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Nonlocal exchange effects in zigzag-edge magnetism of neutral graphene nanoribbons
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We study the role of nonlocality of exchange in a neutral zigzag graphene nanoribbon within the π -orbital
unrestricted Hartree-Fock approximation. Within this theory we find that the magnetic features are further
stabilized for both the intraedge and interedge exchange as compared to mean-field theories of zigzag ribbons
based on local exchange (such as the Hubbard model or the ab initio local density approximation). The interedge
exchange produces an enhancement of the band gap of the magnetic ground-state solutions. The effect of this
enhanced exchange on the edge states cannot be satisfactorily achieved by a local interaction with renormalized
parameters.
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I. INTRODUCTION

Zigzag-terminated graphene ribbons have recently attracted
much attention both by theorists1–26 and experimentalists,27–40

partly due to the surge in popularity of graphene after seminal
transport experiments.41–43 The unique properties of zigzag-
edge localized states has prompted using zigzag-terminated
nanoribbons as a testbed for proposals of magnetism in
graphitic systems44 or for illustrating exotic physics related to
the bulk topology of a single sheet of multilayer graphene in the
presence of strong spin-orbit coupling or magnetic fields.45–48

Recent experiments have found traces of localized spin
polarization at zigzag edges of graphene,38–40 in agreement
with theories predicting spin polarization at zigzag edges in the
presence of electron interactions.1,7,9,11 The agreement of the
qualitative features between solutions predicted by different
methods such as the Hubbard model and density functional
theory (DFT) with different semilocal approximations for the
energy functionals point toward a robust underlying property
of these systems for which the magnetic solutions are not very
sensitive to the specific details of electron interaction. Con-
sidering that magnetic ordering is a long-ranged phenomena,
one natural question that follows is, how much physics we are
missing by an inadequate treatment of nonlocal exchange in
our solutions. The Hubbard model used in several previous
papers13,49–51 relies on a strictly local on-site interaction term
while the common approximations of the energy functionals
in DFT52,53 are modeled from local or semilocal exchange
and correlation energies54 of the homogeneous electron gas.
In both cases the description of the exchange hole tends
to be excessively short ranged, in addition to uncertainties
associated with self-interaction errors in the case of DFT. In
this work we revisit the problem of edge magnetization, pre-
dicted by mean-field theories in zigzag nanoribbons, within an
unrestricted Hartree-Fock (UHF) approximation with nonlocal
exchange, which does not suffer from the shortcomings of the
previous approximations, and study systematically different
truncation ranges for the electron interaction.

We find that a nonlocal interaction enhances the gaps and
modifies the band structure in a way that cannot be properly
mimicked by a renormalized short-range on-site repulsion,
although the solutions remain similar in many aspects. These
changes in the band structure can be traced back to both the
interedge tunneling term and intraedge magnetic order.

We start in Sec. II introducing the Hartree-Fock theory in
zigzag ribbons and cast it in the form of a two-dimensional
(2D) edge-state band model13,15 extending beyond the formu-
lation based on the Hubbard Hamiltonian. In Sec. III we show
within this framework how the nonlocal exchange modifies
the effective Hamiltonian matrix elements when we extend the
on-site interaction Hubbard model to include farther neighbor
interaction terms. We then move on to discuss in Sec. IV
the localization properties of the edge-state wave functions
along the direction of the ribbon, discussing the dependence
of the intraedge band gap as a function of the electron
interaction strength. Subsequently, in Sec. V we assess the
impact of nonlocal exchange on the energetics of the interedge
antiferromagnetic ground state. We finally close the paper with
a summary and conclusions section.

II. TWO-BAND HARTREE-FOCK THEORY
IN ZIGZAG RIBBONS

A simple and yet fairly accurate way to study edge
magnetism in a zigzag ribbon in a mean-field theory is to
calculate, for each k point, the effect of interaction on the
edge-state wave functions not allowing edge and bulk to mix
their wave functions.13,15 These edge-state wave functions (see
Appendix B for more details) become exponentially localized
at the edges whenever 2π/3a + 1/W � |k| for sufficiently
wide ribbons,5,55 where the ribbon width is W = √

3aN/2
and N is the number of atom pairs in the unit cell across the
ribbon, and the lattice constant is a = 2.46 Å. We label in
an abbreviated notation the ribbon edge states as |k−〉 and
|k+〉, the antisymmetric and symmetric wave functions across
the ribbon, that can be symmetrically and antisymmetrically
combined to obtain basis functions that are mostly centered
either at the left (L) or right (R) edge in the ribbon.15 We
denote the respective k-dependent wave-function amplitude at
each lattice site l in the unit cell as Lkl and Rkl . We can use this
basis to represent the Hamiltonians as a two-by-two matrix for
each spin σ =↑ / ↓,

