calculations is better.

At aqueous solution-electrode interfaces, the ions remain at
distances above 4 Å where our model gives accurate binding
energies. The water itself is charge neutral, such that only

dipole and higher-order electrostatic interactions play a role.
In order to check the interaction of water with a charge-neutral
electrode we conduct molecular dynamics simulations of
a water droplet consisting of 1070 water molecules on a
graphene substrate at 300 K (see Fig. 3(a)). Here, water is
simulated with the SPC/E model,30 whereas for graphene-
water a C-O Lennard-Jones potential fitted to reproduce the
water–graphite contact angle is used31 (εCO = 4.06 meV and
σCO = 3.19 Å).

When equilibrating the droplet we find no observable
change in contact angle with respect to the charge-neutral
case, to which the Lennard-Jones potential has been fitted.
To crosscheck, we also computed typical binding energies of
water on graphene and a (5,5) CNT. Here, the water is oriented
such that the two hydrogens point away from the surface.
Binding energies are a few meV for the closest distance
of around 2.5 Å which we observed in molecular dynamics
simulations. This gives only a minor increase in the energy of
the water–graphene interface. Thus upon introducing charge
transfer, the water–graphite contact angle is preserved.

IV. WATER DROPLET IN A BIASED
GRAPHENE NANOCAPACITOR

We now carry out simulations of a water droplet in a
graphene nanocapacitor. This setup is similar to previous
studies of water on charged surfaces.32,33 The capacitor is
constructed by adding a second graphene layer at a distance
of 20 nm from the graphene on which the droplet resides
(Fig. 3(a)).

We employ two methods of charging: First, we use our
charge-transfer model and apply a voltage across the capacitor
by adding an energy penalty term φext

I = χI for each electrode
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(a)

(d)

(b) (c)

FIG. 3. (Color online) Snapshots of the droplet in the capacitor. (a) Initial configuration, (b) including charge-transfer, and (c) using
homogeneous charging. (d) Position of the top- and bottommost water molecule over time after the equilibrated droplet has been placed in a
capacitor setup.

atom I . Here, χI is constant on each capacitor plate and the
difference in χI between the plates is the applied voltage as can
be seen from Eq. (2). Second, we homogeneously charge the
capacitor so that qI = ±q, the sign depending on the electrode,
and the resulting field corresponding to the desired voltage.

In agreement with previous work,32,33 the droplet elongates
and forms a stable pillar-like structure between the two
electrodes (Fig. 3(b) and 3(c)). Figure 3(d) shows the position
of top- and bottommost water molecule in the droplet at
30 V. We see that the droplet elongates but remains on the
initial graphene surface if charge is allowed to rearrange
(see also Fig. 3(b)). Conversely, in the case of homogeneous
charging the droplet elongates until it touches both surfaces
(Fig. 3(c)). At around 150 ps it even detaches from the lower
graphene electrode showing it’s low tendency to adhere to the
graphene.

Remarkably, the charge-transfer treatment leads to a differ-
ent behavior in both contact angle and the rise velocity of the
droplet. This difference in behavior between the constant- and
variable-charge model is sustained over a large voltage-range.
We observe the onset of pillar formation at around 15 V, while
above 150 V we observe a Taylor-like instability and the single
pillar decays into multiple ones.

The origin of the observed behavior is the dielectric prop-
erty of the water. Since the water provides a higher dielectric
constant than the vacuum, it is energetically beneficial to locate
some of the charge on the electrode below the droplet. We find
an average induced charge of 0.002 |e| atom−1, while below
the droplet the average charge is roughly 0.012 |e| atom−1 after
600 ps.

V. CONCLUSIONS

For simulating carbonaceous nanostructures in polar envi-
ronments, the present model gives energetics close to tight-
binding calculations. Especially beneficial is the controlled

parametrization from quantum mechanical considerations and
measured- or analytical-band structures. Together with a
functional form familiar from traditional charge equilibration
models, this allows for a fast implementation of the model into
existing molecular dynamics codes.

We demonstrate the model using a simple nanocapacitor
setup. In particular, this system was deliberately chosen as
simple as possible: The droplet does not contain ions since
we do not intend to change the interfacial energies at zero
bias as demonstrated above; the capacitor plates are parallel
as to provide an initially homogeneous electric field. Still,
the biased system behaves remarkably differently from the
constant-charge situation.

The capacitor serves as a demonstration that a proper
consideration of charge-transfer is crucial for the simula-
tion of biased nanosystems. The present model will hence
enable the study of double-layer formation as a function
of voltage in systems such as supercapacitors with carbon
nanotube forest electrodes. In this particular example, we
expect non-homogeneous field distributions that are induced
by the geometry of the electrodes, and hence a behavior that
necessitates the use of charge-transfer models.

Although we use carbon structures as an example because
analytic expressions for the densities of states are available, the
model is by no means restricted to such systems. As outlined
in Sec. II, similar approximate charge-transfer models can be
derived for any kind of metallic material.
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