Hσ (k) =
(

HLL,σ (k) HLR,σ (k)

HRL,σ (k) HRR,σ (k)

)
. (1)

The tight-binding band term Hamiltonian is described by a
simple nearest-neighbor hopping term γ0 = −2.6 eV. In this
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LR basis representation the Hamiltonian would consist of a
tunneling term mixing states located at both edges in the ribbon
for each spin,

H TB(k) =
(

0 tTB(k)

tTB(k) 0

)
, (2)

where tTB(k) is the energy dispersion for the tight-binding
edge conduction band [i.e., the basis we use consists of two
eigenstates of H TB(k)]. For a neutral ribbon the electrostatic
Hartree term cancels with the positive background charge
and contributes only with a constant term C0 in the diagonal
elements that can be chosen at our convenience. Then the
interaction term of the Hartree-Fock Hamiltonian projected
on the two-band LR basis effectively reduces to an exchange
contribution on both the diagonal and off-diagonal matrix
elements,

HLL,σ (k) = C0 −
∑
ll′

LklLkl′F
ll′
X,σ (k), (3)

HLR,σ (k) = tTB(k) −
∑
ll′

LklRkl′F
ll′
X,σ (k), (4)

HRR,σ (k) = C0 −
∑
ll′

RklRkl′F
ll′
X,σ (k), (5)

where we have defined

F ll′
X,σ (k) =

∑
k′

Ull′
X (k′ − k)〈nk′ll′,σ 〉, (6)

where nk′ll′,σ is the density matrix in the lattice Bloch states
and Ull′

X (k′ − k) represents exchange Coulomb integrals whose
explicit expressions are presented in the Appendix A. The
Coulomb integrals between the π orbitals located at different
sites can be approximated in Hartree atomic units by effective
terms of the form56,57

Veff(d) = 1

εr

√
a2

o + d2
, (7)

where d is the distance between lattice sites and the bonding
radius of the carbon atoms ao = a/(2

√
3) account for a

small damping of the interaction due to the shape and finite
spreading of the wave function around the lattice. The on-site
repulsion term remains unknown and is commonly bracketed
between U = 2 eV and U = 6 eV,49–51,58–61 and more recently
even up to U = 9.3 eV.62 In our calculation we used a
relatively small value of U = 2.5 eV, considering that the
on-site repulsion strength of U = 2 eV in the Hubbard model
where the Coulomb tail is neglected is enough to reproduce
the local-density approximation (LDA) band structures.13 We
include in our calculations an effective screening of εr = 4,
resulting in a global damping of the interaction strength by a
factor 1/4 to account for possible effects of dielectric screening
(usually εr = 2.5 in SiO2) and additional screening effects
due to sp2 orbitals that are neglected in our approximation.
The range of the Coulomb interaction is truncated to up 16
nearest neighbors. With the above prescriptions we obtain for
the ground state of the neutral system an intraedge interaction
gap near ka ∼ π of 1.4 eV, midway between the Becke
three-parameter Lee-Yang-Parr (B3LYP) prediction9 of 2.2 eV

and the LDA prediction7 of 0.5 eV. We write the two-band
effective Hamiltonian in the following way:

Hσ (k) = �AF(k)στz + �F(k)σI + tσ (k)τx, (8)

where the Pauli matrices τμ and I are acting in the space
of left and right edges and σ is +(−) for up(down) spin.
The renormalized interedge tunneling tσ (k) is given by
the bare hopping plus a spin-dependent enhancement from
the exchange interaction. The intraedge exchange potentials
�AF(k) and �F(k) correspond to a particular choice of �AF

↑/↓(k)
or �F

↑/↓(k) such that they are positive quantities at k ∼ π/a.
Written in terms of the matrix elements defined in Eqs. (3)–(5)
for each momentum k they are

tσ (k) = HLR,σ (k), (9)

�AF
σ (k) = 1

2 [HLL,σ (k) − HRR,σ (k)], (10)

�F
σ (k) = 1

2 (HLL,σ + HRR,σ )(k). (11)

Note that we have assumed a collinear spin arrangement and
there is no spin-mixing term. Therefore the 4 × 4 Hamiltonian
matrix is reduced to two block diagonal submatrices in Eq. (8)
for each spin subspace. The energy dispersions associated with
the edge states of the two-band Hamiltonian can be written as

E±
σ (k) = σ�F(k) ±

√
�AF2(k) + t2

σ (k). (12)

In the AF case the term �F(k) in Eq. (8) amounts to an edge-
independent value for both up and down spin and can be set
to zero. We notice that the exchange spin splitting terms given
by the diagonal elements �AF(k) have opposite signs for left
and right edge states, and a global sign reversal when we
consider the opposite spin Hamiltonian. On the other hand, in
ferromagnetic self-consistent solutions we get a nonzero net
spin polarization in the sample due to edge electrons with spins
pointing in the same direction. In this case, because �AF

σ =
0, the intraedge exchange energy gain included in �F

σ (k) is
reflected in the overall shift of the band energy for each k. The
opposite spin state is shifted in an equal and opposite direction
and the bands split in an amount of 2�F(k) at each k point.

III. NONLOCAL EXCHANGE AND THE EFFECTIVE
HAMILTONIAN MATRIX ELEMENTS

The nonlocality in exchange appear when the Coulomb
interaction range is extended beyond the on-site repulsion
and is most easily explored comparing the Hartree-Fock (HF)
Hamiltonian matrix elements of Eqs. (3)–(5) with those we
obtain using the Hubbard on-site repulsion model. We have
used the value of U = 2 eV for our reference Hubbard model
calculations following the convention of previous works13,15 to
match the LDA band gaps. In Fig. 1 we show a comparison of
the band structures in the HF and Hubbard model for the lower-
energy AF and higher-energy F configurations. The effects of
nonlocal exchange in the band structure can be understood
more clearly separating their contributions for the intraedge
exchange potentials corresponding to the diagonal elements
of the effective Hamiltonian obtained through Eqs. (3), (5),
and (10) and the off-diagonal interedge tunneling given in
Eqs. (4) and (9). We discuss our comparison only for AF
matrix elements because the effective matrix elements for F
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FIG. 1. (Color online) Comparison of HF and Hubbard model
band structures for the lower-energy AF (left-hand panel) and
metastable higher-energy F (right-hand panel) spin configurations for
a nanoribbon with N = 20 carbon atom pairs in the unit cell. In the
HF solution we find enhanced band-gap openings due to the increase
in strength of both intraedge exchange manifested near ka ∼ π and
interedge tunneling that become more significant as we move away
from this point.

solutions remain qualitatively identical. These matrix elements
are represented in Fig. 2 for different choices in the truncation
of the interaction ranges for the Coulomb integrals in Eq. (7).
Since the left and right basis functions are strictly localized
on one of the sublattices, the contributions to the diagonal
term �AF(k) are due to interaction couplings within the
same sublattice, therefore these terms contain information
of exchange within the same edge atoms. One interesting
feature we observe is that the function �AF(k) obtained for
the fully nonlocal calculation can be effectively reproduced
in most of the edge-state zones of the Brillouin zone (|k| �
2π/3a + 1/W ) by the Hubbard Hamiltonian with a larger
effective on-site repulsion. This effective repulsion takes the
value of Ueff = 5.3 eV for the interaction parameters we have
chosen for the HF calculation, which is very close to the critical
value of UC/|γ0| = 2.23, above which the choice would be
unphysical because the ground state of a 2D graphene sheet
develops an antiferromagnetic spin-density-wave solution.1

For every choice in the cutoff for the Coulomb interaction
range we could obtain different effective choices of Ueff that
can reproduce �AF(k) satisfactorily. In the Hubbard model
the k dependence of the diagonal terms of the Hamiltonian
in Eqs. (3) and (5) is manifestly due to the coefficients L2

kl

of the basis function, with the largest contributions coming
from the lattice sites at the edge and decaying exponentially
as we move into the bulk. In the corrections due to farther
neighbor interactions (i.e., beyond the Hubbard model) still the
dominant contributions to the matrix element �AF for a given
distance of electron interaction are those connecting to the edge
ribbon atom, resulting in a k-dependent behavior proportional
to that of the L2

kl located at the edge sites. This remarkable
behavior for which every additional neighbor contribution in
the exchange potential has the same k-dependent behavior
in the edge-state region is most likely the reason for the
good overall agreement of the edge-state properties in zigzag
ribbons calculated within a simple Hubbard model and other
mean-field calculations. Outside this region of the Brillouin
zone we find substantial differences of the potentials for the
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FIG. 2. (Color online) Enhancement of the matrix elements of the
effective Hamiltonian defined in Eqs. (9)–(11) evaluated in the HF
approximation on a ribbon with N = 20. The subscripts in the label
indicate the number of nearest neighbors considered in the truncated
range of the effective Coulomb interaction. We do not represent the
results for F configuration because the behavior is similar to what
is found for AF solutions. Left-handpanel: Values of the intraedge
exchange potential �AF(k) obtained in the HF approximation for
different interaction ranges. With an appropriate choice of an effective
Ueff = 5.3 eV in the Hubbard model we can match �AF(π/a) of
the HF calculation for most of the region in the Brillouin zone where
the wave functions are edge localized. The red curve represents the
effective Hubbard model that agrees well with the HF calculation in
almost the entire range of the edge-state zone |k| � 2π/3a + 1/W .
Right-hand panel: Enhancement of tunneling amplitudes t↑/↓(k) for
AF solutions in presence of long-ranged interaction representing the
greater coherence between wave functions located at each sublattice,
and therefore each edge in the ribbon. For on-site interactions the
tunneling has the same form as the tight-binding conduction-band
dispersion.

Hubbard model and HF Hamiltonian matrix elements, but
these differences do not introduce relevant changes in the
magnetic configuration of the edges. From the results shown
above we expect that the quantitative agreement of the gap
at ka ∼ π between the LDA and the Hubbard calculations13

with U = 2 eV suggests that the LDA will have a tendency
to underestimate the energetics of the ferromagnetic spin
alignment along a zigzag edge. In fact, the LDA52 would
introduce a larger gap opening if the spin density of the
core electrons of carbon were considered when evaluating the
spin-dependent LDA exchange potential.

The off-diagonal tunneling term tσ (k) given in Eq. (9)
consists of a tight-binding term and an interaction term
coupling different sublattices. The on-site interaction term in
the Hubbard model cannot couple different sublattices, and
therefore the two edge sites, and the matrix elements reduces
to the tight-binding band dispersion of the conduction edge
band.15 This matrix element can be enhanced in the presence of
the long-ranged interaction. The enhanced coherence between
left and right edge solutions leads to an increase in the
band gap between the valence and conduction bands of the
antiferromagnetic solution. This enhancement of the tunneling
term tσ (k) is more pronounced for k points outside the
edge-state zone because the density tails spread more into the
bulk. However, it remains essentially zero in the surroundings
of ka ∼ π since the wave functions are strongly localized at
the ribbon edge borders.
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The ribbon width dependence of both HF and Hubbard
solutions remain similar. Previously15 we had illustrated using
the Hubbard model that the ribbon width dependence of the
solutions can be summarized through the behavior of the
Hamiltonian matrix elements near the valley point k ∼ 2π/3a

that obey the following scaling rules as a function of ribbon
width W :

�AF/F(k) = W−1�̃AF/F(qW ), (13)

t(k) = γ0

W
t̃(qW ), (14)

where q = ka − 2π/3 is the dimensionless momentum mea-
sured from the valley point and the functions �̃AF/F, and t̃

are functions that do not depend on the width of the ribbon.
These rules for wide enough ribbons are not altered with the
presence of nonlocal exchange shown in Eqs. (3)–(5) because
the additional nonlocal terms are quadratic in Lkl and Rkl .
These in turn follow a similar scaling rule that can be obtained
using a continuum model15

Rkl = W−1/2R̃qW,l, (15)

Lkl = W−1/2L̃qW,l, (16)

where R̃qWl and L̃qWl are scaled functions that do not depend
on the width of the ribbon. Hence the band-gap size and the
position of the gap as well as the up- and down-spin crossover
point of the F solution (measured from the valley point) all
follow a W−1 ribbon width dependence.

IV. INTRAEDGE LOCALIZATION PROPERTIES
OF EDGE STATES

We explore here the properties of localization of the zigzag-
edge states along the x axis, the direction of periodicity in
the ribbon. We estimate this quantity in real space evaluating
a partial Fourier transfom of the k-point-dependent density
component centered at lattice site l in the ribbon unit cell,

Flσ (x) =
∫

k>|2π/3a+1/W |
dke−ikx |�kl(r)|2, (17)

where �kl(r) is the lth component of edge band Bloch wave
function. The integration in k space is over the region of edge
states which give the relevant contribution to the edge spin
polarization. This definition, reminiscent of the way Wannier
functions are calculated,63 shows us the way the electrons
localize in real space along the edge. In Fig. 3 we focus
on the row of atoms at the ribbon edge and we show that
the edge-state wave functions spread approximately seven
atomic lattice sites on average, and this spreading length is
essentially the same for paramagnetic tight-binding solutions
and the solutions with edge spin polarization. These features
are robust to changes in the ribbon width, and the details of the
Coulomb interaction with negligibly small departures from this
form when we change the strength of the Coulomb interaction
or modify the range of the Coulomb interaction. This robust
feature of the wide smearing of the electron density on the
edge atoms into the neighboring atoms located several lattice
constants away along the edge direction is key in producing
the long-reaching ferromagnetic spin correlation length in a
zigzag ribbon edge.1,12 Due to this far-reaching overlap of the
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FIG. 3. (Color online) Wave-function localization along the
ribbon centered at different sites in the ribbon unit cell calculated
for a ribbon with N = 12 corresponding to the antiferromagnetic
ground-state solution and interaction-free tight-binding solution. We
can notice a substantial spreading of the wave function at the ribbon
edge enveloping approximately seven units of lattice constant a along
the ribbon.

electron density along the edge, even short-ranged exchange
interactions are able to connect edge states centered around
different edge atoms and induce an energetically favorable
parallel spin alignment.

An intuitive way to relate this edge wave-function localiza-
tion length along the edge with the band structure or the ribbons
near ka ∼ π is by relating the gain of exchange energy per
particle for the occupied electrons near the edge atoms through
�max = �AF/F(π/a) with an effective localization length λ

through the formula

�max = e2

εrλ
. (18)

We present in Table I the values of �max and λ for different
choices of εr calculated for a ribbon of N = 12 atom pair
width. In this analysis we define the on-site term as U = 10/εr

eV, making it dependent on the dielectric screening. The value
of �max remains practically constant as we make the ribbon
wider, and already for N = 12 it gives a good estimate of the
infinite width limit.

The resulting values of λ show only a very small variation
when different values of the relative dielectric constant εr are

TABLE I. Effective localization length λ (in units of lattice
constant a = 2.46 Å) estimated from the shift from tight-binding
bands �max (in eV) near ka ∼ π for the antiferromagnetic spin
configuration in graphene nanoribbons. We can observe that λ does
not change much as a function of the values of dielectric constants
considered. We can observe that the magnitudes of λ are consistent
with the estimations that can be extracted for the localization lengths
presented in the previous section.

εr 1 2 3 4 5

�max 2.35 1.16 0.78 0.58 0.46
λ 2.49 2.52 2.5 2.5 2.5
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used, in agreement with the fact that the shapes of the density
localization remain practically unchanged.

V. ENERGETICS OF INTEREDGE EXCHANGE COUPLING

The nature of antiferromagnetic spin polarization of edge
states on different sublattices (and therefore different edges)
was studied previously as an unusual type of superexchange
interaction,15 where it is energetically favored with respect to
the ferromagnetic state both in the kinetic energy and interac-
tion energy. For the Hubbard model the interedge coupling is
mediated by the band Hamiltonian tunneling and the local spin
polarization is provided by intraedge exchange. In the presence
of nonlocal interactions the interedge off-diagonal tunneling
term plays a role in determining the total exchange energy. In
this section we examine the impact of nonlocality of exchange
in the energetics of the ground-state solution by obtaining the
differences in the total energies between AF and F mean-field
solutions. In a neutral nanoribbon the electrostatic Hartree
energy is the same in both AF and F configurations and the
total energy difference per edge carbon atom �E consists of
the kinetic energy term and the exchange term,

�E = EF − EAF = �T + �EX. (19)

The kinetic energy difference can be calculated from one-body
averages of the tight-binding Hamiltonian for each occupied
edge-band state and is essentially the same derivation as in
Ref. 15, while for the exchange energy we need to sum two-
body exchange integrals. It will be useful to write it as an
integral of a k-dependent function defining implicitly εX(k),

EX = −1

2

occ∑
i,j

Kij =
∫

BZ
dkεX(k), (20)

where Kij is the standard definition of exchange integral as can
be found in Refs. 64, 65. The labels i, j represent occupied
single-particle states including the k quantum numbers, band
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FIG. 4. (Color online) Comparison of k-point-resolved exchange
energy differences between Hubbard and HF calculations. Left-hand
panel: Exchange energy difference density �εX(k) for the Hubbard
calculation with U = 2 eV. Most of the exchange energy difference
comes from the regions of |k| ∼ 2π/3a while the region ka ∼ π also
adds a small contribution. Right-hand panel: In presence of longer-
ranged interactions we find contributions to the energy differences in
a wider range of k points around the valley point 2π/3a, thanks to
the enhanced intraedge tunneling terms.
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FIG. 5. (Color online) Total energy difference per edge carbon
atom as a function of ribbon width showing a W−2 decay behavior.
The fitting curves in units of eV vs Å are 6/(W 2 + 300) for �EHF

tot ,
1/(W 2 + 50) for �EHub

tot with U = 2 eV, and 2.6/(W 2 − 100) for
U = 5.3 eV.

labels, and spin index. In Fig. 4 we show the exchange energy
difference as a function of k point in the Brillouin zone
for the Hubbard model and the HF approximation. We can
observe that the details of k-point-dependent contributions to
the exchange energy difference is substantially modified in the
presence of nonlocal interactions. The global enhancement
in magnitude leads to a further stability of AF solutions. In
particular, the off-diagonal interaction terms in the effective
Hamiltonian further enhances the stability of AF solutions
through an enhanced interedge tunneling.

The ribbon width dependence of the total energy differences
can be derived from similar considerations as in Ref. 15 and
follows a W−2 decay law as shown in Fig. 5.

VI. SUMMARY AND CONCLUSIONS

In this paper we have addressed the effects of nonlocality
of exchange in the edge states of a neutral zigzag graphene
ribbon from different points of view. We started with a formal
introduction on how the far-reaching interaction terms between
distant sites can influence the values of the matrix elements of
the effective two-band Hamiltonian describing the edge states,
distinguishing the different roles in terms of intraedge and
interedge interaction manifested, respectively, in the diagonal
and off-diagonal matrix elements, representing, respectively,
the direct exchange energy giving rise to the spin polarization
and the tunneling between both sublattices that mix states
localized at different edges. Further insight was gained by
studying the properties of the localization of edge states along
the direction of the ribbon, finding for those states sitting
on the edge atoms a rather long-ranged enveloping function
in the direction of periodicity, a fact that would make possible
even for very short-ranged interaction terms to connect with
the wave functions centered several lattice constants away in
the direction of the ribbon. Finally, we analyzed the impact
of nonlocal interaction in the energetics of interedge coupling
largely responsible for the antiferromagnetic spin polarization
of the system.
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In light of our studies we have been able to understand
better why the Hubbard model based on a strictly short-ranged
on-site interaction has turned out to give results consistent
with solutions found in more elaborate studies. The main
reasons would be, on the one hand, that for edge states,
the interedge tunneling not captured by the Hubbard model
is relatively less important with respect to the intraedge
spin-splitting contributions, whose functional form in k space
is accurately captured by an on-site interaction. On the other
hand, the spreading of the edge-state wave functions along
the ribbon allows edge states centered at different atomic
sites to connect to each other even for strictly short-ranged
on-site interactions. Ribbon width dependent scaling of band
gaps and energy differences of different spin-polarized states
do also follow a similar law of W−1 and W−2, respectively,
as found in the Hubbard model since the width dependence
of those quantities is dictated by the wide ribbon asymptotic
behavior of the edge-state wave functions.15 Even though the
above-mentioned qualitative features remain the same both for
nonlocal and local exchange described by the HF and Hubbard
models, we have also shown that the discrepancies in the total
energy differences and the exchange potentials outside the
edge-state region of the Brillouin zone cannot be modeled
accurately with a renormalized effective on-site interaction
term. This effect can have a relevant influence in calculating the
spin stiffness12,16 or in the band structure of the system when it
is shifted away from the neutrality point.20,21 The analysis we
carried out illustrates the role of nonlocal exchange in altering
the band dispersion and band-gap size due to spin-polarized
edge states, explaining the relative enhancement of band gaps
in the results obtained with nonlocal B3LYP-type functionals9

with respect to those obtained by more local prescriptions
such as LDA and generalized gradient approximation (GGA)
functionals.7
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APPENDIX A: HARTREE-FOCK FORMULATION IN THE
TWO-BAND ANALYSIS

The full HF Hamiltonian can be reduced to a 2D matrix
representation for each spin. We will represent this Hamilto-
nian matrix in a suitably chosen basis function, for example,
the LR basis we have defined in the main text. Given the basis
of Bloch functions,

〈r|kλ〉 = ψkλ(r) = 1√
NK

∑
i

eik(Ri+τl )φ(r − Ri − τl)ησ ,

(A1)

where ησ represents the spinor, τl represents the displacement
vector for sublattices in the unit cell that can be labeled with
l, and NK is the total number of k points, or equivalently, the
number of unit cells in the system repeated in the periodic
direction. The label λ = (l,σ ) represents both the lattice site

label l and the spin σ . In this basis the general expression of
the Hamiltonian is

VHF =
∑
kλλ′

Uλλ′
H

[ ∑
k′

〈c†k′λ′ck′λ′ 〉
]
c
†
kλckλ

−
∑
k′λλ′

Uλλ′
X (k′ − k)〈c†k′λ′ck′λ〉c†kλckλ′ , (A2)

where

Uλλ′
H = 〈kλk′λ′|V |kλk′λ′〉 (A3)

=
∫

dr1dr2|ψkλ(r1)|2V (r1,r2)|ψk′λ′(r2)|2(r2)

and

Uλλ′
X (q) = 〈kλk′λ′|V |k′λkλ′〉 (A4)

=
∫

dr1dr2ψ
∗
kλ(r1)ψk′λ(r1)V (r1,r2)ψ∗

k′λ(r2)ψkλ′(r2),

(A5)

where ψkλ(r) are the Bloch state wave functions.
The matrix elements in the left-right (LR) basis can be

written in the following way:

〈kL|VH |kL〉 =
∑

λ

|Lkλ|2
∑
k′λ′

NKUλλ′
H 〈nk′λ′λ′ 〉, (A6)

where NK is the total number of k points used in the sum. The
density matrix operator is defined as nλλ′ = c

†
λ′cλ, where the

label λ represents the quantum numbers that label the basis
set. The explicit forms of the amplitude coefficients Lkl in the
tight-binding model can be found in Appendix B. The diagonal
nλ ≡ nλλ is simply the occupation in the state λ and implicitly
implies a sum in the k points,

nλλ′ = 1

NK

∑
k

c
†
kλckλ. (A7)

We obtain a similar expression for the other element of
the diagonal where we only need to change the L label
into R. The Hartree term averages to zero for the off-
diagonal matrix element. In a neutral ribbon the presence of
the positive background charge neutralizes the electrostatic
Hartree potential,

Ṽext(l) + ṼH (l) = 0, (A8)

so we can focus our attention on the exchange contribution of
the interaction.

Now we show the matrix elements of the Fock term. For
the diagonal and off-diagonal elements we have, respectively,

〈kL|VF |kL〉 = 〈kL| −
∑
k′λλ′

Uλλ′
X (k′ − k)〈c†k′λ′ck′λ〉c†kλckλ′ |kL〉

= −
∑
λλ′

L∗
kλLkλ′

∑
k′

Uλλ′
X (k′ − k)〈nk′λλ′ 〉, (A9)

〈kL|VF |kR〉 = 〈kL| −
∑
k′λλ′

Uλλ′
X (k′ − k)〈c†k′λ′ck′λ〉c†kλckλ′ |kR〉

= −
∑
λλ′

L∗
kλRkλ′

∑
k′

Uλλ′
X (k′ − k)〈nk′λλ′ 〉,

(A10)
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differing only in the expansion coefficients of the two-band
states.

The kernels in the HF terms of Eq. (A2), assuming σ = σ ′
and dropping the spin part, can be written as

Uλλ′
H = 1

N2
K

NK∑
i,j

∫
dr1dr2|φ(r1 − Ri − τl)|2

× v(r1 − r2)|φ(r2 − Rj − τl′ )|2

� 1

N2
K

NK∑
i,j

Veff
(∣∣Lll′

ij

∣∣), (A11)

Uλλ′
X (q) = 1

N2
K

NK∑
i ′j ′

ei(k′−k)[Ri′ +τl−(Rj ′+τl′ )]Veff(|Ri ′

+ τl − Rj ′ − τl′ |)

� 1

N2
K

NK∑
ij

ei(k′−k)Lll′
ij Veff

(∣∣Lll′
ij

∣∣), (A12)

where we have defined Lll′
ij = Ri − Rj + τl − τl′ and the

Coulomb integrals Veff(|Lll′
ij |) can be approximated through

the expression in Eq. (7).
The HF equations reduce to the Hubbard model when

the interactions are reduced to on-site repulsion and the
expressions simplify considerably:

〈kL|VH |kL〉 =
∑

l

|Lkl|2U (〈nlσ 〉 + 〈nlσ 〉), (A13)

〈kL|VF |kL〉 = −U
∑

l

|Lkl|2〈nlσ 〉. (A14)

Adding both terms, we obtain for the diagonal and off-diagonal
terms

〈kL|VHF|kL〉 = U
∑

l

|Lkl|2〈nlσ 〉, (A15)

〈L|VF |R〉 = −U
∑

l

L∗
klRkl〈nlσ 〉. (A16)

The last off-diagonal term reduces to zero because the
coefficients Lkl and Rkl have zero overlap.

APPENDIX B: ANALYTIC RESOLUTION OF THE
TIGHT-BINDING LR FUNCTIONS

In this Appendix we describe the exact tight-binding
wave functions for the zigzag ribbon edge states. We use
periodic boundary conditions in the x direction and closed
boundary conditions in the y direction. Taking advantage of
the translational symmetry, we may Fourier transform the
Hamiltonian and solve a one-dimensional problem with k ≡ kx

as a parameter. This derivation is similar to that of Malysheva
et al.55 with some additional details.

The k-dependent one-dimensional Hamiltonian of
graphene is given by

Hk = �
†
kHk�k, (B1)

Hk =
(

0 R + Q

R† + Q 0

)
, (B2)

where Q = 2 cos(k/2) and the vectors � have 2N coordinate,
the N top coordinates are the A sublattice sites along the y
direction, and the bottom N are the B sublattice sites. The
operator R† is an N × N matrix which represents a translation
by one unit cell in the positive y direction and R translates in
the opposite direction. Employing the ansatz

�k(n) =
(

ψA

ψB

)
zn, (B3)

we may reduce Schrödinger’s equation to

(1/z + Q)ψB = EψA,
(B4)

(z + Q)ψA = EψB.

In order to solve these equations with a nontrivial vector
(ψA,ψB), we require that the matrix of coefficients has a zero
determinant. This leads to a relation between z and the energy
E: ∣∣∣∣( −E z + 2 cos(k/2)

1/z + 2 cos(k/2) −E

)∣∣∣∣ = 0,

E2 = 1 + (z + 1/z)Q + Q2. (B5)

Note that for a solution z, 1/z is also a solution. We can
therefore, write two (unnormalized) solutions:

�1(z,E,k) =
(

1
z

+ Q

E

)
zn,

(B6)

�2(z,E,k) =
(

z + Q

E

)
z−n.

In order to complete our description of wave functions we
need one more condition on E or z. This condition comes
from the edges of the ribbon. For pedagogical purposes, let us
briefly mention the case of infinite and semi-infinite samples.
In an infinite system we require that the wave functions stay
finite in the limits n → ±∞. This leads to |z| = 1, which
is obeyed by Bloch waves zn = eipn with a real p being the
momentum along the y direction. In a semi-infinite sheet we
require only that the wave function be finite at n → +∞ and
a vanishing amplitude on the one edge. In order to satisfy the
vanishing amplitude condition we need to combine the two
solutions in Eq. (B6), and in order to satisfy the condition at
infinity we require |z| � 1. Bloch waves (with |z| = 1) can
satisfy both conditions, thus the bulk states are rearranged
to accommodate the edge. In addition, unique real solutions
with |z| < 1 may also satisfy the boundary condition on the
edge with E = 0. This gives either z = −2 cos(k/2) or 1/z =
−2 cos(k/2) when only one of these solutions is physical and
decays away from the edge. The vanishing amplitude condition
is trivially satisfied by setting all A (or B) site amplitudes to
zero. This gives the flat-band states at momenta k, which satisfy
| cos(k/2)| < 1/2. This condition defines the region between
the K and K ′ points.

In the case of a ribbon with two edges we require a vanishing
amplitude on both sides of the ribbon. This translates to
�B

k (0) = �A
k (N + 1) = 0, where N is the number of unit cells

in the y direction (i.e., the number of chain pairs, as defined

165415-7
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in the main text). Assuming that �k(n) is a linear combination
of the solutions in Eq. (B6), we obtain the relation

−Q = zN − z−N

zN+1 − z−(N+1)
, (B7)

which determines all the possible solutions of the tight-
binding model on the ribbon. Equation (B7) has N − 2
Bloch-like solutions and two real (edgelike) solutions.55 For
real numbers zn produce exponentially decaying solutions
which are localized to one of the edges. Similar to the case
of the semi-infinite graphene sheet, the real, edge-localized
solutions are found in a region between the valleys. The term
valleys usually refers to the nodes in the Brillouin zone where
the energy vanishes. Here, we can only see their projection
on the k axis at k = ± 2π

3a
. However, due to the finite size of

the ribbon, the edge-state regime is smaller and extends from
2π/3a + 1/W to 4π/3a − 1/W , as will be shown shortly.

In order to find the amplitudes of the left and right wave
functions, all we need to do is combine the two solutions
in Eq. (B6) in such a way that the boundary conditions are
satisfied. We may choose to satisfy the boundary condition
provided by one of the edges while the other condition would
be automatically satisfied by the correct choice of z [a solution
to Eq. (B7)]. This gives

�±(E,k,n) = α

[(
1
z

+ Q

±|E|

)
zn −

(
z + Q

±|E|
)

z−n

]
, (B8)

and the parameter α is given by the normalization,

|α|−2 =
N∑

n=1

{[(
1

z
+ Q

)
zn − (z + Q)z−n

]2

+E2(zn − z−n)2

}
= 2(1 − z2)

(1 − z2N )(1 + z2(N+1))

(1 − z2(N+1))2
. (B9)

Please note that z is assumed real (but may be negative). It is
worth mentioning that the lower-energy solution (with −|E|)
is antisymmetric about the ribbon center while the higher-
energy solution is symmetric. For this (anti)symmetry to
hold we require �A(n) = ±�B(N + 1 − n), which is satisfied
by �±.

To gain some intuition about interacting edge states we
prefer to work with edge localized states �L and �R . These
are constructed by combining the �±. Since the parameters
z, Q, and α only depend on the absolute value of E,
we obtain

�L = 1√
2

(�+ + �−)

=
√

2α

[(
1

z
+ Q

)
zn − (z + Q)z−n

](
1

0

)
,

�R = 1√
2

(�+ − �−) =
√

2|E|α(zn − z−n)

(
0

1

)
. (B10)

Note that the left and right wave functions are localized on one
sublattice, determined by the boundary conditions.

In the above discussion we left z as a parameter. However,
the value of z is defined by the solutions to Eq. (B7),
which unfortunately does not provide a closed form. Let us
define the inverse localization length, λ such that z = exp(λ).
Equation (B7) can be rewritten as

−Q = sinh(Nλ)

sinh[(N + 1)λ]
. (B11)

Then the energy of this localized solution can be simplified by
substituting Eq. (B11) into Eq. (B5):

E = ± sinh(λ)

sinh[(N + 1)λ]
. (B12)
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